Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Взаимодействие между атомами

Деформация материала обычно связана с искажением кристаллической решетки и изменением межатомных расстояний. При этом в случае небольших напряжений взаимодействие между атомами не нарушается и при последующих разгрузках указанные искажения решетки исчезают. Если же напряжения большие, то в кристаллических зернах пластичных материалов по некоторым плоскостям, которые называются плоскостями скольжения кристаллита, происходят необратимые сдвиги. Сдвинутые относительно друг друга группы атомов уже не образуют единой атомной решетки. Получившееся при этом новое образование оказывается более прочным в результате усиления плоскостей скольжения внутри отдельных зерен. Теперь для его разрушения требуется большее усилие.  [c.590]


Когда эти материальные точки заключены в каком-либо сосуде, то от действия на них стенок сосуда возникают дополнительные силы, не учитывающиеся при этом выводе и изменяющие вид формулы (112), иногда совсем незначительно. Результат, выражаемый формулой (112), остается верным даже в тех случаях, когда при описании состояния системы материальных точек следует учитывать и квантовые поправки. Теорема о вириале сохраняет силу как для взаимодействия электронов и атомных ядер в молекулах или кристаллах, так и для взаимодействия между атомами, образующими звезду, или между звездами, образующими галактику.  [c.302]

Это связано с тем, что взаимодействие между атомом и световой волной можно учесть в хорошем согласии с опытом, если рассматривать атом как совокупность гармонических осцилляторов, а для гармонического осциллятора классическая и квантовая трактовки задачи приводят к одинаковым результатам.  [c.548]

Проблема связи атомов в твердых телах из-за одинаковой природы сил взаимодействия между атомами аналогична проблеме сил связи атомов в молекулах. Силы связи в молекулах и твердых телах имеют много общего. Ответ о силах связи в твердых телах представляет собой обобщение ответа, полученного для молекул. Поэтому для количественной оценки энергии связи атомов в твердых телах сначала рассмотрим силы, которые удерживают атомы вместе в двухатомной молекуле.  [c.60]

Снова будем считать, что смещения малы по сравнению с межатомным расстоянием а, а силы взаимодействия между атомами — квазиупругие. Смещения описывают продольные колебания атомов вблизи положений их равновесия.  [c.152]

Здесь P= J . Другим был подход Г. Лоренца и Д. Фицджеральда. Они выдвинули гипотезу о деформируемом электроне, согласно которой размеры тел сокращаются в направлении движения в — раз. При этом движущиеся электроны принимают вид сплюснутых эллипсоидов вращения, а при v= превращаются в круглые диски, плоскости которых расположены нормально к направлению движения. Обоснование этой гипотезы нельзя назвать убедительным — поступательное движение изменяет взаимодействие между атомами и молекула ш, а поскольку размеры и форма твердых тел обусловлены их взаимодействием, должно иметь место и изменение этих размеров при движении. Полученная ими зависимость m (v) имеет вид  [c.106]

Для температур, близких к температуре плавления кристалла, / может уменьшаться до 6—10 межатомных расстояний. При очень низких температурах / достигает величины порядка 0,1 см. Характер изменения длины свободного пробега фонона в зависимости от температуры во многом накладывает отпечаток на температурную зависимость теплопроводности. Величина средней длины свободного пробега фонона I определяется главным образом двумя процессами — рассеянием на статических несовершенствах решетки (например, дефекты) и рассеянием фононов на фононах. Если силы взаимодействия между атомами в решетке являются чисто гармоническими, то никакого механизма фонон-фононных  [c.43]


Первоначально Коши и Навье рассматривали твердое тело как систему материальных частиц. При этом каждую пару материальных частиц полагали связанной между собой силами взаимодействия, направленными по прямой, соединяющей их и линейно зависящими от расстояния между частицами. При том уровне, на котором находилась физика в начале XIX столетия, описать таким способом упругие свойства реальных тел не удалось. В настоящее время существуют строгие физические теории, позволяющие определить упругие свойства кристаллов различного строения, отправляясь от рассмотрения сил взаимодействия между атомами в кристаллической решетке. Более простой путь, по которому следует современная теория упругости, состоит в том, чтобы рассматривать распределение вещества тела непрерывно по всему его объему это позволяет перемещения материальных точек принимать за непрерывные функции координат.  [c.31]

В 1938 г. А. А. Власов предложил кинетическое уравнение для электронно-ионной плазмы, исходя из общефизических соображений о том, что, в отличие от короткодействующих сил взаимодействия между атомами нейтрального газа, силы взаимодействия между заряженными частицами медленно спадают с расстоянием, и поэтому движение каждой такой частицы определяется не столько ее парным взаимодействием с какой-либо другой заряженной" частицей, сколько взаимодействием со всем коллективом заряженных частиц.  [c.127]

Температура плавления с повышением давления понижается также при Г<0,3 К у изотопа гелия с атомной массой З( Не), хотя у него v">v. Это происходит потому, что удельная теплота плавления А.= Г(5" —,v ) твердого Не при Г<0,3 К отрицательна эффект Померанчука), т. е. энтропия s жидкого Не меньше энтропии s его твердой фазы. Такое поведение энтропии у разных фаз Не вызвано тем, что в жидкости силы обменного взаимодействия между атомами приводят к упорядочению их спинов уже при Г< 1 К, в то время как в твердой фазе из-за малости амплитуды нулевых колебаний по сравнению с межатомным расстоянием такое упорядочение наступает лишь при 10 К, когда кТ становится порядка магнитной энер-  [c.236]

Температура плавления с повышением давления понижается также при Г<0,3 К У изотопа гелия с атомной массой 3 ( Не), хотя у него v">v. Это происходит потому, что удельная теплота плавления X = T(is"—s ) твердого = Не при Т<0,ЗК отрицательна эффект Померанчука), т. е. энтропия. s" жидкого Не меньше энтропии s его твердой фазы. Такое поведение энтропии у разных фаз Не вызвано тем, что в жидкости силы обменного взаимодействия между атомами приводят к упорядочению их спинов уже при Т<1К, в то время как в твердой фазе из-за малости ампли-  [c.163]

При учете взаимодействия между атомами Ф не будет совпадать с (ПЗ.Ю) или (ПЗ.16), но нулевое приближение может быть найдено как линейная комбинация с некоторым малым добавком ф, связанным с изменением R  [c.107]

Таким образом, с учетом (П3.1), (П 3.32) и (ПЗ.ЗЗ) для энергии взаимодействия между атомами водорода можно получить  [c.109]

Распространение ударных волн в твердых телах по сравнению с газами имеет свои особенности, которые обусловлены различиями во внутреннем строении твердых тел, с одной стороны, и газов — с другой. Силы взаимодействия между атомами и молекулами твердых тел в отличие от газов велики. Сжимаемость твердых тел мала. По этой причине скорость среды за фронтом ударной волны много меньше скорости самой волны. С этой точки зрения ударные волны в твердых телах даже в том случае, когда давление за фронтом составляет сотни килобар, следует считать слабыми.  [c.33]

Замещение — точечное нарушение регулярной структуры кристалла, когда атом вещества кристалла оказывается замещенным атомом другого вещества (рис. 7.12). Нарушение регулярности строения кристаллической решетки точечными дефектами может распространяться на несколько элементарных ячеек кристалла, т. е. на этом расстоянии силовые поля взаимодействия между атомами искажены.  [c.132]


Отметим, в частности, что взаимодействие между атомами инертных газов Аг, Кг, Хе описывается потенциалом Леннарда—Джонса (12-6), (6-25), который является частным случаем зависимости (7-19). Отсюда следует, что указанные вещества должны быть термодинамически подобны, что подтверждается многочисленными опытными данными. Критические коэффициенты этих веществ практически совпадают (2кр=0,292), что согласуется с теорией.  [c.130]

Взаимодействие между атомами может привести к образованию агрегатов только в том случае, если энергия системы при этом понижается. При сближении атомов и образовании кристаллических агрегатов электроны занимают более низкие энергетические уровни, чем те, которые характерны для изолированного атома. В этом случае энергия системы минимальна.  [c.5]

Это соотношение может быть получено как из рассмотрения сил взаимодействия между атомами, так и из энергетических расчетов (см. напр., [35]).  [c.188]

Из (1.44) следует что теоретическая прочность кристаллов на сдвиг, вычисленная из предположения, что смещение одной части кристалла относительно другой происходит одновременно по всей плоскости сдвига, должна составлять л 0,1(3, т. е. быть величиной порядка 10 —10 Н/м (10 —10 кгс/см ). Более строгий учет характера сил взаимодействия между атомами приводит к незначительному уточнению этой величины.  [c.48]

Отклонение реального газа от идеального состояния приходится учитывать двумя способами. Во-первых, это обычное вириальное разложение по плотности и, во-вторых, это вириаль-ное разложение уравнения Клаузиуса—Моссотти. Необходимость в вириальном разложении уравнения Клаузиуса — Моссотти объясняется тем, что на поляризуемость влияют взаимодействия между атомами почти таким же образом, как давление. Вириальное разложение уравнения Клаузиуса — Моссотти имеет вид  [c.130]

Наряду с полосатыми- спектрами молекул, расположенными в видимой и ультрафиолетовой областях, наблюдаются также и инфракрасные спектры молекул. Опыт показывает, что инфракрасные колебательные спектры газа или пара остаются в большинстве случаев практически неизменными и при исследовании соответствующей жидкости или даже твердого тела. Причину нечувствительности этих спектров к агрегатному состоянию надо, очевидно, искать в том, что силы взаимодействия между атомами (внутримолекулярные силы) значительно больще ван-дер-ваальсовых межмолекулярных сил, обусловливающих переход из газообразного в другие агрегатные состояния. Поэтому колебания атомов внутри молекулы происходят практически одинаково как в изолированных молекулах газа, так и в сближенных молекулах жидкости или твердого тела. Излучение же полосатых спектров в видимой и ультрафиолетовой областях в основном определяется изменением электронной конфигурации молекулы, а эта последняя испытывает в случае жидкости или твердого тела вполне ощутимые воздействия со стороны соседних молекул. Но все же и для инфракрасных спектров некоторые детали, связанные главным образом с вращением молекулы вокруг ее центра тяжести, лучше наблюдаются в газообразном состоянии, ибо свобода вращения молекул в жидкостях и твердых телах в значительной степени стеснена.  [c.748]

При /п=1 потенциал (2.9) соответствует обычному кулопов-скому взаимодействию между противоположно заряженными ионами, а при / г==6, как мы увидим ниже, — потенциалу притяжения при взаимодействии между атомами инертных газов.  [c.62]

Ковалентная связь имеет то же происхождение, что и связь в гамополярных молекулах (Нг, СЬ, Ь,.- ), она обусловлена обменным электронным взаимодействием между атомами. В молекулярных кристаллах (Нг, СЬ, Ь,---) ковалентная связь локализована между ядрами в молекуле, молекулы удерживаются вместе слабыми силами Ван-дер-Ваальса. Однако в случае алмаза или графита несколько валентных электронов являются общими для атома и ряда его соседей, и поэтому невозможно выделить какую-либо группу атомов, которую можно рассматривать как химически насыщенную (рис. 2.7). С этой точки зрения кристалл алмаза представляет собой огромную молекулу.  [c.75]

При рассмотрении колебаний атомов кристаллической решетки а также теплоемкости твердых тел, связанной с этими колебания ми, предполагалось, что силы, действующие между атомами, упру гие и атомы совершают гармонические колебания с малыми ам плитудами около их средних положений равновесия. Это позволи ло разделить весь спектр колебаний на независимые моды, рассчи тать в этом приближении тепловую энергию кристалла и получить формулу для теплоемкости, хорошо описывающую ее поведение при низких и высоких температурах. Однако для объяснения ряда явлений, таких, например, как тепловое расширение твердых тел и теплопроводность, сделанных предположений уже недостаточно и необходимо принимать во внимание тот факт, что силы взаимодействия между атомами в решетке не совсем упругие, т. е. они зависят от смещения атомов из положения равновесия не линейно, а содержат ангармонические члены второй и более высоких степеней, влияние которых возрастает с ростом температуры.  [c.183]

Тепловое расширение решетки или изменение равновесного объема Vo при изменении температуры, характеризуемое температурным коэффициентом объемного расширения — AV j VoAT), обусловлено асимметрией взаимодействия между атомами, вызванной тем, что сила отталкивания возрастает быстрее при сближении атомов, чем сила притяжения при их удалении друг от друга. Это приводит к непараболическому виду кривой потенциальной энергии взаимодействия (рис. 6.13). При Т атомы колеблются так, что межатомное расстояние изменяется от А до В со средним значе-ннем (рис. 6.13). При более  [c.185]


Силы взаимодействия между атомами в стеклах будут такие же, как и в кристаллической модификации данного веш,ества, если последняя существует. Поэтому теплоемкости кристаллического и плавленого кварца ниже точки рязмягчения одинаковы (164, 165]. Следует ожидать также одинаковых упругих постоянных и ангармоничностей. Таким образом, стекло можно рассматривать как твердое тело с малой средней длиной свободного пробега Г.  [c.243]

В первом приближении различные тепловые возбуждения можно рассматривать независимо, однако следует помнить, что в высших приближениях уже приходится учитывать их взаимодействие. Среди всех возможных типов возбуждений следует особо выделить чрешеточныеч) возбуждения динамических степеней свободы, которые связаны с колебаниями частиц, образующих кристаллическую решетку (атомов, ионов или молекул) вблизи их положений равновесия. Если решетка состоит из молекул, то решеточные возбуждения связаны с колебаниямхг молекул как целого, однако наряду с ними возможны молекулярные возбуждения, связанные с колебаниями отдельных атомов или ионов внутри молекулы. Молекулярные возбуждения такого типа встречаются в кристаллах в тех случаях, когда межатомное взаимодействие в группе атомов превышает взаимодействие между атомами соседних групп.  [c.316]

Если атомы имеют полностью заполненные сферически симметричные электронные оболочки, то система ядро + электроны атома нейтральна, ее очень трудно возбудить, и ион-ионные ку-лоновские силы между атомами не действуют. Тем не менее даже в этом случае взаимодействие между атомами происходит. В самом деле при любых температурах электроны и ядра находятся в движении, вследствие чего мгновенные положения ядра и центра электронного облака, вообще говоря, не совпадают. В результате создается мгновенный диполный момент Pi (средний диполь-ный момент равен нулю), и вследствие этого возникает поле, равное  [c.21]

Основы теории ковалентной связи удобно рассмотреть fla примере связи в молекуле На, используя метод, предложенный в 1927 г. Гайт-лером и Лондоном [10]. Примем, что молекула водорода состоит из двух одинаковых яде р А к. В, находящихся на расстоянии R, и двух электронов (1 и 2). Будем полагать справедливым адиабатическое приближение. Тогда энергия взаимодействия между атомами водорода U R) будет складываться из энергии кулоновского взаимодействия ядер e /R и энергии элект-рон-ионного взаимодействия E R), зависящей в конечном счете от R, т. е.  [c.105]

Если считать, что силы взаимодействия между атомами направлены по прямым, соединяющим их центры (гипотеза центральных сил), то в уравнениях равновесия атомной решетки будут фигурировать только координаты атомов, но не утлы их собственных вращений. Считая число атомов очень большим, а расстояния между ними очень малыми, мы можем получить отсюда закон упругости для сплошной среды, притом для среды, соответствующей класспческой модели. Такие вычисления действительно производились, однако точные законы междуатомного взаимодействия неизвестны н непосредственно установить их нельзя. Поэтому в основу анализа приходится полагать более или менее правдоподобные гипотезы.  [c.23]

Еще слабее электромагнитные взаимодействия проявляются у нейтральных бесспиновых частиц, например у нейтрального пиона. Наконец, нейтрино практически не подвержены электромагнитным взаимодействиям. Во-вторых, для электромагнитных взаимодействий соблюдаются некоторые из законов сохранения, которые нарушаются в слабых (но не в сильных) взаимодействиях (см. последующие три параграфа). Наконец, исключительно важным свойством электромагнитных взаимодействий является наличие как отталкивания, так и притяжения в законе Кулона. Из-за этого, например, взаимодействие между атомами и вообще между любыми двумя телами с нулевыми суммарными зарядами имеет короткий радиус действия, несмотря на длиннодействующий характер куло-новских сил.  [c.280]

В настоящее время, говоря о механике разрушения, обычно понимают под этим изучение тех условий, при которых в теле распространяется трещина или система трещин. Но трещины бывают очень разные и рассматриваются они в разных масштабах. С одной стороны, разрушение кристаллического зерна начинается с образования субмикроскопической трещины, расхождения двух атомных слоев на такое расстояние, когда силы взаимодействия между атомами пренебрежно малы. Другой крайний случай — трещина в сварном роторе турбины или в котле атомного реактора, длина я ширина которой измеряется сантиметрами. В первом случае условие распространения трепщны оиределяется конфигурацией атомов на конце (в вершине) трещины. Поскольку речь идет уже не о сплопшой среде, а о дискретной кристаллической решетке, образованной атомами, самое понятие конец трещины становится неопределенным. Изучение такого рода субми-кроско-пических трещин и взаимодействия их с другими дефектами  [c.8]

Основная, пожалуй, задача, на которой были сосредоточены в последние годы усилия ученых-механиков, занимающихся практическими приложениями механики разрушения к оценке прочности крупногабаритных изделий,— это задача о нахождении условий равновесия или распространения большой трещины в достаточно пластичном материале. Пластическая зона впереди трещины велика настолько, что для нее можно считать справедливыми соотношения макроскопической теории пластичности, рассматривающей среду как сплошную и однородную. Для плоского напряженного состояния модель Леонова — Панасюка — Дагдейла, заменяющая пластическую зону отрезком, продолжающим трещину и не имеющим толщины, оказывается удовлетворительной. В частности, это подтверждается приводимым в этой книге анализом соответствующей упругопластической задачи, которая ре- шается численно методом конечных элементов. С увеличением числа эле-ментов пластическая зона суживается и можно предполагать, что в пределе, когда при безграничном увеличении числа элементов решение стремится к точному решению, пластическая зона действительно вырождается в отрезок. Заметим, что при рассмотрении субмикроскопических трещин на атомном уровне многие авторы принимают гипотезу о том, что нелинейность взаимодействия между атомами существенна лишь в пределах одного межатомного слоя, по аналогии с тем, как рассчитывается так называемая дислокация Пайерлса. Онять-таки, как и в линейной теории, возникает формальная аналогия, но здесь она носит уже искусственный характер, и суждения об относительной приемлемости модели в разных случаях основываются на совершенно различных соображениях степень убедительности приводимой Б защиту ее аргументации оказывается далеко неодинаковой.  [c.10]

Рассмотрим кратко механизм об1)емной прочности полимеров. Разрушению в [юлимерах предшествует значительная вязкотекучая деформация в окрестностях треи(ин1)1, сопровождающаяся рассеянием энергии упругой деформации. Сложность оценки прочности полимеров состоит в том, что они могут находиться в нескольких физических состояниях, которые су[цественно отличаются по механическим свойствам и механизмам разруп1ения. Наличие в полимерах двух резко различающихся типов взаимодействия между атомами больших химических сил (связей), действующих вдоль цепных макромолекул, и малых сил (слабых связей) мсжмолекулярного взаимодействия определяет возникновение неоднородности распределения механических напряжений в изотропных полимерах.  [c.92]

Таким образом, жидкое состояние металлов от твердого отличается только временем оседлой жизни атома. Время оседлой жизни атома в жидком состоянии рассчитывается по формуле Я. И. Френкеля. Поданным Я. И. Френкеля, образующаяся жидкая фаза кристаллоподобна, поскольку при малом времени взаимодействия между атомами жидкий металл ведет себя как твердый. Поэтому в жидком металле атомы стремятся сблизиться. Электростатические силы, которые определяют межатомное расстояние в кристаллах, действуют и в жидкости. Наименьшее расстояние между атомами в жидкости близко к межатомному расстоянию в кристалле этого же металла однако число атомов, находящихся на этом расстоянии, неодинаково. Структура жидкого металла даже при температуре плавления менее упорядочена, чем структура твердого металла. Структуру жидкой фазы при температуре плавления можно представить состоящей из мгновенных закономерно ориентированных плотных группировок атомов, которые в результате теплового движения и столкновения с соседними атомами сразу же уничтожаются.  [c.42]


Вопрос о соотношении В ш В был рассмотрен [25] также в рамках общей феноменологической теории, в которой движущей силой диффузии считается градиент химического потенциала (см.- 23). В, такой макроскопической теории не конкретизируется структура решетки, а также тин междоузлий, и результат может быть получен в общем виде для любых структур. При этом, однако, не удается получить явных выражений для коэффициентов В и В, а лишь соотношение между ними. В простейшем предельном случае, когда взаимодействие между атомами С мало и им можно пренебречь, по степень заполнения междоузлий р может быть любой, в такой теории были получены формулы для химических потенциалов меченых атомов С и их градиентов в случаях самодиффузии и химической диффузии. Для этого использовались общие формулы типа (23,34), определяющие плотности диффузионных потоков. Сравнение этих плотностей потоков в случаях самодиффузии и химической диффузии привело к установлению соотношения типа Даркена (ем. (23,41)) между В и /), имеющего вид (26,8). Таким образом, это соотношение оказывается справедливым не только в случае диффузии невзаимодействующих внедренных атомов по октаэдрическим междоузлиям ОЦК решетки, но и для общего случая любых структур решетки чистого (на узлах) металла и любых типов междоузлий.  [c.273]

Рассмотренные нами в предыдущих параграфах причины расширения спектральных линий не связаны с взаимодействием между атомами. Расширение линий, вызванное взаимодействием между атомами, было впервые разобрано в 1905 г. Лоренцом на основании классической электронной теории. Лоренц пользовался весьма упрощенной схемой взаимодействия, а именно, пренебрегая затуханием колебаний на длине свободного пути, он полагал, что внутриатомный электрон на всей длине свободного пути атома не возмущен никакими силами и совершает гармоническое колебательное движение с частотой В момент столкновения с другим атомом колебания электрона обрываются. Таким образом, рассматривается лишь роль ударов между атомами, почему эта упрощенная теория и называется ударной теорией.  [c.489]


Смотреть страницы где упоминается термин Взаимодействие между атомами : [c.227]    [c.355]    [c.130]    [c.146]    [c.168]    [c.188]    [c.801]    [c.694]    [c.279]    [c.156]    [c.173]    [c.509]    [c.123]   
Физическое металловедение Вып I (1967) -- [ c.59 ]



ПОИСК



Взаимодействие между

Мир атома

Силы взаимодействия между атомами в растворах



© 2025 Mash-xxl.info Реклама на сайте