Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Восстановление растворенного металла

Т. е. ЛК > О, ТО а i — i н идет окисление (растворение) металла если Уме < Уме)обр< Т. е. АУ < О, то = г — г и идет восстановление (осаждение) ионов металла  [c.201]

На некоторых пассивных участках происходят адсорбция и восстановление пассиватора, процесс пассивации постепенно распространяется на всю поверхность металла, причем скорость восстановления пассиватора становится равной скорости растворения металла в пассивном состоянии /пас-  [c.76]

При этом устанавливается потенциал коррозии и скорость растворения металла, соответствующая скорости коррозии i , равна скорости восстановления окислителя (окислителей).  [c.27]


Однако коррозия не всегда протекает равномерно. При местной коррозии анодный и катодный участки могут различаться визуально, однако определить с помощью амперметра скорость передачи заряда невозможно. Контактная коррозия является исключением из этого правила например, можно было бы изучить влияние меди на коррозию цинка в растворе хлорида хлористого натрия, содержащего кислород, соединив два металла через амперметр с нулевым сопротивлением и измерив /гальв, причем гальванический ток течет от цинка к меди. Несмотря на то, что этот элемент был бы подобен элементу Даниеля, катодная реакция заключалась бы в восстановлении растворенного кислорода до ионов гидроксила, а не ионов меди до меди.  [c.28]

Подвижные ионы железа могут диффундировать и уходить с поверхности металла. Поскольку ионы гидроксила, возникающие в процессе катодного восстановления растворенного кислорода, движутся в противоположном направлении, образование гидроокиси железа произойдет на некоторой промежуточной стадии между анодной и катодной зонами. Этот процесс будет сопровождаться электрохимическим окислением гидроокиси железа до гидратированной окиси железа или ржавчины из-за присутствия кислорода в воде. Так как ржавчина удаляется с поверхности металла, то она не оказывает влияния на скорость коррозии.  [c.30]

Следовательно, при наличии сопряженной реакции восстановления процесс ионизации металла, являющийся окислительным, может идти непрерывно. Таким образом, процесс растворения металлов можно представить в виде двух сопряженных реакций, протекающих по схеме  [c.8]

О скорости течения на электроде той или иной электрохимической реакции лучше всего судить по изменению потенциала электрода при пропускании через него тока. Реакции, идущие с большой скоростью, не приводят к сколько-нибудь заметным изменениям потенциала электрода при пропускании через него тока. Реакции, протекающие со значительным торможением какой-либо из стадий суммарного процесса, сопровождаются значительным изменением потенциала электрода. В первом случае реакция не сопровождается заметной поляризацией электрода, во втором — электрод подвергается сильной поляризации. Так, например, незначительное изменение потенциала электрода при анодном растворении металла показывает, что реакция ионизации (1.1) идет без заметного торможения. При этом электрод практически не поляризуется. Значительная поляризация электрода, наблюдающаяся, например, при протекании на нем реакции восстановления ионов водорода или молекул кислорода  [c.9]


В работе [60] высказана иная точка зрения на процесс ингибирования неорганическими окислителями. Авторы считают, что ингибирующее действие этих соединений связано не столько с их адсорбционным взаимодействием с металлом, сколько с влиянием продуктов электрохимического восстановления на кинетику электрохимических реакций. Иначе говоря, если скорость анодного растворения металла определяется активностью поверхностных ионов ОН, образующихся при восстановлении окислителей, то скорость коррозии металла и его потенциал зависят от отношения числа электронов, реализующихся в катодном акте, к числу образующихся при этом ионов ОН-. Это отношение названо авторами коэффициентом активации по его величине предлагается судить об эффективности ингибиторов.  [c.129]

Из тепловых эффектов этих обратимых реакций и выражения для (Константы равновесия следует, что с повышением температуры и активной концентрации окислов натрия или лития должна убывать а-ктивная концентрация растворенного металла (например, ani)- Для восстановления нарушенного равновесия и сохранения постоянства величины К новая порция металла стенки должна перейти в раствор.  [c.41]

В схемах 1 и 3 расход никелевого порошка возрастает еще и потому, что часть металла расходуется на восстановление растворенного хлора, используемого для окисления железа и кобальта  [c.57]

Классические поляризационные кривые приведены на рис. 9.5. Сначала кислород из воздуха переходит в водный раствор, после чего потенциал металла повышается от потенциала катода (—) до потенциала анода ( + ). При этом течет отрицательный электрический ток, складывающийся из малого тока восстановления ионов кислорода и большого тока восстановления ионов водорода. Этот суммарный ток всегда отрицательный. Его протекание повышает электрический потенциал. По абсолютной величине этот ток невелик. Анодный ток, соответствующий анодному растворению, по абсолютной величине равен катодному току, а потенциал, отвечающий такому состоянию, является потенциалом коррозии. Так как во внешней цепи поддерживается равновесие, растворение металла начинается уже при электрическом потенциале, отвечающем точке 3. Анодный электрический ток (ток коррозии) пропорционален скорости коррозионного растворения. Он возрастает с увеличением потенциала. Диапазон потенциалов, соответствующий активному растворению металла, называется областью активного состояния.  [c.252]

Иной механизм имеет очень распространенная коррозия металлов в электролитических средах. В этом случае атом металла и частица окислителя непосредственно не контактируют и процесс включает две реакции анодное растворение металла и катодное восстановление окислителя. По типу коррозионной среды выделяют коррозию в природных средах атмосферную, морскую, подземную, биокоррозию.  [c.160]

Предложенное описание коррозионных процессов справедливо лишь в том случае, если поверхность металла равнодоступна как для анодной, так и для катодной реакций. Для металла с идеально однородной поверхностью (например, для жидкого металла) выполнение такого условия не подлежит сомнению. Для обычных твердых (даже очень чистых) металлов из-за неизбежной неоднородности их поверхности выполнение указанного условия неочевидно. Это явилось причиной появления на первых этапах развития учения об электрохимической коррозии металлов представлений, получивших название теории микроэлементов. Теория предполагала, что катодное восстановление окислителя (например, выделение водорода) может происходить только на некоторых участках поверхности корродирующего металла, а растворение металла возможно на других участках, так что существует пространственное разделение катодной и анодной реакций, позволяющее рассматривать коррозионный процесс как функционирование большого числа короткозамкнутых гальванических элементов .  [c.86]

Общие положения. При электрохимической коррозии одновременно протекают два процесса — окислительный (анодный), вызывающий растворение металла на одном участке, и восстановительный (катодный), связанный с выделением катиона из раствора, восстановлением кислорода и других окислителей на другом. В результате возникают микрогальванические элементы и появляется электрический ток, обусловленный электронной проводимостью металла и ионной проводимостью раствора электролита.  [c.252]


Скорость растворения металла в области устойчивой пассивности определяют весовым, аналитическим методом. При этом следует выяснить, расходуется ли часть тока на окисление иди восстановление компонентов раствора,  [c.15]

Так, например, незначительное изменение потенциала электрода при анодном растворении металла показывает, что реакция ионизации (1,1) идет без заметного торможения. Все ионы металла, освобождающиеся при отводе во внешнюю цепь электронов, связанных с ионами металла в виде ион-атома (Ме"< > п ), успевают перейти в электролит и, таким образом, на электроде не остаются избыточные положительные заряды. Электрод почти не поляризуется. Значительная поляризация электрода, наблюдающаяся, например, при протекании на нем реакции восстановления ионов водорода или молекул кислорода  [c.14]

В процессе растворения металла на его поверхности одновременно протекают две электродные реакции анодное растворение металла и катодное восстановление окислителя. При достаточно длительном контакте металла с агрессивной средой коррозионный процесс стабилизируется и наступает так называемое стационарное состояние, характеризующееся равенством скоростей анодной и катодной реакций (/а = /к) и соответствующим значением потенциала кор. называемым стационарным или коррозионным потенциалом. Из условия стационарности следует, что для замедления скорости растворения металла достаточно снизить скорость хотя бы одной из электродных реакций. Основной характеристикой скорости анодного и катодного процесса являются их поляризационные кривые — зависимости анодной /з и катодной /к плотностей тока от потенциала Е. На рис. 5.1 приведена обобщенная потенциостатическая анодная поляризационная кривая. Кривые такого рода более подробно описаны в работах 14, 5, 6, 7]. Область АВ называется областью активного растворения. Вначале скорость растворения металла экспоненциально увеличивается с увеличением потенциала по уравнению Тафеля. В переходной области ВС происходит пассивация металла, приводящая к резкому замедлению коррозии. Потенциал максимума тока называется критическим потенциалом пассивации Е р, а соответствующая ему величина — критической плотностью тока пассивации /кр. Область D, характеризующаяся малыми скоростями коррозии (обычно 10- 4-10 А/см ), практически независимыми от потенциала, называется областью устойчивого пассивного состояния или пассивной областью. Пассивное состояние обусловлено образованием на поверхности металла тонких защитных пленок оксид-  [c.254]

При катодном травлении происходит восстановление окислов металла. Кроме того, выделяющийся водород механически воздействует на имеющиеся на поверхности окислы, отрывая их и облегчая тем самым процесс травления. При анодном травлении происходит электролитическое растворение металла и механический отрыв окислов выделяющимся на поверхности кислородом. Основой растворов для электролитического травления обычно является серная кислота.  [c.138]

Для протекания этой реакции на катодном участке должен одновременно происходить процесс восстановления, заключающийся приобретении электронов. При катодной реакции поглощаются электроны, поставляемые в процессе окисления. Анодная реакция не сможет протекать, если эти эле троны не будут поглощаться. Восстановление растворенного кислорода и выделение газообразного водорода в результате восстановления ионов водорода (в частности, из кислых растворов) относятся к двум самым обычным реакциям, протекающим при коррозии металлов в водных средах. Эти реакции могут быть представлены в виде  [c.58]

Когда металл начинает корродировать в растворе, всегда должен иметь место по меньшей мере один процесс окисления (растворения металла) и один процесс восстановления (например, восстановление кислорода). Если измеряется потенциал этого образца, то его величина должна заключаться где-то между стандартным потенциалом металлического электрода стандартным потенциалом кислородного электрода. Это — стационарный потенциал (потенциал коррозии). Обе реакции будут поляризованы одна относительно другой, и истинные поляризационные кривые будут определяться соображениями, высказанными выше при рассмотрении растворения металла. В наиболее простом случае (фиг. 38) обе поляризационные крн-  [c.82]

В случае анодной поляризации скорость растворения металлов будет возрастать, как в идентичном идеальном случае растворения одного только металла. Но, кроме того, станет уменьшаться скорость восстановления кислорода, происходящего на той же поверхности. Соответствующая ветвь реальной кривой анодной поляризации будет, как показывает участок АВ на фиг. 38, определять зависимость корр от приложенного анодного тока 1а  [c.83]

При равенстве скоростей ионизации и восстановления наступает равновесие системы. Потенциал металла относительно электролита, при котором наступает равновесие и растворение металла прекращается, называется равно весным потенциалом.  [c.200]

Стационарный (или естественный) потенциал — это равновесный потенциал металла в данном конкретном электролите при отсутствии внешнего тока. При этом потенциале ток, идущий на растворение металла на анодных участках, полностью компенсируется током, идущим на восстановление кислорода на катодных участках. Наиболее часто стационарные потенциалы измеряют относительно медносульфатного неполяризующегося электрода сравнения, который практически не изменяет своего потенциала при прохождении через него тока и имеет определенный равновесный потенциал (+0,3 В относительно нормального водородного электрода).  [c.201]


Одно из принципиальных различий между этими двумя механизмами коррозии металлов заключается в том, что при электрохимической коррозии одновременно происходят два процесса окислительный (растворение металла на одном участке) и восстановительный (выделение катиона из раствора, восстановление кислорода и других окислителей на другом участке металла). Например, в результате растворения цинка в серной кислоте образуются ионы цинка и выделяется газообразный водород при действии воды железо переходит в окисное или гидроокис-ное состояние и восстанавливается кислород с образованием гидроксильных иоиов. При химической коррозии разрушение металлической пoвeJЗXнo ти осуществляется без разделения на отдельные стадии и, кроме того, продукты коррозии образуются непосредственно на тех участках поверхности металла, где происходит его разрушение.  [c.6]

Эти кислоты можно получить в лаборатории, пропуская сероводород через воду, насыщенную SO . Для понимания механизма наблюдаемых разрушений следует учесть, что при протекании коррозионных процессов эти кислоты легко катодно восстанавливаются. В связи с этим политионовые кислоты действуют в качестве катодного деполяризатора, который способствует растворению металла по границам зерен, обедненным хромом. Еще одна форма влияния, возможно, заключается в том, что продукты их катодного восстановления (HjS или аналогичные соединения) стимулируют абсорбцию межузельного водорода сплавом, обедненным хромом. Под напряжением этот сплав, если он имеет ферритную структуру, подвергается водородной коррозии вдоль границ зерен. Аустенитный сплав в этих условиях устойчив. Показано, что наличие в морской воде более 2 мг/л серы в виде Na S либо продуктов катодного восстановления сульфитов SOg" или тиосульфатов SjO вызывает водородное растрескивание высокопрочных сталей с 0,77 % С, а та кже ферритных и мартенситных нержавеющих сталей 167]. Предполагают, что и политионовые кислоты оказывают аналогичное действие.  [c.323]

В активных средах для анодного покрытия скорость коррозии определяется разностью потенциалов контактирующих электродов (покрытие - основа), а длительность защиты - скоростью растворения покрытия и его толщиной. Поэтому повышение коррозионной стойкости самого покрытия способствует увеличению долговечности системы покрытие — основа. В активных средах анодное растворение металлов протекает при поляризации анодного процесса менее значительной, чем для катодного. Контактный ток пары в этом случае определяется в основном перенапряжением катодного процесса и связан со вторичными явлениями, изменяющими поведение контактных пар. Методы, повышающие катодный контроль например, повышение перенапряжения водорода для сред с водородной деполяризацией или уменьшение эффективности работы катодов, в том числе за счет вторичных явлений, будут способствовать снижению скорости саморастворения покрытия и, наоборот, катодные включения с низким перенапряжением восстановления окислителя стимулируют коррозионное разрушеше системы.  [c.71]

При использовании этого метода нахождения необходимо учитывать осложнения, возникающие при определении значений емкости по импедансным измерениям из-за наложения на результаты измерений влияния реакций растворения металла и восстановления деполяризатора, скорости которых зависят от степени заполнения. Этот метод применим лишь вблизи потенциала максимума электро-капиллярной кривой или потенциала минимума емкостной кривой при больших заполнениях. Стационарный потенциал корродирующего металла может, однако, существенно отличаться от потенциала минимума емкостной кривой и условия адсорбции, следовательно, фактические величины 0 окажутся иными, чем те, которым отвечает уравнение (61). Следует отметить также, что величина org нахо-  [c.26]

Если восстановление растворенного кислорода является единственным катодным процессом, то, как уже говорилось, наибольшая его скорость равна предельному диффузионному току. Теоретический расчет, выполненный без учета гидролиза ионов, показал, что при 10, 20, 40, 60, 90 °С величины pH приэлектрод-ного слоя соответственно равны 11,35 10,84 10,06 9,32, 8,68 [1]. Более глубокая ( избыточная ) катодная поляризация, приводящая к выделению водорода, сопровождается дополнительным ростом pH. Однако величина этого эффекта невелика вследствие перемешивания раствора пузырьками водорода. Результаты прямых экспериментов удовлетворительно согласуются с расчетными данными и показывают, что при потенциалах восстановления кислорода стационарное значение pH в приэлектродном слое при комнатной температуре равно 10,5 (рис. 4.4), чему отвечает нп = = 0,52 В по н. в. э. Известно, что потенциал коррозии железа в большинстве нейтральных растворов близок к ор = —0.50 В [61. Следовательно, коррозия протекает в условиях, когда скорость окисления металла находится вблизи максимума кривой /а (В). Снижение /а до /эащ = 2 мкА/см (что эквивалентно 0,01 мм/год) требует катодной поляризации дй потенциала аащ = = —0,55 В по н. в. э. Это значение Ваащ, проверенное многолетней мировой практикой, по ГОСТ 9.015—74 выбрано в качестве важного критерия — минимального защитного потенциала ащ-В качестве максимального защитного потенциала поверхностей, имеющих защитные покрытия, принято = —1,2 В по  [c.60]

В сообщении Русскому техническому обществу и в ряде последующих работ Чернов подробно останавливается на пороках стальных слит1К01в, уделяя наибольшее внимание причинам и механизму возникновения газовых пузырей и усадочной рыхлости. Одновременно он предлагает нрактичесние мероприятия для устранения этих недостатков. Важнейшим из них является наиболее полное раскисление металла перед разливкой его в изложницы. В 70-е годы было известно два раскислителя жидкой стали — кремний и марганец. Именно они обеспечивают восстановление растворенной в сплаве закиси железа, предотвращают возникновение газообразной окиси углерода, приводящей 1к образованию пузырей в слитке стали. Наиболее энергичным раскислителем является кремний. Однако кремний окисляется (выгорает) в самом начале  [c.85]

Me - Ме+ + е Ме+ ->Ме + -J- е и т. д., и что каждая отдельная стадия будет обладать своим собственным набором кинетических параметров, т. е. значениями коэффициентов переноса и токов обмена. В результате этого упри стационарном режиме процесса анодного растворения металла в приэлектродном слое устанавливаются вполне определенные значения концентрации всех промежуточных продуктов анодной реакции — ионов низших ступеней окисления. Однакс все эти ионы не будут находиться в термодинамическом равновесии ни с самим металлом, ни с конечным продуктом его окисления. Их концентрация будет определяться только скоростью образования этих частиц и последующего превращения в окисленную или исходную, более восстановленную форму.  [c.113]

Коррозионное разрушение металлов и сплавов происходит вследствие растворения твердого металла в расплавленном натрии, путем взаимодействия окислов металлов, располагающихся между зернами и натрием и его окислами [1,49], [1,57]. При взаимодействии, например, окиси натрия с окислами кремния могут образоваться легкоплавкие эвтектики, что ослабляет связь между зернами металла. При наличии в натрии кислорода и соответственно окислов натрия коррозия может протекать по электрохимическому механизму [1,49]. С этим обстоятельством возможно связана более высокая скорость растворения металлов в натрии при контактах разнородных материалов. Анодный процесс состоит в переходе ион-атомов из кристаллической решетки в расплав, катодная реакция — в восстановлении натрия из окисла до металла. О. А. Есин и В. А. Чечулин [I, 58] доказали, что эффективность катодного процесса восстановления натрия определяется скоростью диффузии ионов натрия в расплаве, содержащем его окислы. Локальные коррозионные элементы на поверхности металла могут образоваться вследствие структурной неоднородности, различных уровней механических напряжений, разрушения окисных пленок на отдельных участках поверхности и по ряду других причин. Устранение кислорода из расплава или связывание его в прочные соединения ингибиторами подавляет электрохимическую коррозию и, как известно, увеличивает стойкость конструкционных материалов в расплавленном натрии.  [c.50]


Химическое осаждение никеля и меди на углеродные жгуты и ленты различной текстильной структуры основано на восстановлении ионов металла из водного раствора с помощью растворенного восстановителя [88]. Осаждение никеля происходит только после придания поверхности углеродных волокон каталитических свойств. Для этого углеродные жгуты и ленты непосредственно перед металлизацией подвергают обработке в окислительной среде, сенсибилизации и активации. Предварительная обработка и собственно процесс металлизации должны обеспечивать равномерное нанесение никеля или меди на углеродные филаменты и образование прочной связи металла с основой без снижения прочностных характеристик волокна и нарушения целостности барьерного слоя.  [c.55]

По П. П. Строкачу, электрохимическое растворение металлов состоит из двух основных процессов — анодного и химического растворения в результате взаимодействия с окружающей средой. Растворению металла анода способствуют повышение температуры воды, присутствие в ней ионов-депассива-торов, наложение постоянного электрического тока, повышение скорости движения воды по отношению к поверхности металла. Поэтому выход алюминия по току может достигать 120% и более. В соответствии с теорией электрохимической коррозии при использовании в качестве анода железа или алюминия в природной воде протекают реакции анодного растворения и образования гидроксидов этих металлов. На катоде из железа или алюминия в природной воде происходят деполяризация мигрирующими ионами, деполяризация нейтральными молекулами, восстановление ионов металлов и нерастворимых пленок, а также органических соединений. На алюминиевом катоде при pH 10... 12 в прикатодном слое вероятна реакция взаимодействия алюминия с водой с образованием гидроксида алюминия и водорода во время электролиза и растворения защитной пленки оксида алюминия. Из вышеуказанных катодных процессов в природной воде главенствующим является водородная и кислородная деполяризация.  [c.102]

Кинетику анодного процесса пассивирующихся коррозионных систем можно представить зависимостью стационарной скорости окисления от потенциала гст = /(ф). На поверхности металлов в растворах электролитов одновременно протекают две электродные реакции анодное растворение металла и катодное восстановление окислителя [12]  [c.9]

Как было показано ранее (см. гл. I и II), металлы, склонные к пассивации, имеют характерную зависимость скорости анодного растворения от потенциала с хорошо выраженной пассивной областью. При условии, если анодная поляризационная кривая остается постоянной, скорость растворения металла будет определяться значением потенциала металла независимо от того, чем поддерживается его потенциал внешней анодной поляризацией или анодной поляризацией вследствие сопряженно протекающего катодйого процесса выделения водорода или восстановления  [c.187]

В практике чаще всего встречаются с примерами разрушений металлических конструкций вследствие электрохимической коррозии. Этот вид коррозии возникает в растворах электролитов, причем ему сопутствуют протекающие на поверхности металла электрохимические процессы окислительный — растворение металла — и восстановительный — электрохимическое восстановление компонентов среды. На скорость электрохимической коррозии влияют особенности как самого металла (вид, структура, неоднородности, наличие пленок и покрытий), так и электролитической среды (состав, концентрация, температура, кислотность и т. д.). Влияют также условия эксйлуатации металлической конструкции. Видами электрохимической коррозии являются атмосферная, подземная, морская, биологическая, коррозия под действием блуждающих токов и др.  [c.12]

Из табл. П 1 следует, что новая стальная труба, вмонтированная Б затронутый ранее коррозией стальной трубопровод, будет подвергаться ускоренной коррозии. Чугунная графитизирован-ная труба в контакте со стальными трубами будет играть роль более благородного металла почти не растворяясь, но обеспечи- вая на своей поверхности восстановление растворенного кислорода, она будет способствовать усилению коррозии стали.  [c.25]

Коррозия в водных средах представляет собой электрохимическое явление, которое подробно рассматривалось в разд. 2.2. Растворение металла протекает в форме анодного процесса. Если потенциал корродирующего объекта снижается до величины обратимого потенциала анодной реакции, то анодное растворение прекращается, так как скорость растворения компенсируется скоростью осаждения металла (соответствует плотности тока обмена) при этой величине потенциала. Таким образом, потерь от разъедания не будет. По существу, вся поверхность объект будет содержать участки с протекающими на них только катодными коррозионными реакциями выделения водорода, восстановления кислорода или той и другой вместе. Это и является йсновой катодной защиты.  [c.128]

Для гомогенного металла наиболее выгодно, особенно в случае сложных профилированных деталей, чтобы процесс растворения металла контролировался скоростью восстановления окислителя. В этом случае скорость травления не будет зависеть от диффузии окислителя. Скорость растворения, а следовательно, окислите льн о-в осстановительный потенциал, концентрацию окислителя и pH раствора следует подбирать таким образом, чтобы даже в наименее доступных местах для окислителя  [c.71]


Смотреть страницы где упоминается термин Восстановление растворенного металла : [c.406]    [c.176]    [c.175]    [c.58]    [c.248]    [c.104]    [c.126]    [c.367]    [c.184]    [c.34]   
Теоретические основы коррозии металлов (1973) -- [ c.150 , c.157 ]



ПОИСК



Восстановление металлов из окислов растворов

Восстановление растворенного



© 2025 Mash-xxl.info Реклама на сайте