Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозия Магнитные свойства

Моментные спиральные пружины являются весьма ответственными деталями приборов, поэтому к ним предъявляются следующие требования строгая пропорциональность момента М и угла закручивания ф постоянство упругих свойств во времени и минимальная остаточная деформация малый температурный коэффициент модуля упругости стойкость против коррозии в отдельных случаях малое удельное электрическое сопротивление и отсутствие магнитных свойств.  [c.352]


Анизотропия кристаллов проявляется в их упругих и пластических свойствах, теплопроводности и электросопротивлении, магнитных свойствах, скорости диффузии, коррозии и др.  [c.27]

Алюминий повышает механические свойства латуней и улучшает коррозионную стойкость их в отношении общей коррозии. Железо задерживает рекристаллизацию латуней и измельчает зерно. Однако при содержании железа более 0,03% латуни обнаруживают магнитные свойства. Особенно благоприятное действие железо оказывает на латуни в сочетании с марганцем, никелем и алюминием.  [c.175]

Необратимые процессы — износ, коррозия, усталость, потеря магнитных свойств материала, структурные его изменения, изменение отражательной способности поверхности и другие —приводят к таким повреждениям, которые ухудшают начальные параметры изделия, т. е. происходит его старение.  [c.36]

Благодаря повышению степени чистота металла возрастают его свойства. Так, у конструкционных сталей повышается пластичность, у высокопрочных — предел прочности, у коррозионностойких — пластичность и сопротивление коррозии. Электротехнические стали и сплавы, выплавленные в вакууме, имеют меньшие электрические потери благодаря уменьшению электрического сопротивления и повышению магнитных свойств, чем стали, полученные обычной плавкой у жаропрочных сплавов повышается предел рабочих температур, при которых эти сплавы могут быть использованы в двигателях. Это значительно повышает возможности двигателей — длительность работы, экономичность, мощность и т. д. штампы из вакуумной стали позволяют изготовлять большее число штамповок, причем поверхность изделий значительно улучшается.  [c.197]

Изменение магнитных свойств при холодной деформации необходимо учитывать в тех случаях, когда к деталям из этой стали предъявляются требования немагнитности, например для некоторых деталей самолета, расположенных вблизи авиационных приборов. Однако применение стали 18-8 с высоким содержанием углерода ограничивается трудностями, возникающими при термической обработке вследствие большой склонности этой стали к межкристаллитной коррозии. В таких случ-аях обычно рекомендуется применять стали с повышенным содержанием никеля, (типа 18-14), аустенит которых обладает большей устойчивостью во время превращения у а при холодной деформации.  [c.307]


Существует ряд теорий, которые пытаются объяснить причины, вызывающие у нержавеющих сталей появление склонности к межкристаллитной коррозии. Наибольшим признанием пользуется гипотеза локального обеднения границ зерен стали вследствие образования богатых хромом карбидов хрома. Обедненные хромом зоны легко подвергаются действию коррозии. Как уже указывалось, образование карбидов хрома при дополнительном нагреве и сварке связано не только с изменением коррозионной стойкости стали, но и с тем, что в местах их образования наблюдается изменение электродного потенциала, магнитных свойств стали и других свойств, указывающих на возникновение структурной неоднородности.  [c.531]

В —не ферромагнитен и приобретает магнитные свойства лишь после термообработки. Переходное электрическое сопротивление сплавов, содержащих менее 1 % В, весьма низкое. Температура плавления осадков, содержащих 0,1—0,5 % В, 1450 °С, что значительно выше, чем сплавов N1—Р, и позволяет применять эти покрытия как жаропрочные. По стойкости против атмосферной коррозии сплав N1—В превышает показатели для гальванического никелевого покрытия, но близок к сплаву N1—Р. Прочность и пластичность осадков N1—В несколько ниже, чем N1— .  [c.210]

Причины возникновения упрочнения. Пластическая деформация поликристалла приводит к значительному изменению механических, физических и химических свойств металла. С увеличением степени деформации увеличивается сопротивление деформированию повышаются пределы упругости, пропорциональности, текучести и прочности. Увеличивается также твердость металла. Одновременно с этим наблюдается уменьшение показателей пластичности (относительное удлинение, относительное сужение, ударная вязкость) увеличивается электрическое сопротивление, уменьшается сопротивление коррозии, теплопроводность, изменяются магнитные свойства ферромагнитных металлов и т. п.  [c.41]

Развитие техники, потребности авиационной, энергетической, химической и других отраслей промышленности предъявляют особые требования к сталям например, способность сопротивляться коррозии и действию химических агрессивных сред стойкость против окисления при высоких температурах обладание особыми магнитными свойствами износостойкость и др. (ГОСТ 5632—61 ).  [c.51]

Сплавы никель-кобальт обладают высокой химической стойкостью. Они устойчивы к коррозии, имеют декоративный внешний вид, обладают повышенной твердостью и сопротивлением износу. Эти сплавы применяются для магнитной записи звука вследствие специфических магнитных свойств.  [c.115]

Из других свойств нужно отметить высокую изотропию магнитных свойств, их низкую чувствительность к напряжениям, прямоугольность петли гистерезиса, высокую прочность, высокое сопротивление коррозии и истиранию.  [c.1430]

Путем восстановления муравьинокислой соли железа иши смеси муравьинокислых солей железа и кобальта могут быть получены весьма тонкие порошки с частицами порядка 0,03 ц. Магниты, спрессованные из этих порошков, после низкотемпературной обработки и пропитки бакелитовым лаком (с целью повышения их прочности и для защиты от коррозии) имеют -магнитные свойства ва уровне свойств литых магнитов ални и алнико прн значительно меньшем удельном весе.  [c.949]

Пластическая деформация приводит к значительному изменению механических, физических и химических свойств металла. В деформируемом металле с увеличением степени деформации увеличиваются все показатели сопротивления деформированию пределы упругости, пропорциональности, текучести и прочности. Увеличивается также твердость металла. Одновременно с этим наблюдается уменьшение показателей пластичности (относительное удлинение, относительное сужение, ударная вязкость) увеличивается электрическое сопротивление, уменьшаются сопротивление коррозии, теплопроводность, изменяются магнитные свойства ферромагнитных металлов и т. п. Совокупность явлений, связанных с изменением механических и физико-химических свойств металлов в процессе пластической деформации, называется упрочнением (наклепом). До настоящего времени физическая природа упрочнения полностью не выяснена.  [c.39]


Никель придает пластичность, стойкость против коррозии хром — твердость, прочность и жаростойкость кремний — упругость и повышение магнитных свойств марганец — прочность и сопротивление разрыву.  [c.54]

Сплавы Сг—Мо, Сг—N1—Со и другие используются для получения износостойких покрытий. Покрытия сплавом Ш—Со обладают высокой твердостью, химической стойкостью. Такое покрытие растворяется в серной кислоте в 3,6 раза медленнее, чем никель, и в 32 раза, чем кобальт. Сплавы Со—N1 (15—35% Ы ) обладают особыми магнитными свойствами, высокой механической прочностью, износостойкостью, поэтому их применяют в радиотехнике, счетно-вычислительных и звукозаписывающих устройствах. Сплавы РЬ—5п, РЬ—5п—Си, РЬ—5п—5Ь могут использоваться для получения антифрикционных покрытий. Покрытия из сплавов Сё—N1 (9—23% обладают высокой стойкостью и механическими свойствами. Их применяют для защиты от коррозии аппаратов, работающих при высокой температуре в атмосфере с повышенной влажностью и продуктов сгорания органических веществ. Сплавы Ag—Сё обладают высокой твердостью, износостойкостью, которая при истирании в 6—8 раз больше износостойкости чистого серебра, высоким электросопротивлением (в 4—5 раз больше, чем у серебра).  [c.165]

Назначение покрытий разнообразно. В большинстве случаев покрытия наносят на металлические поверхности с целью защиты их от химической коррозии активных газовых, жидкостных или комбинированных фед. А в некоторых случаях они имеют противоэрозионное назначение. Распространено нанесение покрытия с целью тепловой защиты изделия. В специальных случаях наносят покрытия с магнитными, полупроводниковыми или проводниковыми свойствами либо диэлектрическими свойствами. Кроме черных металлов и сплавов в защитных покрытиях нуждаются цветные металлы (медь, латунь), тугоплавкие легкоокисляющиеся металлы (молибден, вольфрам), графит, металлокерамические  [c.249]

Контроль фазового состава нержавеющей стали, магнитной проницаемости и сопротивления межкристаллит-ной коррозии может производиться двояким образом в образцах, изготовленных из пробы, специально отлитой во время разливки плавки в образцах, изготовленных из проб катаного или кованого металла. При плавочном контроле, как правило, используют первый способ, хотя оп при некачественной отливке пробы может дать ошибочные результаты. В последние годы при стабильной технологии производства справедливо предлагают отменить плавочный контроль и установить определение фазового состава и стойкости против коррозии путем оценки этих свойств на основании результатов химического анализа металла.  [c.279]

К физическим свойствам относятся магнитные, электро- и теплопроводность, а также такие свойства, как плотность, теплоемкость, температура плавления идр. Химические свойства характеризуют специфику межатомного взаимодействия материала с другими веществами, в том числе с окружающей средой, например коррозию. Среди механических свойств следует назвать прежде всего такие, как прочность, твердость, пластичность, вязкость.  [c.4]

Противокоррозионные свойства среды. Снижение коррозии стали в водной среде при воздействии магнитного поля большинство исследователей объясняют увеличением значения pH при действии магнитного поля на воду. Для проверки отмеченного явления и выявления факторов, влияющих на снижение коррозии, автором совместно с 3. Ф. Прониной и  [c.17]

К физическим свойствам металлов относятся цвет, удельная масса, тепловая и электрическая проводимость, магнитные. качества. Химические свойства металлов— это стойкость против коррозии, жаропрочность.  [c.8]

Высокая стойкость против коррозии, жаропрочность, большое омическое сопротивление и ряд других специфических свойств обусловили применение никеля и его сплавов в ряде отраслей народного хозяйства. Наибольшее распространение для изготовления сварных конструкций получили такие сплавы никеля, как монель-ме-талл, нихром, магнитные сплавы, сплавы типа нимоник. Трудности, с которыми приходится бороться при сварке никеля и его сплавов, связаны с понижением стойкости металла шва против пор и кристаллизационных трещин. Поры появляются из-за уменьшения растворимости водорода и кислорода при переходе металла из жидкого в твердое состояние, а трещины — из-за образующегося легкоплавкого соединения никеля с серой.  [c.152]

Н.— компонент легиров. сталей и разл. (жаростойких, сверхтвёрдых, антикоррозионных, магнитных и др.) сплавов, конструкц. материал для хим. аппаратуры, катализатор хим. процессов, материал электродов аккумуляторов. Нанесение тонких слоёв Н. (никелирование) на поверхность стальных и др. изделий предохраняет их от коррозии. Магнитострикц. свойства Н. используются при создании источников ультразвука. Сплав Н. с железом (пермаллой) обладает высокой маги, проницаемостью и используется в запоминающих устройствах ЭВМ, в радиотехнике, устройствах СВЯЗИ и Т. Д. с, с, Бердопосов.  [c.356]

Химические свойства. Возможность использования в различных отраслях техники аморфных сплавов определяется еще и тем, что, помимо особых магнитных свойств, аморфные сплавы обладают уникальным комплексом химических и механических свойств. Высокие коррозионные свойства аморфных сплавов сделали их перспективными для использования в технике в качестве коррозионно-стойких материалов. Среди аморфных сплавов на основе железа наивысшую стойкость в агрессивных кислых средах имеют сплавы с определенным сочетанием металлов и неметаллов (высокое содержание хрома и фосфора). Однако высоким сопротивлением коррозии обладают только стабильные аморфные сплавы. Наглядным примером являются аморфные быстрозакаленные сплавы железо—металлоид, не содержащие других металлических элементов, кроме железа. В силу химической неустойчивости аморфного состояния они обладают низкой коррозионной стойкостью. Однако при введении хрома (вместо части железа) резко возрастает химическая стабильность аморфного состояния и, как следствие, растет коррозионная стойкость. Отметим, что в первом случае сопротивление коррозии аморфного сплава железо—металлоид ниже, чем у чистого кристаллического железа, а во втором оно превосходит коррозионную стойкость нержавеющих сталей и высокосодержащих никелевых сталей [427].  [c.303]


Оксид железа Гез04 — это двойной оксид FeO X Fe20a (рис. 1.16). Его кристаллическая решетка — шпинель содержит двух- и трехвалентные ионы железа, расположенные в межузельных порах ионов кислорода. Два вида ионов железа и ионный тип связи обеспечивают оксиду особые магнитные свойства в высокочастотных полях. Большая плотность упаковки ионов в решетке, несмотря на небольшой дефицит ионов железа, способствует высокому сопротивлению химической коррозии.  [c.28]

Аморфное состояние метастабильно и если превышается определенная температура, характерная для каждого сплава, то он переходит в устойчивое кристаллическое состояние. В аморфном состоянии у ряда сплавов наблюдается при сохранении пластичности повышенная твердость и упругость заметно возрастают некоторые электрические и магнитные свойства и, самое главное, сплавы легче пассивируются и коррозионная стойкость их повышается. Повышение коррозионной стойкости аморфного состояния сплавов определяется не только облегчением возникновения пассивации, но и более совершенным пассивным состоянием, что обусловлено гомогенной и однородной поверхностью сплава в аморфном состоянии (отсутствие различных фаз, границ зерен, межзеренной ликвации, инородных включений). В настояшее время получены аморфные сплавы на основе самых разнообразных металлических систем. Максимальный эффект повышения коррозионной стойкости при переходе в аморфное состояние наблюдается для металлических систем, склонных к переходу в пассивное состояние. В настоящее время выполнено большое количест во работ, посвященных исследованию ряда сплавов на основе системы Fe—Сг, содержащих значительное количество углерода, фосфора или бора в качестве аморфизаторов. Так, в ранних работах японских авторов [250—252] описаны свойства сплава на основе железа, содержащего 13 % (ат.) Сг (или 14% по массе) 13% (ат.) Р (или 8% по массе) 7% (ат.) С (или 1,7% по массе). Установлено, что сплав имеет повышенную нассивируемость в растворах кислот, не подвергается питтинговой коррозии даже в подкисленных растворах Fe ls. Значительное количество исследований аморфных сплавов на основе Ре—Сг, а также Ti выполнено и в СССР [254—259].  [c.337]

В зависимости от назначения и требований гальванические покрытия делят на три типа защитные, применяемые для защиты от коррозии изделий в различных атмосферных условиях защитнодекоративные, применяемые для декоративной отделки изделий с одновременной защитой их от коррозии специальные, применяемые для придания поверхности изделий специальных свойств (паяемости, износостойкости, электроизоляционных и магнитных свойств).  [c.38]

Ко второй группе относятся части машин и конструкций, к которым в качестве основных предъявляются требования особых физических свойств особых магнитных свойств, особых электрических свойств, повышенного сопротивления коррозии, жаропрочности, ока-линостойкости, особого коэфициента расширения и т. п. Часто наряду с особыми физическими свойствами от деталей этой группы требуется и определенный уровень механических свойств. Поэтому для деталей этой группы применяются конструкционные стали, а спе-  [c.5]

Жаростойкость обычно оценивают по склонности к окалинообразованию после соответствующей выдержки образцов в определенной среде при заданной температуре. При этом происходит также и рост чугуна, оцениваемый по относительному изменению размеров образца. Соответствующие методики испытания на рост и окалинообразование приведены в ГСХЗТ 7769—75 и ГОСТ 6130—71. Износостойкость чугуна, как и других сплавов, оценивают по относительному изменению массы образца при испытании в различных абразивных и гидроабразивных средах, а также при сухом трении и трении со смазкой по методикам, описанным в литературе [20]. Коррозионная стойкость в газовых средах оценивается по ГОСТ 6130—71, а в различных кислотах, щелочах и других агрессивных жидких средах — по скорости коррозии в г/(м -ч) или в мм/год по ГОСТ 5272—68. Магнитные свойства определяют согласно ГС)СТ 13601—68.  [c.100]

При магнитной обработке на водные системы действуют в течение долей секунды низкочастотными магнитными полями невысокой напряженности. Физико-химические реакции и процессы протекают после магнитной обработки. В результате воздействия магнитным полем на природную и техническую воду она приобретает качественно новые и часто весьма полезные свойства. Например, в растворе Na l, который циркулировал со скоростью 2 м/с в контуре, проходя 65-70 раз магнитное поле напряженностью 41 к А/м в течение 48 ч, коррозия снизилась у стааи на 88, алюминия на 87 и чугуна на 68 %. Противокоррозионные свойства раствора сохранялись более 1 сут, а затем постепенно снизились.  [c.187]

Результаты исследований продуктов коррозии с помощью мессбау-аровской спектроскопии приведены в таблице. Кроме того, в этих исследованиях определяли соотнощение фазовых поверхностей с магнитными и парамагнитными свойствами. В ряде опытов продукты коррозии 42  [c.42]

Разница в магнитном состоянии труб объясняется комплексом физических свойств металла, связанных с его сопротивлением намагничиванию. К таким свойствам прежде всего следует отнести легко измеряемую неразрущающим способом коэрцитивную силу, т. е. магнитное напряжение, необходимое для уничтожения остаточного магнетизма и размагничивания железа. Возможно определять стойкость экранных труб из ферромагнитной стали к внутрикотловой коррозии путем измерения коэрцитивной силы ме галла. Чем ниже коэрцитивная сила, тем быстрее приобретает металл трубы повышенную намагниченность в процессе эксплуатации, тем меньшей стойкостью к внутрикотловой и прежде всего к водородной коррозии обладает данная труба.  [c.55]

Наряду с оценкой щелочи как катализатора процесса существует и несколько другое определение ее роли, выдвинутое Холлом, Партриджем и Шредером. По их мнению, скорость коррозии стали в воде (это подтверждается приведенной выше реакцией) незначительна даже в присутствии щелочи. Возникающая при этом пленка магнитной окиси железа имеет сильные защитные свойства и поэтому также тормозит данную реакцию. Дальнейшее протекание ее определяется влиянием на эту пленку присутствующих в котловой воде веществ если пленка повреждается, то реакция протекает дальше, в противном случае она прекращается. В данном случае щелочь рассматривается как реагент, разрушающий пленку из окислов железа с образованием ферритов. Полагают, что этому процессу способствуют пептизирующие (коллоидно-электрохимические) свойства раствора едкого натра. Относительно причин локализации коррозии и образования трещин существуют две основные гипотезы.  [c.260]

Теория защитного действия магнитного поля от коррозии пока не создана. Наиболее достоверным может служить представление, связанное с образованием магнетито-вого слоя, обладающего защитными свойствами. Кроме того, снижение концентрации кислорода в воде, обработанной магнитным полем, также, несомненно, играет определенную роль.  [c.30]

Защитные покрытия наносят на поверхность изделий из различных материалов для предотвращения коррозии, придания им декоративного вида, создания специальных поверхностных свойств (электропроводности, теплопроводности, электроизоляционных, магнитных и немагнитных свойств, светоотражающей и светопоглощающей способности, износостойкости и др.). Для защиты от коррозии используются металлические, неметаллические неорганические (оксидные, фосфатные, фторидные и др.) и органические, лакокрасочные и другие защитные покрытия.  [c.112]


Влияние магнитного поля на свойства вод.ч. Магнитная обработка воды применяется для борьбы с накипеобразо-ванпем и для предотвращения коррозии в котлах и опреснительных установках, а также для ускорения осаждения взвесей при очистке воды. В результате проведенных опытов получены данные об увеличении сно-рости фильтрации воды, прошедшей обработку в магнитном поле, об ускорении сроков схватывания бетонов, в состав которых входит такая вода. Однако механизм влияния магнитного поля на свойства воды пока изучен недостаточно.  [c.27]

Изучение свойств и состава] шлама, проведенное в МЭИ, ВТИ и Ленинградском политехническом институте, показало, что в котловой воде после магнитной обработки из-за отсутствия щелочного режима в составе шлама может увеличиться концентрация продуктов коррозии— окислов железа уРегОз, сеРгОз, Рез04, Ре(ОН)з-В замкнутых системах охлаждения, как показали исследования автора, возможность коррозии меньше. Так как кристаллы карбоната кальция при магнитной обработке становятся в 2—3 раза мельче, скорость их осаждения снижается, а удаление затрудняется.  [c.101]

По инициативе чл.-корр. АН СССР В. А. Голубцова были предприняты исследования в направлении повышения эффективности магнетитного фильтра наложением магнитного поля. В исследованиях учитывались свойства магнетита к намагничиванию, как принадлежащего к классу ферритов, и характер продуктов коррозии, содержащихся в воде, состоящих более чем на 90% из ферромагнетиков, способБых притягиваться магнитом.  [c.153]

Защита теплосетей, а в некоторых случаях и котлов низкого давления от интенсивной коррозии разрешается независимо от магнитной обработки воды применением термической или вакуум-термической деаэрации. В отсутствие же деаэрации необходимо предусматривать другие эффективные методы защиты, так как вода, обработанная магнитным полем, вопреки мнению некоторых исследователей, например Т. Уегте1геп, противокоррозионными свойствами не обладает. В этой связи необходимо изыскание дешевого и эффективного способа, учитывая, что защита от коррозии имеет большое значение и в других областях, например при охлалсде-нии двигателей внутреннего сгорания, а также во всех случаях питания теплоагрегата коррозионно-активной водой, когда магнитная обработка не сочетается с каким-либо другим методом. Магнитный способ имеет также все основания найти определенное применение в предотвращении гипсовой и карбонатной накипи в испарителях при термическом опреснении морских и солоноватых вод.  [c.141]

Фосфаты, входящие в состав фосфатных пленок, обладают диэлектрическими свойствами, поэтому и сама фосфатная пленка характеризуется электроизоляционной способностью. Это позволило йспользо-вать фосфатирование для получения электроизоляционного слоя на поверхности различных деталей трансформаторов, генераторов, магнитных сердечников, динамо- и других электромашин, а также при изготовлении электронных аппаратов [60]. Кроме того, фосфатные пленки оказались пригодными для предотвращения возникновения контактной или электрохимической коррозии в конструкциях, изго-товленных из деталей разнородных металлов. В данном случае используют весьма тонкие фосфатные пленки, пропитанные разбавленными лаками или защитными смазками.  [c.53]

Широко используют в коррозии также различные аналитические методы — электрохимические (кулоно-метрию, электрометрическое титрование, полярографические определения) и ряд других — хроматографию, спектрографию, ядерный магнитный резонанс и даже построение спектров Мессбауэра. По существу, почти все методы физико-химических исследований металлов и особенно касающиеся изучения свойств, состава и строения их поверхности находят применение и в коррозионных исследованиях.  [c.6]


Смотреть страницы где упоминается термин Коррозия Магнитные свойства : [c.78]    [c.160]    [c.171]    [c.231]    [c.235]    [c.39]    [c.189]    [c.337]   
Справочник машиностроителя Том 2 (1952) -- [ c.182 ]



ПОИСК



Коррозия свойства



© 2025 Mash-xxl.info Реклама на сайте