Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коэффициент уменьшения скорости

Коэффициент уменьшения скорости зависит от упругих свойств мембраны и от силы прижима тел качения к упругому диску.  [c.155]

Охват работает следующим образом. При вращении мотора 11 его движение через вал 9 и шайбу 8 передается кольцу 1, и тела качения 1 начинают катиться но упругому элементу б, к которому они прижаты пружиной 10. На упругом элементе 6 образуется бегущая волна продольной деформации, вследствие чего подвижная гайка 4 получает вращение в направлении, противоположном вращению ведущего вала 9 со скоростью, значительно меньшей скорости последнего. Коэффициент уменьшения скорости зависит от упругих свойств элемента 6 и силы прижима к нему тел качения 7. Подвижная гайка нри своем вращении обеспечивает поступательное движение винта 3, который вызывает перемещение захватных губок 2 схвата. После захвата детали движение губок 2, винта 3 и вращение гайки 4 прекращаются, однако качение тел 7 по упругому диску 6 может продолжаться, при этом усилие захвата на губках остается постоянным. Мотор 11 после захвата детали может оставаться включенным либо выключенным, так как это не изменит усилия зажима детали.  [c.158]


Коэффициенты, корректирующие скорость резания в зависимости от необходимой стойкости, даны в таблице на стр. 33. Для увеличения стойкости с 15 до 25 мин, коэффициент уменьшения скорости резания по таблице равен 0,88.  [c.30]

Толщина пристеночного слоя, подверженного структурному изменению, зависит в основном от конфигурации бокового отражателя, соотношения коэффициентов трения шаровой насадки и шара по плоскости и количества перегрузок активной зоны. Следовательно, если в начале эксплуатации бесканальной зоны объемная пористость пристеночного слоя больше средней объемной пористости, а скорость в нем выше средней по всему сечению, то при стабилизации структуры можно ожидать в пристеночном слое уменьшение скорости теплоносителя.  [c.87]

При растекании потока перед решеткой линии тока искривляются. Если в качестве распределительного устройства взята плоская (тонкостенная) решетка, у которой в отличие, например, от трубчатой решетки проходные отверстия не имеют направляюш,их стенок (поверхностей), то возникающее поперечное (радиальное) направление линий тока, т. е. скос потока, неизбежно сохранится и после протекания жидкости через отверстия. Это вызовет дальнейшее растекание, т. е. расширение струйки 1 и падение ее скорости за счет сужения струйки 2 и повышения ее скорости. Чем больше коэффициент сопротивления решетки, тем резче искривление линий тока при растекании жидкости по ее фронту, а следовательно, за решеткой значительнее расширение сечения и соответственно уменьшение скорости струйки 1 за счет струйки 2. Вследствие этого после определенного (критического или оптимального) значения коэффициента сопротивления опт плоской решетки, при котором поток за ней полностью-выравнивается, т. е. скорости в обеих струйках становятся одинаковыми, дальнейшее увеличение приводит к тому, что за решеткой скорость струйки 2 возрастает даже по сравнению со скоростью струйки /, возникает новая деформация поля скоростей в виде обращенной или перевернутой неравномерности (рис. 3.3).  [c.80]

Поэтому при больших степенях переохлаждения (низких температурах) вследствие уменьшения скорости диффузии (коэффициента диффузии D) (рис. 22) образование зародышей и их рост затруднены. Вследствие этого, число зародышей и скорость их роста уменьшаются. При очень низких температурах (большой степени переохлаждения) диффузионная подвижность атомов столь мала, что большой выигрыш объемной свободной энергии AF при кристаллизации оказывается недостаточным для образования кристаллических зародышей и их роста (ч. 3. = О, с. р. = 0). В этом случае после затвердения должно быть достигнуто аморфное состояние. Для металлов в обычных условиях реализуются лишь восходящие ветви скорости образования зародышей (ч. з.) и скорости роста (с. р.) (рис. 22 сплошные линии). Металл в этих условиях затвердевает раньше, чем достигаются степени переохлаждения, вызывающие снижение ч. з и с. р. Скорость образования зародышей и линейная скорость роста кристаллов определяют скорость кристаллизации. Средняя скорость изотермической кристаллизации о с увеличением степени переохлаждения, как и ч. 3. и с. р. сначала растет, достигает максимума, а затем падает (рис. 22).  [c.35]


Пограничный слой (внешняя граница его показана на рис. 10.25 пунктирными линиями), как правило, значительно тоньше высокоэнтропийного слоя, и скорость на внешней границе пограничного слоя у затупленного тела меньше, чем около острого конуса. Такое уменьшение скорости является одной из причин снижения аэродинамического нагрева затупленного тела. Это видно из формулы для удельного теплового потока, передаваемого газом к твердой стенке, = сс(Д — Та), где а коэффициент теплоотдачи, зависящий от скорости движения газа V на внешней границе пограничного слоя, плотности газа р на ней и ряда других параметров  [c.492]

На основании экспериментов по охлаждению кусков мяса [2] высказывается предположение о значительном влиянии интенсивности испарения влаги на коэффициент теплоотдачи, причем с уменьшением скорости воздуха это влияние увеличивается. При этих условиях не мог сказываться прирост поверхности теплоотдачи, поскольку теплота подводилась изнутри продукта. Предположение это носит косвенный характер, так как основано на сравнении опытных данных с расчетными по формулам, которые были получены для иных условий теплообмена.  [c.28]

Для оценки уменьшения скорости при истечении с трением используют скоростной коэффициент  [c.113]

Интенсивность турбулентности в струях достигает 25% и более. Максимальное значение интенсивности по сечению осесимметричной струи приходится примерно на область x = dj2. Ниже сечения /г ж 5 скорость струи убывает (рис. 32.2, а). Однако, как показывает опыт [75], интенсивность теплоотдачи в окрестности критической точки на преграде (функция NUo = /(/i), где Nu = = t d /X здесь —коэффициент теплоотдачи на пластине в окрестности критической точки) продолжает расти. Наконец, при ft = 8... 10 уменьшение скорости при постоянном значении интенсивности турбулентности начинает преобладать во влиянии на число Нуссельта, и последнее уменьшается.  [c.310]

Зависимость коэффициентов истечения от числа Вебера. Опыты показывают, что при истечении жидкости из отверстий в газовую среду, когда имеется граница раздела двух фаз, с увеличением влияния поверхностного натяжения уменьшается как скорость истечения, так и сжатие струи, падает коэффициент скорости и возрастает коэффициент сжатия струи. Уменьшение скорости истечения с увеличением влияния поверхностного натяжения объясняется снижением эффективного (действующего) напора на величину кд (см. Введение). Из формулы (34) видно, что при малых диаметрах отверстия напор может заметно уменьшиться.  [c.319]

Скорость сварки может быть найдена по приведенной энергии Щц, которая при использовании внутреннего индуктора составляет 3,5—4 кВт-мнп/(м-мм) при скорости 40—60 м/мин и диаметрах до 530 мм и возрастает до 5—8 кВт-мин/(м мм) при увеличении диаметра трубы до 1620 мм и уменьшении скорости сварки до 10 м/мин. Расчет числа витков индуктора и других электрических параметров затруднен из-за сложности системы. Приблизительный расчет можно выполнить на основе схем замещения при вычислении их элементов по графикам [42]. Ориентировочное значение коэффициента мощности индуктора 0,2—0,3. Энергия, выделяющаяся в кромках, составляет 40—70% энергии, передаваемой в заготовку трубы. В индукторе теряется примерно 10% подводимой энергии.  [c.216]

На малых скоростях вращения ведущего вала гидропередача начнет работать в области, где на коэффициенты потерь влияет изменение числа Re. Коэффициент полезного действия и коэффициент трансформации в этой области уменьшаются с уменьшением скорости вращения ведущего вала и числа Рейнольдса. Кроме того, на малых скоростях возрастает удельное значение механических потерь. (Законы подобия являются основой для обобщения и анализа опытных исследований.  [c.29]

ЧТО для уменьшения скорости изнашивания необходимо увеличивать содержание углеродного волокна и уменьшать содержание дисульфида молибдена. Количество бронзы существенно не влияет на износостойкость материала вследствие малости коэффициента регрессии.  [c.233]


В процессе эксплуатации двигателя коэффициент избытка воздуха а изменяется в пределах 0,8—1,15. При большом избытке воздуха (а>-1,15) смесь горит медленно, расход топлива увеличивается при <0,8 экономические показатели двигателя также ухудшаются в связи с неполнотой сгорания и уменьшением скорости сгорания.  [c.424]

Конечная цель всех исследований закономерностей усталостного разрушения управлять процессом распространения трещин путем его моделирования, вводя обоснованный контроль в зонах распространения трещин, сопоставляя прогноз с реализуемым процессом. По результатам контроля уточняются данные моделирования и обосновывается периодичность осмотров деталей по критерию роста трещин, а также разрабатывается система воздействия на деталь с трещиной в условиях эксплуатации или при ремонте с целью уменьшения скорости роста трещины вплоть до ее полной остановки. С точки зрения организационной структуры несомненно, что полностью система управления может быть реализована при взаимодействии многих организаций и научных направлений. Вместе с тем следует выделить решение задачи, являющейся основной, связанной с представлением о том, как ведет себя металл с развивающейся усталостной трещиной при эксплуатационном нагружении. В этом направлении выполнено множество исследований, которые обобщены, например в [6-11]. Из рассмотрения в качестве характеристики процесса разрушения скорости роста трещины и коэффициента интенсивности напряжения изучены различные внешние воздействия для множества конструкционных материалов. Однако все попытки ввести единообразное описание кинетического процесса до настоящего времени не дали положительного результата.  [c.21]

Влияние асимметрии цикла нагружения. Одним из основных параметров циклического деформирования, оказывающим существенное влияние на сопротивление усталости материалов, является асимметрия цикла нагружения. Это влияние можно наблюдать на обеих стадиях усталости до образования усталостной трещины и при ее развитии. В общем случае увеличение коэффициента асимметрии цикла нагружения приводит к более раннему возникновению усталостных трещин и уменьшению скорости их развития. С увеличением асимметрии цикла нагружения увеличивается также пороговое значение амплитуды коэффициента интенсивности напряжений, ниже которого не происходит роста усталостных трещин.  [c.88]

Во всех полученных осциллограммах, при относительно большом изменении скорости, не наблюдалось существенного изменения величины коэффициента трения в процессе торможения. В некоторых работах [173] имеются указания о возрастании коэффициента трения асбофрикционного материала с уменьшением скорости. Исследования, проведенные во ВНИИПТМАШе [И], [1321  [c.353]

Наличие насыщения в зависимости коэффициента К От температуры при взаимодействии графита с парами воды связано-со скачкообразным появлением в системе достаточной концентрации свободного водорода, что значительно снижает скорость, реакции. Роль водорода в уменьшении скорости реакции паров  [c.217]

Направленность кристаллизации зависит от коэффициента формы шва. При его увеличении за счет уменьшения скорости подачи электродной проволоки (рис. 110, б) происходит отклонение роста кристаллов в сторону теплового центра сварочной ванны. Подобные швы имеют повышенную стойкость против кристаллизационных трещин. Медленное охлаждение швов при электрошлаковой сварке в интервале температур фазовых превращений способствует тому, что их структура характеризуется грубым ферритпо-нерлитным строением с утолщенной оторочкой феррита по границам кристаллов.  [c.213]

Х13Н4Г9 наблюдается, как и для углеродистых сталей, уменьшение скорости окисления с уменьшением коэффициента расхода воздуха а (т. е. окислительной способности атмосферы), для хромоникелевых сталей и нихрома скорость окисления уменьшается в увеличением коэффициента расхода воздуха а. Во втором случае скорость окисления сплавов определяется, с одной стороны, окислительной способностью газовой среды и, с другой — защитными свойствами образуюш,ихся окисных пленок, которые возрастают с увеличением содержания хрома в сплавах и окислительной способности газовой среды. Электронографическое исследование позволило объяснить различие в поведении различных сплавов при их нагреве в одинаковых условиях и каждого при нагреве в различных атмосферах (см. рис. 93) структурным составом образующихся на их поверхности окисных пленок. Этот эффект уменьшения окисления металла с увеличением окислительной способности газа находит практическое использование в заводской практике.  [c.134]

При больших наполнениях труб скорость и расход в действительности несколько меньше, чем подсчитанные по формулам (V.12) и (V.13). Это обстоятельство учитывается введением коэффициента уменьшения а, осредненные значения которого, по опытным данным Ю. М. Константинова и А. А. Сапухина, приведены в табл. V.4.  [c.115]

Соотношение (274) показывает, что коэффициент скорости учитывает уменьшение скорости истечения вследствие потерь и неравномерного распределения скоростей в сжатом сечении. Для рассматриваемой схемы истечения можно принять = О, т. е. пренебречь потерями. Однако неравномерность распределения скоростей в сечении С—С существенна. Согласно опытам Базен а а = 1,06. Тогда  [c.231]

Расчет режимов сварки на радиочастоте производится по кривым зависимости от скорости сварки, толщины и диаметра трубы, полученным экспериментально [41, 42], Для индукционного токо-подвода имеет минимум при диаметре трубы 20—35 мм, равный для стали 0,8— 1,0 кВт-мин/(ммм), а для алюминия 0,5— 0,6 кВт-мин/(м-мм). При диаметрах 133—203 мм значение возрастает до 1,6—2,0 и 1,0—1,2 кВт-мим/(м-мм) соответственно Окончательный режим сварки подбирается экспериментально С уменьшением скорости сварки качество шва снижается сущест вует минимальная скорость, при которой сварка еще возможна Для стали она составляет 1,5—2,0 м/мин. Ориентировочное значе иие коэффициента мощности при индукционной сварке на частоте 440 кГц составляет 0,05—0,1, а при контактном подводе—примерно в два раза выше. Напряжение на индукторе 1—1,5 кВ, на контактах 0,15—0,7 кВ.  [c.217]


При повышении напора а,ур увеличивается. Следовательно, чтобы удовлетворить условию Оуст > /Са тур при задзиных Яз и /Сст, приходится увеличивать 2 и Диаметр корпуса при применении большего числа лопастей и увеличении нагрузок также приходится увеличивать. Это приводит к увеличению толщины лопастей и других элементов, колеса, а следовательно, к стеснению потока, увеличению скорости и кавитационного коэффициента, уменьшению к. п. д. и приведенного расхода.  [c.19]

Распространение усталостных трещин в любом материале происходит последовательно на разных масштабных уровнях. Принято разделять масштаб реализуемых процессов роста трещины, вводя представления о коротких, малых и длинных треп1инах [1-12]. Короткие трещины изучают при постоянной циклической нагрузке образца, тогда как малые трещины, как правило, изучают в области малоцикловой усталости при постоянной деформации (рис. 3.1). Важно подчеркнуть, что различие коротких и малых трещин состоит в первую очередь в том, что они относятся к разным процессам разрушения материала. Короткие трещины развиваются от поверхности при возможно самых низких уровнях коэффициента интенсивности напряжения, тогда как малые трещины развиваются в области малоцикловой усталости при высоком уровне номинального (или эквивалентного) напряжения (рис. 3.2). Существует предельная граница для уровня номинального напряжения, ниже которой возникающие усталостные (короткие) трещины не распространяются (рис. 3.2б). Переход от коротких к длинным трещинам при увеличении уровня номинальных напряжений сопровождается постепенным уменьшением скорости роста трещин, а далее происходит вновь увеличение скорости (рис. 3.2а). При малых размерах начальные трещины могут останавливаться и не распространяться в материале. После некоторого нарушения монотонности в изменении скорости коротких трещин по мере возрастания длины трещины происходит присое-  [c.130]

Наиболее интересными с практической точки зрения являются исследования, в которых определяются условия увеличения долговечности деталей в результате уменьшения скорости роста усталостных трещин. Увеличение прочностных и пластических характеристик материала (ств, стт, i ), уменьшение размера структурных составляющих, увеличение коэффициента асимметрии цикла нагружения, уменьшение жесткости двухосного напряженного состояния, понижение температуры испытания и наличие вакуума — вот далеко не полный перечень факторов, приводящих к уменьшению скорости роста трещины. Увеличение сопротивления усталости, связанное с затруднением роста трещины, происходит и при упрочнении границ зерен дробной механотермической обработкой, и при взрывном упрочнении, приводящем к замораживанию дислокаций [8]. Торможения развития трещин добиваются также применением композиционных материалов, в которых трещина либо вязнет в мягких слоях, либо не может разрушить более прочные армирующие волокна.  [c.7]

Увеличение асимметрии цикла нагружения, приводящее к уменьшению скорости роста усталостных трещин, также увели-швает пороговые значения коэффициента интенсивности напря-ений. Так, увеличение коэффициента асимметрии R от 0,1 до при испытании образцов мартенситно-стареющей стали % Ni) привело к увеличению значений АКо от 15 до  [c.132]

На рис. 8, б приведены кривые, получившиеся при трении в отсутствие смазки (скорость скольжения 7,5 м/с, давление 35 кгс/см ). При трении по обновляемой поверхности втулки (кривая ) между износом образца и длиной пути трения имелась прямо пропорциональная зависимость, т. е. выполнялось уравнение (1) при трении по необновляемой поверхности (кривая 2) износ протекал с монотонным уменьшением скорости изнашивания по мере роста пути трения и подчинялся закономерности (6 ), коэффициенты которой приведены в табл. 6 (стр. 18).  [c.14]

Рассматривая физическую сущность старения, следует отметить, что невозможно описать надежность изделия, находящегося под действием нагрузки и среды, без учета времени и, особенно, долговечности изделия. В изделии, испытывающем старение, уменьщение нагрузки увеличивает его долговечность. Допустимая нагрузка на изделие зависит от количества энергии и материала, присутствующего в среде, и требуемой долговечности. Повыщение долговечности изделий можно осуществить путем увеличения прочности изделия, уменьшения нагрузки, приложенной к изделию, и уменьшения скорости старения изделия. В процессе проектирования машин выбирается коэффициент запаса прочности и соответствующая надежность. Реальный запас надежности в значительной степени определяется процессом производства. Послепроизводственные события, происходящие в период эксплуатации, связаны с величинами приложенных нагрузок и скоростью старения. Изменение скорости старения (долговечности) можно обеспечить путем применения соответствующих материалов для изготовления деталей и защиты их от воздействия внешней среды (потоков энергии) и проникновения материалов, вызывающих нарушения нормальной работы деталей соединений (наличие барьеров).  [c.218]

На рисунке 4.4 представлены зависимости коэффициента динамической концентрации напряжений от отношения диаметра отверстий к длине падающей волны, в качестве теоретической зависимости использованы данные /89/. На рисунке 4.5 представлены значения максимального порядка полос и максимального напряжения на контуре отверстий от величины индуктивности разрядного контура генератора импульсов. При наличии отвфстий в электроде-классификаторе при воздействии на него электрического импульсного разряда коэффициент динамической концентрации напряжений увеличивается по фавнению с электродом без отверстий на 60%, величина максимального напряжения на контуре может достигать 625 кГ/см и с увеличением индуктивности разрядного контура резко падает, что связано с уменьшением скорости выделения энергии в канале разряда и, соответственно, уменьшением амплитуды давления в волне сжатия.  [c.167]

Работоспособность ленточного материала 8Р в тяжелонагруженных шарнирах определена при нагрузке 70 МПа и скорости 0,02 м/с. Амплитуда колебаний 2° при постоянной частоте 1,9 Гц. Коэффициент трения в соединении оставался стабильным и не превышал 0,041, температура 30° С. На рис. 11 приведены результаты испытаний в тех же условиях металлофторопластовой ленты Климовского машиностроительного завода. В этом случае коэффициент трения несколько выше (0,05), темпера ура около 35° С. На рис. 12 приведены диаграммы полученных значений нагрузочной способности исследованных подшипников. Для материала 8Г она равна 2,0 МПа-м/с. Это значение увеличивается при уменьшении скорости скольжения. После 60 000 двойных ходов износ подшипников из материала 8Г составил всего 4 мкм.  [c.22]

Вследствие повышения температуры при росте скорости скольжения изменяется прочность и характер адгезионной связи. С увеличением температуры изменяется прочность, толщина и природа защитной контактной пленки. В зоне малых скоростей достаточная защитная пленка не успевает образоваться, и передеформирование переходит в микрорезание, что соответствует возрастающей ветви кривой коэффициент трения — скорость. При дальнейшем повышении скорости (следовательно, температуры) снижение адгезионной прочности фрикционных связей приводит к уменьшению высоты деформационного валика и выглаживанию поверхности трения. Вследствие этого по мере роста скорости скольжения шероховатость переходит через максимум, соответственно влияя на коэффициент трения. При малых значениях скорости скольжения ее влияние как фактора, изменяющего прочность материала, незначительно [14].  [c.123]



Смотреть страницы где упоминается термин Коэффициент уменьшения скорости : [c.154]    [c.336]    [c.231]    [c.232]    [c.234]    [c.38]    [c.399]    [c.27]    [c.209]    [c.9]    [c.113]    [c.241]    [c.53]    [c.353]    [c.190]    [c.466]    [c.192]   
Гидроаэромеханика (2000) -- [ c.231 , c.232 ]



ПОИСК



Коэффициент скорости



© 2025 Mash-xxl.info Реклама на сайте