Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Состояние Влияние на сопротивление хрупкому разрушению

Динамическое нагружение. Известно, что скорость нагружения и распространения трещины оказывает влияние на сопротивление хрупкому разрушению и предельное состояние конструктивных элементов с трещинами. В связи с этим важно знать характеристики вязкости разрушения конструкционных сплавов при динамическом характере их нагружения, обусловленном большой скоростью приложения нагрузки или скоростью распространения трещины. Для материалов различных классов в различных состояниях влияние динамического нагружения на вязкость разрушения может быть различным. На рис. приведены результаты исследования влияния температуры испытаний на характеристики динамической вязкости разрушения  [c.203]


Влияние толщины образцов. На сопротивление хрупкому разрушению по существу влияют два размера образца, попереч ный размер —толщина, и размер в направлении развития трещины — ширина. По результатам испытаний образцов с квадратным поперечным сечением, показанных на рис. 30 и 31, невоз. можно разделить влияние этих размеров, поскольку толщина и ширина равны и изменяются одновременно с изменением размеров образца. Однако это разделение имеет важное значение, так как для тонкого образца свойственно плоское напряженное состояние, а для толстого — состояние плоской деформации. Большинство турбогенераторных установок имеет большие размеры, и поэтому для них характерны условия плоской деформации.  [c.115]

Для материалов малопластичных и хрупких на сопротивление усталостному разрушению оказывают влияние не только касательные, но также нормальные напряжения условия достижения предельного напряженного состояния формулируются по наибольшим касательным напряжениям с отображением влияния нормальных напряжений [31]  [c.497]

В книге изложены теоретические и экспериментальные исследования процессов деформации и разрушения стали с учетом влияния напряженного состояния и масштабного эффекта на несущую способность конструкции и на их сопротивление. хрупкому разрушению.  [c.2]

Например,-критерий типа (4.9), как отмечалось выше, не способен отразить влияние двухосных равных растяжений на сопротивление разрушению. В то же время необходимо иметь в виду, что в материале с пониженными. характеристиками пластичности и повышенным сопротивлением деформированию напряженность металла в зонах микронеоднородности сохраняется длительное время, увеличивая вероятность преждевременных (по сравнению с оценками по результатам испытаний при одноосном растяжении) хрупких разрушений при сложном напряженном состоянии. Это является еще одним подтверждением  [c.139]

Наконец, следует отметить, что на хрупкость материала могут очень сильно влиять так называемые остаточные напряжения, которые могут получиться в материале при закалке, при холодной прокатке или при недостаточной температуре горячей прокатки, когда материал получает наклеп. Опытами на растяжение такие напряжения, как правило, не могут быть выявлены. Остаточные напряжения обычно связаны с возникновением объемного напряженного состояния в материале в связи с этим возможно хрупкое разрушение. Такие случаи встречались при изготовлении мощных двутавровых балок со сравнительно тонкими полками. В нашей практике был случай хрупкого разрушения двутавровой балки № 50 при сбрасывании ее на землю в морозный день. Результаты статических испытаний, химического и металлографического анализа показали, что материал как будто вполне доброкачественный. Лишь ударные испытания при различных температурах обнаружили резкую хладноломкость для образцов, вырезанных у края полки двутавра,— в наиболее наклепанном месте. Что касается влияния на хрупкость химического состава сталей, то ударная вязкость понижается, как это видно из таблицы 21, с увеличением количества углерода, т. е. с повышением предела прочности и уменьшением пластических свойств стали. Весьма неблагоприятно отражается на сопротивлении удару, особенно при низких температурах, наличие фосфора. Поэтому на практике при изготовлении материала для деталей, работающих на удар, всячески ограничивают примесь этого элемента.  [c.533]


Ниже дается характеристика условий работы ряда конструкций и причин их разрушения, показывающая важность не только раздельного обоснования сопротивления циклическому и хрупкому разрушению, но и учета влияния накопления циклических повреждений на возникновение хрупких состояний.  [c.67]

Под влиянием изменения структуры стали, протекающего, в зависимости от температуры и времени отпуска, существенно изменяются сопротивление сталей хрупкому разрушению и вязкость, каким бы показателем, пригодным для оценки, их не характеризовали. На рис. 21 показано изменение показателей вязкости инструментальных сталей, полученных различными способами, в зависимости от температуры и продолжительности отпуска. Естественно, что предел текучести сталей (твердость) зависит также от этих структурных изменений, хотя и не в такой мере, как вязкость. На основе экспериментальных результатов для каждой стали можно подобрать такую оптимальную комбинацию параметров термообработки (температура и продолжительность аустенитизации, температура и продолжительность отпуска), при которой показатель, характеризующий структуру стали, сложившуюся под ее воздействием (будь то удельная работа разрушения или вязкость разрушения), будет максимальным и предел текучести также будет наибольшим. В этом состоянии распределение выделений по размеру и по объему стали сравнительно равномерно и за время заданного срока службы инструмента это распределение, а также распределение легирующих между матрицей и карбидами остаются практически неизменными.  [c.42]

Таким образом, на диаграмме механического состояния (см. рис. 7.4) имеются две замкнутые области упругого состояния материала, ограниченная линией /т — перехода в пластическую область и линией 5от — перехода к хрупкому отрыву без пересечения пластической области, т. е. отрыв без предшествующей пластической деформации пластического состояния материала, ограниченная линией /к — разрушения путем среза и линией Sot — не вполне хрупкого разрушения путем отрыва, так как отрыв происходит уже после более или менее значительной пластической деформации, которая оказывает сильное влияние на величину сопротивления отрыву и строение излома.  [c.262]

Существенное влияние вида напряженного состояния на сопротивление металла хрупкому разрушению обнаруживается при сопоставлении данных испытаний материалов при одноосном растяжении с результатами, полученными при двухосном (труб-  [c.382]

Наличие фосфора особенно сильно сказывается на механических свойствах стали в области низких температур (явление хладноломкости). Фосфор уменьшает работу распространения трещины и сопротивление металла хрупкому разрушению. Негативное влияние этого элемента тем сильнее, чем выше прочность стали. В состоянии отпускной хрупкости фосфор оказывает еще большее отрицательное воздействие на порог хладноломкости. Фосфор не ухудшает свойств коррозионно-стойких и жаростойких (хромоникелевых) сталей. Однако аустенитные безникелевые стали (Г 13), как и высокопрочные, при повышенной загрязненности фосфором малопригодны для эксплуатации при низких температурах [4, 9].  [c.717]

Как показано многочисленными исследованиями, в элементах конструкций изготовленных из пластичного материала, находящихся в вязком состоянии и работающих при статических и ударных нагрузках, остаточные сварочные напряжения не отражаются на прочности (сопротивлении разрушению) элементов конструкций. Их влияние в данном случае проявляется лишь в том, что наступление пластических деформаций в отдельных зонах может происходить при более низких нагрузках, чем в элементах, не имеющих сварочных напряжений. В конструкциях из хрупких материалов, а также из материалов пластичных, но находящихся в хрупком состоянии (например, при воздействии объемного напряженного состояния), сварочные остаточные напряжения могут влиять на прочность при статических и ударных нагрузках.  [c.60]


Влияние остроты надрезов. Низкие значения сопротивления хрупкому разрушению можно получить на образцах с очень острым надрезом. Однако надрез радиусом несколько сотых миллиметра не следует считать в полной мере треш иноподобным дефектом. К тому же для определения вязкости разрушения методами механики хрупкого разрушения необходимо математически строгое понимание острой трещины. Исследования показали, что трещины могут иметь большие влияния на сопротивление хрупкому разрушению, чем острые надрезы (Вессел, 1960 г. Юкава и Мак-Муллин, 1961 г.). Однако этот фактор не является решающим без учета других параметров. Одним из этих параметров для легированных сталей средней прочности является температура испытаний при переходе стали из вязкого состояния в хрупкое. На рис. 32 это проиллюстрировано кривыми для стали Ш—Мо—V. Данные для образцов с трещинами, полученными при циклическом нагружении, взяты из работы Вессела (1960 г.). Данные для  [c.114]

В соответствии с постулатами механики хрупкого разрушения для испытаний высокопрочных материалов (сталей, алюминия, титана и т. д.) предложены критерии, учитывающие требования минимальной толщины для создания условий плоскодеформиро-ванного состояния. Однако вопрос о том, можно ли применять эти критерии к материалам более низкой прочности, пока не решен. В этом случае рекомендуется использовать эмпирический способ, т. е. испытывать специальные образцы и оценивать результаты испытаний, позволяющие установить влияние толщины на сопротивление хрупкому разрушению.  [c.116]

Водородной хрупкостью называют ухудшение одной или нескольких механических характеристик металла в результате его на-водороживания. Водородное охрупчивание отражает совокупность изменяющих механические свойства металлов взаимосвязанных явлений, в каждом из которых участвует водород. Склонность стали к водородному охрупчиванию оценивают, в основном, по снижению ее пластичности [76]. Однако для оценки технического состояния и остаточного ресурса металлической конструкции практический интерес представляет влияние наводороживания на сопротивление хрупкому разрушению и характеристики трещиностойкости.  [c.138]

Переход твердого тела в хрупкое состояние в 1924 г. был описан А.Ф. Иоффе. Его схема (рис. 4) оказала большое влияние на да11ь-нейшие исследования хрупкости стали. Из нее следовало существование параметра характеризующего сопротивление хрупкому разрушению, - сопротивления отрыву (5 ) или хрупкой прочности, Из  [c.12]

В прокате относительно тонких сечений ниобий несколько измельчает действительное зерно стали Ст. Зсп (балл 9) по сравнению с обычной сталью (балл 7—8) и заметно задерживает рост зерна при 900—1050° С, чего не наблюдается у ванадийсодержащей стали. По сопротивлению хрупкому разрушению малоуглеродистых нелегированных сталей с модифицирующими добавками в горячекатаном состоянии имеются противоречивые сведения. По данным работ [126, 127], ванадий и ниобий (до 0,05%) практически не оказывают влияния на значение ударной вязкости при комнатной и пониженной температурах малоуглеродистой стали, в то время как в работах [124, 128, 129] показано, что названные присадки несколько снижают и ударную вязкость (рис. 50), сдвигают переходную температуру стали в горячеката-  [c.127]

В книге излагаются основные заиономерности механики замедленного циклического и быстропротекающего хрупкого разрушения материалов в зависимости от условий нагружения, вида напряженного состояния, механических свойств и структуры материала, рассматриваются соответствующие модели процессов деформирования я возникновения разрушения в вероятностной трактовке, а также кинетика развития трещин. Влияние нестационарной атружеяности на разрушение анализируется иа основе гипотез о накоплении повреждения. Предложен расчет а прочность по критерию сопротивления усталостному и хрупкому разрушению в связи с условиями подобия и учетом температурно-временных факторов, дается оценка вероятности. разрушекия.  [c.2]

Остаточная напряженность деталей машин, порождаемая условиями термической обработки, усадочными явлениями при сварке и отливанип, а также процессами унрочнеш Я поверхностного слоя и отделочных опера-ци , является существенным фактором их сопротивления усталостному и хрупкому разрушению. Усовершенствование методов измерения остаточных напряжений путем применения электрических методов измерения нолей плоской деформации, а также исследование их влияния на прочность при переменных напряжениях и в хрупких состояниях позволили обосновать  [c.40]

Влияние отпуска на механические свойства. Распад мартенсита при отпуске влияет на все свойства стали. При низких температурах отпуска (до 200—250 °С) уменьшается склонность стали к хрупкому разрушению. В случае низкотемпературного отпуска твердость закаленной и отпущенной стали мало зависит от содержания в ней легирующих элементов и определяется в основном содержанием углерода в а-растворе (мартенсите). В связи с этим высокоуглеродистые стали, имеющие высокую твердость после закалки, сохраняют ее (более высокое содержание углерода в мартенсите) и после отпуска при температурах до 200— 250 °С. Прочность и вязкость стали при низких температурах отпуска несколько возрастает вследствие уменьшения макро- и микронапряжений и изменения структурного состояния. Повышение температуры отпуска от 200—250 до 500—600 °С заметно снижает твердость, временное сопротивление, предел текучести и повышает относительное удлинение, сужение (рио. 128, а) и трещиностой-кость Кхс-  [c.187]


Увеличение глубины кольцевой трещины сопровождается изменением жесткости напряженного состояния в ее вершине, и это оказывает существенное влияние на характеристики разрушения. Переход от однородного одноосного растяжения к объемному напряженному состоянию при трехосном неоднородном растяжении в зоне трещин приводит к тому, что напряжения в нетто-сечении и о" сначала падают в области малых длин трещин, а затем возрастают с увеличением / (рис. 7.15, 7.16). Их падение соответствует большим, а возрастание — малым й / О. Значения и ст при I = 0 определяются как сопротивление разрыву 3, гладкого образца, а и а — как предел прочности ад. Разница напряжений ст и по брут-то-сечению (см. рис. 7.16) больше при малых длинах трещин и сильнее выражена у пластичных сплавов (Д1, Д16, АК6), что связано с увеличением доли пластических деформаций на конечной стадии разрушения, чем у хрупких (В95пч). С уменьшением диаметра П естественно уменьшается диапазон длин трещин и кривые для напря-  [c.205]

Вероятностная природа усталостного разрушения, зависящего от дефектов структуры и поверхности металла, отражается на закономерностях подобия при этих разрушениях. С увеличением напрягаемых переменными напряжениями объемов увеличивается вероятность ослабления сопротивления металла разрушению бопее значительными дефектами и их сочетанием, уменьшается предел усталости, ослабляется рассеяние. Влияние абсолютных размеров на усталостные свойства металла возрастает с увеличением его неоднородности, особенно сильно проявляясь на литых и крупнозернистых структурах. С уменьшением вероятности ра.з-рушения влияние абсолютных размеров ослабевает, так как в соответствии со статистическими представлениями рассеяние уменьшается с увеличением напрягаемых объемов, и кривые усталости для низких вероятностей разрушения при различных размерах сечений сближаются. При сложных напряженных состояниях усталостные разрушения для металлов в вязком состоянии в основном определяются максимальными или октаэдрическими касательными напряжениями, как. это следует, например, из данных исследования усталости конструкционных сталей. Большинство результатов укладывается между предельными шестиугольником касательных напряжений и эллипсом октаэдрических. Для металлов в хрупком состоянии разрушения определяются главными растягивающими нормальными напряжениями, они располагаются ближе к предельному квадрату предельных нормальных напряжений. Форма усталостного излома при кручении для вязких металлов свидетельствует о зарождении усталостного разрушения по направлению действия наибольших касательных напряжений. Для хрупких металлов трещина возникает сразу в направ.т1е-нии действия наибольших нормальных напряжений. Развитие трещины обычно следует поверхностям мальных напряжений.  [c.384]

Приведенные выше результаты являются первой попыткой дать количественные оценки влияния вида напряженного состояния на ресурс пластичности конструкционных материалов. Рациональное накопление экспериментальных данных по отдельным аспектам сопротивления материалов с учетом характера температурносиловых воздействий позволит значительно расширить возможности известных подходов к оценке несущей способности конструкций по критерию хрупкого разрушения.  [c.386]

Повторная закалка из критического интервала (между A i и Асз) снижает чувствительность к хрупкости [132]. Повышение температуры отпуска замедляет последующее развитие хрупкости при более низких температурах [114]. С увеличением времени выдержки при высоком отпуске (650°) вязкость падает, достигает минимума, затем начинает возрастать [114, 130, 133, 94, 102]. Порог хладноломкости сдвигается к более низким температурам [125]. С увеличением скорости нагрева под закалку [134] и под отпуск [55, 56] и уменьшением выдержек при отпуске обратимая хрупкость снижается и даже предупреждается. В структурах, полученных в результате изотермического распада хромоникелевых сталей, обратимая хрупкость развивается в меньшей степени, чем в отпущенном мартенсите [116]. Повышение температуры изотермического распада усиливает склонность к хрупкости [135]. Обратимая хрупкость наблюдается и в отожженных сталях [114, 136]. Развитие ее повышает температуру перехода к хрупкому разрушению при определении ударной вяч-кости в зависимости от температуры испытания. Рациональная оценка склонности стали к хрупкости возможна лишь в результате серийных испытаний и определения смещения критической температуры хрупкости под воздействием охрупчивания стали [109, 111, 114, 127, 120, 131 и др.]. Все известные случаи отпускной хрупкости можно рассматривать как разновидность явления хладноломкости, хотя о тождестве проблем отпускной хрупкости и хладноломкости говорить все же нельзя ([109] — см. также [138, 137]). Смещение кривых хладноломкости указывает на наличие отпускной хрупкости, но степень ее развития характеризует очень приблизительно [109]. Хрупкость характеризуется заниженным сопротивлением отрыву [139]. Разрушение идет по границам зерен аустенита а-фазы [113, 116, 140]. Под влиянием холодной пластической деформации восприимчивость к необратимой и обратимой хрупкости ослабляется [114, 141]. Пластическая деформация в аустенитном состоянии, после которой до рекристаллизации произведена закалка, резко ослабляет необратимую и. .братимую отпускную хрупкость [142].  [c.705]

Значительное влияние на изменение пластических свойств сварных конструкций и на их сопротивление образованию трещин оказывает температура эксплуатации изделий. Стандартные образцы из малоуглеродистой стали хорошо сохраняют свои пластические свойства при понижении температуры испытаний, однако лишь до некоторого предела. При испытании стандартных образцов из малоуглеродистых сталей хрупкое разрушение в условиях одноосно напряженного состояния наступает лишь при низкой температуре (минус 60—80°). При производстве испытаний в условиях двух-осио напряженного состояния пластические свойства ухудшд-ются, а критическая температура перехода из пластичного в хрупкое состояние повышается. Наличие концентрации напряжений может вызвать образование хрупких разрушений при еще более высоких температурах. Это подтвердили испытания, проведенные в Институте электросварки им. Е. О. Патона. На фиг. 116, —в, изображены образцы с резкими концентраторамй напряжений, расположенными на участках с высокими местными  [c.215]

Многокомпонентные сплавы. Сплав Ti—11,5Мо— — 6Zr — 4,5Sn (часто называемый P-1II), не содержащий соединений интерметаллидов, обычно термообрабатывается в области фаз (а + р). Необходимо заметить, что сплав в состоянии P-STA (Р-обработка на твердый раствор + искусственное старение) имеет низкие характеристики сопротивления КР- Влияние температуры старения на Кыр показано на рис. 78, из которого следует, что старение при температуре 538 °С и ниже в области (а + р)-фаз приводит сплав в состояние, очень чувствительное к КР. Минимальные значения Аыр (15,4—27,5 МПа-м / ) были получены при испытании в растворе 0,6 М КС1 в условиях наложения потенциала. Кинетика растрескивания сплава р-П1 при нескольких температурах старения также показана на рис. 78 четко выраженная область // зависимости и от А и наличие области III очевидны для температур старения 483 и 538 °С. Заметим, что более обширная область II характерна для образцов, состаренных при 622°С, чем для образцов, состаренных при 538 °С. За исключением. этого область II зависимости v от К увеличивается с уменьшением температуры старения. Влияние продолжительности старения при 483 С показано на рис. 79 [105]. Тот факт, что сплав (3-111 устойчив к КР только в состоянии (Рфазы, может быть подкреплен двумя важными моментами. Во-первых, образцы, состаренные в течение 8 ч, были сравнительно хрупкими, имели параметры Ai = = 55. МПа-м и Aiitp = 44 МПа-м п Эти величины не зависели от скорости охлаждения с температуры старения. Во-вторых, при продолжительности старения 40 ч увеличивается Ки и резко уменьшается /(щр до величины 16,5 МПа-м д При дальнейшем увеличении продолжительности старения до 100 ч значение Агкр не изменяется, но наблюдается значительное увеличение скорости растрескивания (во всех случаях разрушение носило межкристал-литный характер, как описано в разделе о разрушении).  [c.370]


Впоследствии было изучено [199], на сколько описанйая выше ТЦО стали 22К увеличивает характеристики сопротивления разрушению. Получены данные по влиянию ТЦО на выносливость при много- и малоцикловой усталости стали 22К, определена также ударная вязкость разрушения. В этих экспериментах использовали металл листового проката толщиной 160 мм. ТЦО заготовок и их закалку с высоким отпуском по стандартной технологии производили в производственных условиях путем нагрева до 850 °G (первый цикл) и до 780—800 С (два последующих цикла) с промежуточными охлаждениями на воздухе до 500 °С. Металлографические исследования показали, что в этом случае произошло измельчение зерна от 5 до 9—12 баллов. При ТЦО снижается критическая температура начала перехода стали в хрупкое состояние на 25 С по сравнению с обычной нормализацией или закалкой с высоким отпуском. Такое снижение Гко объясняется двумя факторами измельчением зерен и глобулярной формой карбидной фазы.  [c.230]


Смотреть страницы где упоминается термин Состояние Влияние на сопротивление хрупкому разрушению : [c.412]    [c.70]    [c.27]    [c.281]    [c.312]    [c.66]    [c.61]    [c.187]    [c.280]    [c.459]    [c.384]   
Разрушение Том5 Расчет конструкций на хрупкую прочность (1977) -- [ c.85 , c.86 ]



ПОИСК



Разрушение хрупкое

Разрушение хрупкое — Влияни

Сопротивление разрушению

Состояние разрушения

Состояние хрупкое



© 2025 Mash-xxl.info Реклама на сайте