Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Теория Сен-Венана кручения стержней

В этой главе рассматривается теория кручения Сен-Венана цилиндрического стержня. Поперечное сечение стержня с площадью S предполагается односвязным, если не оговорено обратное. Пусть ось г выбрана по направлению образующей цилиндра, а оси X и у лежат в плоскости его поперечного сечения, как показано на рис. 6.1. Кручение стержня осуществляется приложением крутящих моментов на обоих его концах, в то время как боковая поверхность свободна от нагрузки. Механические граничные условия на концах г = О и г = I задаются соответственно условиями  [c.158]


До сих пор рассматривались только задачи кручения Сен-Венана, т. е. деформация стержня предполагалась не зависящей от г. Очевидно, что для полной реализации кручения Сен-Венана механические граничные условия на обоих концах, а именно уравнения (6.1) и (6.2), должны находиться в точном соответствии с распределением напряжений, получаемых из решения задачи Сен-Венана. Если стержень конечной длины нагружается крутящими моментами, приложенными произвольным образом на концах стержня, то распределение напряжений в стержне может отличаться от предсказываемых теорией Сен-Венана. Однако, согласно принципу Сен-Венана, упомянутому во введении к этой части, распределение напряжений в таком стержне будет отклоняться от даваемых теорией Сен-Венана лишь локально в окрестности концов стержня. Протяженность области этого отклонения вдоль оси г имеет порядок поперечных размеров стержня, так что теория кручения Сен-Венана может успешно применяться для областей, далеких от концов стержня. Приближенные решения для задачи кручения стержня конечной длины были получены различными авторами с помощью вариационных методов [2, 4].  [c.166]

Заметим, что нагрузка р хз) не обязательно должна лежать в плоскости x-iXi, она может действовать в параллельной плоскости. Величины прогибов и нормальных напряжений при изгибе от этого не меняются, как будет видно из приводимого ниже вывода. Однако касательные напряжения зависят от положения плоскости действия сил, они могут потребовать для своего уравновешивания приложения к торцам балки крутящих моментов. Если ось х-2. есть ось симметрии сечения, то, очевидно, крутящий момент не потребуется, если нагрузка лежит в плоскости Хг, Хз, нагрузка в любой параллельной плоскости будет вызывать кручение. Однако, если ось есть главная центральная ось сечения, по не ось симметрии, и нагрузка лежит в плоскости Хг, Хз, изгиб, как правило, будет сопровождаться кручением чтобы кручения пе было, ось х должна проходить не через центр сечения, а через некоторую точку, называемую центром изгиба. Элементарная теория, позволяющая найти центр изгиба для тонкостенных стержней открытого профиля, была изложена в 3.7, распространение ее на стержни произвольного сечения служит предметом теории изгиба Сен-Венана, которая в этой книге излагаться не будет.  [c.387]

В теории кручения Сен-Венана предполагается, что деформации стержня не зависят отг ). Это означает, что w (х, у, г) и й Ш  [c.158]

В заключение отметим, что в теории кручения Сен-Венана энергия деформации и дополнительная энергия на единицу длины стержня даются соответственно выражениями  [c.163]


В этом параграфе мы выведем вариационную формулировку для задачи кручения цилиндрического стержня с отверстием, изображенного на рис. 6.3. Обозначим внешнюю и внутреннюю границы поперечного сечения через Со и j соответственно. Предположения теории кручения Сен-Венана означают, что определяющие уравнения задачи идентичны уравнениям, приведенным  [c.164]

Легко убедиться непосредственной проверкой, что число Я, = О является собственным значением краевой задачи, а соответствующее ему решение зависит от четырех неопределенных действительных постоянных (при этом используется теорема существования и единственности в классических теориях плоской деформации, изгиба и кручения). Эти постоянные выражаются через величину суммарной растягивающей силы и три составляющих вектора-момента от нагрузок в поперечном сечении 5. Получается классическое решение Сен-Венана (растяжение, кручение и чистый изгиб стержня). Естественно, сюда не входит решение об изгибе поперечной силой стержня конечной длины.  [c.69]

Однако сперва мы пойдем по пути, использованному самим Сен-Вена-ном, который исходил из основных уравнений теории упругости, и сперва будем искать только точные решения. Конечно, мы должны тотчас же предостеречь читателя от переоценки точности этих решений. Хотя математическая задача о нахождении интеграла основных уравнений, удовлетворяющего требуемым граничным условиям, в некоторых случаях может быть решена совершенно строго, но из этого еще не следует, что такое решение безусловно надежно н с физической точки зрения. Это было бы действительно так, если бы предположения, на которых основан вывод основных уравнений, выполнялись строго. Однако обычно об этом не может быть и речи мы предполагаем, что материал изотропен, но материал, из которого изготовляют рассчитываемые стержни, обычно обнаруживает в разных направлениях разные упругие свойства, что как раз может быть довольно отчетливо замечено при испытании на кручение ). Это видно уже из того, что значение модуля сдвига G, найденное из опытов над кручением, не особенно точно согласуется со значением, выражаемым через упругие постоянные и /и по формуле (29) 2, как это должно было бы иметь место для изотропного тела. Точно так же и предположение об однородности материала или об одинаковости свойств его в разных точках оправдывается не всегда, например в двутавровых балках часто можно заметить довольно резко выраженную разницу между внутренней частью и наружным слоем.  [c.51]

Важно рассмотреть кручение стержней любых поперечных сечений, в особенности тонкостенных. Эта задача оказывается весьма сложной и решение ее дается лишь методами теории упругости (работы Сен-Венана, Прандтля, К. Вебера, В. 3. Власова и др.). Здесь изучаем подробно лишь кручение кругового  [c.97]

Сен-Венан в классических работах по теории кручения и изгиба, опубликованных в 1855—1856 гг., дал на основе общих уравнений теории упругости решение задач изгиба и кручения призматических стержней. В этих исследованиях Сен-Венан создал полуобратный метод решения задач теории упругости, высказал знаменитый принцип Сен-Венана , позволивший перейти к эффективному решению задач теории упругости, и разобрал большое число конкретных примеров.  [c.5]

Задача Сен-Венана о равновесии упругого призматического стержня под действием произвольной нагрузки, заданной на его торцах, является одной из важнейших задач теории упругости, поскольку ее решение дает возможность оценить точность элементарной теории изгиба, рассматривающейся в сопротивлении материалов, а также позволяет исследовать представляющую значительный практический интерес проблему кручения стержней, которая не может быть решена элементарными приемами. Задача Сен-Венана (в общей ее постановке) является, кроме того, одной из труднейших задач теории упругости. С математической точки зрения она решена далеко не полно. Однако в силу так называемого принципа Сен-Венана имеющееся ее решение, излагаемое ниже, может рассматриваться (хотя и с некоторыми оговорками) как исчерпывающее вопрос.  [c.236]

Прежде чем переходить к изложению теории А. А, Уманского, рассмотрим задачу о свободном кручении тонкостенного стержня с закрытым профилем. В этой задаче соответственно классическому решению Сен-Венана нормальные напряжения в поперечных сечениях отсутствуют, так что из формулы (25) гл. I следует, что касательное усилие  [c.108]


Исходные положения. Рассмотрим кручение призмы произвольного поперечного сечения. Пусть нижний конец стержня закреплен, а ось г параллельна оси стержня (рис. 45) стержень скручивается под действием момента М. Следуя предположениям Сен-Венана в теории упругого кручения, примем, что поперечные сечения испытывают жесткий поворот в своей плоскости, но искривляются в направлении оси 2  [c.115]

Рассмотреть предельное состояние круглого (радиус а) цилиндрического стержня при одновременном кручении и растяжении (исходить из уравнений теории пластичности Сен-Венана — Мизеса (13.12) поперечные сечения остаются плоскими и поворачиваются целиком, отличны от нуля лишь компоненты напряжения (Т , найти распределение напряжений и значения осевой силы и крутящего момента.  [c.131]

Из этих соотношений следует, что при кручении поперечное сечение стержня, поворачиваясь вокруг оси стержня, не остается плоским ( депланирует ) — его точки смещаются вдоль оси стержня. Обнаружение этого факта является одним из важнейших достижений теории Сен-Венана. Определяющая депла-нацию гармоническая функция ц> х,у) является решением задачи Неймана (2.1.14) по (2,4.5) функция ([> х, у) однозначна в 5. Заметим, что ее разыскание, равно как и функции напряжений Ф, не связано с задачей об изгибе силами Р или Q.  [c.380]

Эксперименты Баушинге-ра (Baus hinger [1881, 2]), в которых он также изучал кручение призматических стержней круглого, эллиптического, квадратного и прямоугольного поперечных сечений, имели преимущество быть выполненными четверть века спустя после создания теории Сен-Венана. Тем не менее и Баушингер нашел, что измерения при кручении достаточно чувствительны для того, чтобы легко обнаружить существенную нелинейность, однако он не был настроен против представления результатов своих опытов в видетаблицы значений касательного модуля при сдвиге. На рис. 2.37 приведены значения касательного модуля при сдвиге, найденные Баушингером при различных формах поперечного сечения чугунных призматических образцов.  [c.135]

Наиболее блестящим результатом теории Сен-Венана, найденным им самим, является точное решение задачи о кручении стержня прямоугольного сечения с произвольным отношением сторон. Он вывел две формулы, которые вполне заменяют одна другую и которые выражают перемещения S в виде функций от координат у и z поперечного сечения. Формулы содержат бесконечные ряды, которые, однако, быстро сходятся, так что они удобны для практического применения, в особенности, если в каждом отдельном случае пользоваться, в зависимости от отношения полусторон а и Ь, той из них, ряды в которой сходятся быстрее.  [c.95]

Теория чистого кручения Сен-Венана. Наиболее значительный вклад в теорию кручения стержней сделал Б. Сен-Венан. В своих знаменитых Мемуарах [278] он впервые получил точное решение задачи статического кручения стержней произвольного профиля и псследовал гиножество стержней частного вида. Несмотря на то, что работа Б, Сен-Венана относится к так называемому чистому кручению, в этом пункте в сжатом виде приведены основные его результаты, так как все приближенные теории крутильных колебашш, приводимые ниже, так или иначе их используют.  [c.155]

Рассмотрим подробнее дисперсионные свойства крутильных волн согласно некоторым приближенным теориям. Кроме уравнения Сен-Венана (7), выведенного с учетом инерции вращения стержня и в предположении о чистом кручении [6], наибольшее практическое значение имеют еще уравнения крутильных колебаний Тимошенко и Аггарвала — Крэнча. Если уравнение (7) имеет второй порядок и описывает одну волну, то два последних являются уравнениями четвертого порядка и описывают, таким образом, две крутильные волны.  [c.34]

Теорема 3.1 доказывается в следующих параграфах для наиболее типичных канонических задач. В число однородных решений, естественно, входят решения Сен-Венана, которыми мы будем в общем случае называть однородные решения, дающие конечные главный вектор и главный момент. Эти решения получаются из обычной теории изгиба, растяжения и кручения стержней, а также отвечают решениям задач о сосредоточенной силе и сосредоточенном моменте в вершине клина и в вершине конуса (в случае слоя рехиение Сен-Венана соответствует чистому изгибу и однородному растяжению). Однородные реще-ния, не являющиеся решениями Сен-Венана, по определению дают главный вектор и главный момент, равные или нулю, или бесконечности.  [c.55]

Э. Хвалла ) исследовал поперечное выпучивание балок несимметричного профиля и дал общий вид уравнений, из которых уравнения для двутавровой балки получаются как частный случай. Автор настоящей книги изложил общую теорию изгиба, кручения и устойчивости тонкостенных элементов открытого профиля ). В. 3. Власов развил в своей книге ) иной метод подхода к теории устойчивости, указав, что для тонкостенных стержней принцип Сен-Вена на теряет силу и что, например, в элементе зетового профиля можно вызвать кручение, приложив по торцам к его полкам изгибающие моменты.  [c.495]

Теорию кручения старались построить еще задолго до Сен-Венана и в этом направлении достигли некоторых успехов. Повидикоку, впервые этой задачей серьезно занялся Кулон ( oulomb) он нашел правильную формулу для угла кручения стержня круглого сечения. Затем позже На.вье (Navier), пользуясь своей теорией изгиба, развил полную теорию кручения призматических стержней произвольного сечения, которая была очень проста и претендовала на полное и правильное решение всей задачи. Эта теория пользовалась всеобщим признанием до середины прошлого столетия и она даже до настоящего столетия имела еще отдельных последователей, хотя и была в очевидном противоречии с некоторыми очень простыми и общеизвестными опытными фактами.  [c.48]


Первые исследования Сен-Венана по изгибу и кручению стержней относятся к 40-м годам. Окончательная же форма этим разделам теории упругости была придана в двух мемуарах Сен-Венана, представленных им Парижской академии наук 13 июня 1853 г. и 20 июля 1855 г. Решение поставленных задач было нолучено Сен-Венаном введением им в теорию упругости плодотворного полуобратного метода (когда часть смещений и напряжений в задаче задается, а другая их часть ищется из уравнений) и использования принципа локальности действия статически уравновешенных нагрузок, получившего позже название принципа Сен-Венана  [c.56]

Изложена теория кручения призматических стержней Сен-Венана. Дана аналогия между задачей кручения стержня и задачей о прогибах от равномерного нормального давления нерастяжимой натянутой на жесткий контур мембраны и рассматривается ее применение к расчету тонкостенных замкнутых контуров на крзгчение. Излагается принадлежащее автору решение этой задачи энергетическим методом исследован случай  [c.5]

Используя указанные идеи, Сен-Венан создал теорию кручения призматических стержней, показав ошибочность теории Навье разработал теорию изгиба стержней и решил большое число задач для конкретных профилей. Он разобрал также случай одновременного кручения и изгиба, решив тем самым задачу, ныне, по предложению Клебша, называемую задачей Сен-Венана.  [c.12]

Должна лежать в соприкасающейся плоскости той кривой, по которой располагается изогнутая ось, и когДа Бине (В1пе1) ввел уравнение моментов относительно касательной, то Пуассон на основании этого уравнения пришел к заключению,-что крутящий момент постоянен. Лишь постепенно возникло представление о двух изгибающих пара в двух главных плоскостях, и был найден способ определения меры закручивания. Когда эти элементы теории были получены, стало ясно, что, зная соотношения, связывающие, изгибающие и крутящие моменты с кривизной и степенью кручения и пользуясь обычными условиями равновесия, можно определить форму изогнутой оси, степень кручения стержня вокруг этой оси, а также растягивающую и Перерезы вающую силу в любом данном сечении. Изгибающие и крутящие. пары, а также растягивающая и перерезывающая силы, происходят от усилий, приложенных к, элементам поперечных сечений, и правильные выражения для этих пар и сил следует искать при помощи общей теории. Но здесь возникает затруднение, состоящее в том, Что общие уравнения применимы лишь тогда, когда смещения малы между тем для таких тел, как спиральные пружины, смещения ни в коем случае нельзя считать малыми. КирхГоф (КтеЬЬоК) первый преодолел Это затруднение. Он показал, что общие уравнения применимы со всей строгостью к малой части тонкого стержня, все линейные размеры которой того же порядка малости, что и диаметры, поперечного сечения. Он считал, что уравнения равновесия или движения такой части можно в первом приближении упростить, пренебрегая силами -инерции и массовыми силами. Исследования, содержащиеся в теории Кирхгофа, носят в значительной своей части кинематический, характер. Когда тонкий стержень подвергается изгибу и скручиванию, то каждый его элемент испытывает деформацию, аналогичную тем деформациям,. которые имеют место в призмах Сен-Венана но соседние элементы должны непрерывным образом переходить один в Другой. Для того чтобы выразить непрерывность этого рода, необходимы некоторые условия. Эти условия принимают форму диференциальных уравнений, которые связывают относительные смещения точек малой части стержня с относительными координатами этих точек и с величинами, которые определяют положение данной части относительно всего стержня в целом. Из этих диференциальных уравнений Кирхгоф получил картину деформации в элементе стерл я и нашел выражение для потенциальной энергии, отнесенной к единице -длины, через относительное удлинение, компоненты кривизны и степень кручения. Он получил уравнения равновесия и колебаний, варьируя функцию, Выражающую энергию. В случае, когда тонкий стержень подвергается действию внешних сил, приложенных лишь иа его концах, уравнения, которыми определяется форма изогнутой оси, идентичны, как показал Кирхгоф, с уравнениями движения тяжелого твердого тела вокруг неподвижной точки. Эта теорема носит название кинетической аналогии Кирхгофа .  [c.36]

Из формулы (17.2) вытекает, что тонкостенные стержни односвязного (или, как часто говорят, открытого) профиля, составленные из прямоугольных полос, столь же невыгодны при кручении, как и длинная прямоугольная полоса, поскольку их жесткость значительно уступает жесткости стержня с круговым поперечным сечением той же площади. Необходимо, однако, подчеркнуть, что данное заключение нельзя рассматривать как окончательное. Оказывается тонкостенные стержни открытого профиля обладают (по сравнению со стержнями иных профилей) дополнительными ресурсами в отношении сопротивления на кручение. Суть дела состоит в том, что максимальный характерный размер торца стержня — высота профиля — в данном случае существенно превосходит наименьший характерный размер стержня—толщину полок или стенки профиля. Соответственно (см. 2), две статически эквивалентные нагрузки, приложенные к его торцам, могут вызвать существенно разные поля напряжений, причем различие это не будет носить локальный характер. В частности, если решить для тонкостенного стержня открытого профиля задачу о кручении, предположив (в отличие от постановки этой задачи по Сен-Венану), что депланация на торцах устранена, то жесткость на кручение получится гораздо большей, чем результат (17.2). На практике условия закрепления торцов скручиваемых стержней всегда. (в большей или меньшей степени) запрещают депланацию. Для нетонкостенных стержней это несущественно, ибо здесь действует принцип Сен-Венана. Иначе обстоит дело для тонкостенных стержней, стеснение депланации которых (на торцах) является весьма существенным фактором, оказывающим решающее влияние на величину жесткости на кручение. Поэтому для таких стержней интерес представляет не столько задача о свободном (Сен-Венановом) их кручении, сколько задача о стесненном их кручении. Приближенное решение этой последней задачи (детально разработанное В. 3. Власовым) тесно связано с кругом идей, используемых в теории пластин и оболочек, и на этом вопросе мы здесь останавливаться более не будем.  [c.274]

При построении теории тонкостенных стержней принимают в качестве исходной классическую задачу Сен-Венана о чистом кручении и, в соответствии с этим, из шести элементов деформации срединной поверхности стержня (относительных удлинений и Вд, сдвига угз компонентЭВ изменения кри-  [c.28]


Смотреть страницы где упоминается термин Теория Сен-Венана кручения стержней : [c.595]    [c.159]    [c.48]    [c.21]    [c.7]    [c.34]    [c.156]    [c.163]    [c.22]    [c.309]    [c.86]    [c.33]    [c.11]    [c.37]    [c.134]    [c.31]   
Экспериментальные основы механики деформируемых твердых тел Часть1 Малые деформации (1984) -- [ c.0 ]



ПОИСК



Кручение стержней

Сен-.Вена

Сен-Венан

Сен-Венана теория кручения



© 2025 Mash-xxl.info Реклама на сайте