Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы анизотропные — Свойства свойства

В некоторых случаях предположение об изотропии неприемлемо. Например, к анизотропным материалам относятся древесина, свойства которой вдоль и поперек волокон существенно различны, армированные материалы и т. п.  [c.12]

Материалы, не обладающие указанным свойством, называются анизотропными. Анизотропно дерево, бумага, фанера, в некоторой степени стальной прокат.  [c.177]

Материалы, имеющие неодинаковые свойства в разных направлениях, называются анизотропными, например древесина.  [c.180]

В книге использованы простейшие модели, описывающие свойства материалов. В разделе теории упругости это была модель линейно-упругого сплошного и однородного тела. Вопросы пластичности также рассматривались применительно к простейшим моделям пластического деформирования, а в явлении ползучести мы вынуждены были ограничиться лишь линейной ползучестью. В то же время, например, новые композитные материалы иногда не могут быть описаны с помощью рассмотренной выше модели ортотропного материала и требуют привлечения общей теории анизотропных тел, физические свойства которых описываются соответствующими тензорами параметров упругости.  [c.389]


Некоторые материалы обладают различными свойствами в различных направлениях. Такие материалы называются анизотропными. Анизотропным материалом является, например, сосна, сопротивляемость которой существенно зависит от направления силы по отношению к направлению волокон. Сопротивление сосны вдоль волокон значительно больше,  [c.39]

Упорядоченное расположение частиц в виде решетки определяет анизотропию кристаллов их свойства, в том числе электрические и механические (прочностные), различны в разных направлениях. Анизотропными могут быть твердые материалы и по другим причинам. Например, у материалов слоистой структуры свойства различны в направлениях, перпендикулярном и параллельном расположению слоев. В частности, это относится к слоистым пластикам, слюде и др.  [c.6]

Для материалов с сильной анизотропией свойств (а = 40, Р = 150) экстремальные напряжения в сечении I = 1 различаются в 2,5 раза, в то время как для изотропных материалов это расхождение составляет лишь 18 %. Однако при некотором сочетании параметров аир расхождение между максимальными н минимальными напряжениями у анизотропных материалов в этом сечении может быть даже  [c.29]

Этот метод, обладающий исключительно большой наглядностью и достаточно высокой точностью получаемых результатов, основан на способности некоторых прозрачных аморфных материалов (стекло, целлулоид, пластмассы из эпоксидных смол, фенолформальдегидные пластмассы и др.) изменять свои оптические свойства при упругом деформировании. Под нагрузкой эти материалы становятся оптически анизотропными, приобретая свойство двойного лучепреломления. Такие материалы в практическом обиходе принято называть оптически активными .  [c.229]

Систематизированы результаты теоретических и экспериментальных исследований физических и механических, в том числе упругих свойств одно- и многофазных поликристаллических систем. Изложены современные методы оценки свойств анизотропных систем, описаны эффективные характеристики процессов распространения тепла, прохождения тока, диффузии и фильтрации в однофазных гетерогенных материалах. Показаны возможности оптимизации конструкций и технологических процессов получения материалов с благоприятной анизотропией свойств. Приведены аналитические выражения для расчета упругих и термоупругих характеристик материалов.  [c.318]

Анизотропные волны в твердых телах рассматриваются в физике кристаллов и сейсмологии, однако они не свойственны конструкциям, изготовленным из таких распространенных материалов, как алюминий или сталь, и применительно к этим конструкциям не исследовались. Композиционные материалы имеют одно характерное свойство — степень их анизотропии может направленно изменяться. Соответствующим выбором углов ориентации слоев можно изменять распределение волн напряжений в окрестности зоны импульсного нагружения, предотвращая тем самым повреждение конструкции.  [c.267]


При изучении остаточной прочности и модулей исследователи, как правило, ограничивались рассмотрением свойств в направлении оси образца, т. е. в направлении повреждающей нагрузки. Такой подход не учитывает тот факт, что рассматриваемые материалы анизотропны и что повреждения, происшедшие в одном направлении, могут влиять на прочность и модули в других направлениях. Полное изучение этих взаимодействий было бы очень полезным, но, по-видимому, необходимые для этого время и стоимость испытаний оказываются неприемлемыми для большинства исследовательских программ.  [c.360]

Главные оси прочности не обязательно совпадают с осями механической ортотропии, как и не является обязательной их взаимная ортогональность. Рассмотренный критерий может быть применен к слоистым или однородным анизотропным материалам. Если прочностные свойства определены относительно осей ортотропии, не нужно вычислять главные прочности, также не является необходимым при использовании этого критерия определять главные оси прочности. Однако при выборе конкретной формы критерия должна быть определена величина у.  [c.160]

К группе трансверсально-изотропных композиционных материалов относят материалы, физико-механические свойства которых изотропны в плоскости листа и анизотропны по толщине. Напряженно-деформированное состояние трансверсально-изотропной среды описывается пятью упругими постоянными. Характерной особенностью данных материалов является то, что армирование производится укладкой изотропных или анизотропных слоев.  [c.6]

Мы привыкли к материалам однородным, имеющим постоянные свойства по всему своему объему и по всем направлениям. Сейчас наступает эра материалов анизотропных, многослойных, армированных. Самым привычным примером такого рода может служить железобетон. В последние годы появились пластмассы, армированные керамическими волокнами, картон и бумага, пронизанные стальными нитями, алюминиевые листы, покрытые жаропрочными пленками, и т. п.  [c.8]

Наряду с материалами изотропными существуют и анизотропные материалы, т. е. такие, свойства которых в различных направлениях различны. К таким материалам относятся в первую очередь дерево, слоистые пластмассы, некоторые камни, ткани и другие. Одно значение и fx не может охарактеризовать их упругие свойства, для них необходимо иметь ряд значений упругих характеристик в различных направлениях.  [c.36]

Пластмассы с волокнистыми наполнителями — волокнистые композиционные материалы — обладают анизотропией механических свойств. Степень анизотропности определяется длиной волокон и распределением наполнителя. Различают следующие их виды волокниты, асбо-волокниты и стекловолокниты. В качестве связующего используют фенолформальдегидные смолы, а наполнителем являются очесы хлопка, волокна асбеста и стекловолокно. Волокнистые пластмассы отличаются повышенными теплостойкостью (до 280 °С) и ударной вязкостью (25...150 кДж/м ). Их применяют для изготовления фланцев, шкивов, втулок. Из стекловолокнитов изготавливают детали с резьбой и электромеханические силовые элементы.  [c.154]

Согласно (1.157) и (1.158) упрочнение материала не зависит от направления пластического деформирования, т. е. является изотропным. Однако большинство конструкционных материалов обладают и свойством анизотропного упрочнения. Его простейшим проявлением является эффект Баушингера. Если после одноосного растя жения (точка А на рис. 1.6) провести разгрузку и перейти к сжатию, то при изотропном упрочнении пластическое деформирование должно возобновиться лишь после достижения точки В, ордината которой по абсолютному значению равна ординате точки А (сГд = —сг )-В действительности пластическое деформирование при последующем сжатии обычно возобновляется при меньшем по абсолютному знв чению напряжении (кривая АС на рис. 1.6), Идеальный эффект Баушингера соответствует наличию только анизотропного упрочнения и приводит к повышению предела текучести при первоначальном растяжении и понижению его при последующем сжатии на одинаковую величину. Однако в случае нелинейного упрочнения трудно с достаточной точностью зафиксировать изменения пределов текучести.  [c.48]

Анизотропные материалы обладают различными свойствами в разных направлениях [1—4]. К их числу относятся, например, волокна, древесина, ориентированные аморфные полимеры, материал деталей, получаемых литьем под давлением, волокнистые композиционные материалы, единичные кристаллы и кристаллические полимеры с ориентированной кристаллической фазой. Очевидно, что анизотропные материалы более распространены, чем изотропные. Однако если анизотропия выражена слабо, часто ею можно пренебречь. Для характеристики упругости анизотропных материалов необходимо ввести больше чем два независимых модуля упругости — обычно не менее пяти или шести. Точное число независимых модулей определяется типом симметрии вещества [1—3].  [c.35]


Материалы анизотропные — Свойства 11 13  [c.483]

Листовые неметаллические материалы по своим свойствам и поведению в процессе деформирования в различных условиях существенно отличаются от металлов. Это объясняется как особенностью их структуры (неоднородность, анизотропность, слоистость и напряженность в исходном состоянии), так и специфическими особенностями разрушения этих материалов.  [c.311]

В предыдущих параграфах мы пользовались сингулярным решением для изотропного упругого тела, хотя в большинстве практических случаев рассматриваемые материалы обладают сильно анизотропными упругими свойствами (например, слоистые и армированные материалы, а также большинство материалов естественного происхождения). Возрастание анизотропии сказывается на уменьшении симметрии в упругих свойствах и увеличении числа упругих постоянных, связывающих напряжения и деформации в точке такого тела. В теории упругости анизотропной среды показано, что произвольный анизотропный материал, не обладающий плоскостями симметрии упругих свойств, можно охарактеризовать 21 независимой упругой постоянной [19,20]. Использованную в этом случае форму закона Гука лучше всего продемонстрировать, записав шесть независимых компонент деформаций и напряжений для трехмерного случая в виде векторов j и е и заметив, что наибо-лее общее линейное соотношение между ними представляется в виде матрицы упругих податливостей [С] размером 6x6, откуда  [c.125]

Материал изотропен, т. е. физико-механические свойства его по всем направлениям одинаковы. Материалы, не обладающие указанным свойством, называют анизотропными.  [c.16]

Поляризационно-оптический метод определения напряжений (метод фотоупругости) основан на свойстве некоторых прозрачных изотропных материалов приобретать под- действием нагрузки оптическую анизотропность и свойства двойного преломления световых лучей аналогично некоторым кристаллам.  [c.276]

Механические характеристики тканей определяются, в основном, свойствами текстиля. Ткани являются анизотропными материалами анизотропность их обусловливается технологическими особенностями изготовления текстиля. Вследствие этого при расчете тканевых оболочек учитывается различие в механических характеристиках тканей вдоль куска — по основе (обычно более высокие показатели) и в поперечном направлении — по утку . В отличие от других материалов прочностные характеристики тканей могут относиться и к одному метру ширины вне зависимости от ее толщины. Механические и расчетные характеристики некоторых тканевых материалов, производимых в СССР, приведены в табл. 47. При пользовании этой таблицей следует иметь в виду, что приведенные в ней данные относятся к нормальной (не выше 80%) влажности и эксплуатационной температуре до 40°. Расчетные сопротивления капроновых тка-ней, находящихся в условиях повышенной влажности (90% и более), следует снижать яа 10% [21]. Расчетные сопротивления и модули упругости для некоторых тканей, находящихся в условиях повышенной температуры (свыше 40°), снижаются путем введения коэффициентов 0,7 для капроновых тканей и 0,8 для природных тканей.  [c.261]

Материалы, изучаемые в курсе Сопротивление материалов , рассматриваются как изотропные, т. е. обладающие одинаковыми свойствами во всех направлениях. К изотропным материалам можно отнести металлы, бетон, некоторые виды пластмасс. Материалы, имеющие различные свойства в разных направлениях, называются анизотропными. К таким материалам относятся дерево, армированные пластики. Чем однороднее материал и чем ближе его свойства по всем направлениям, тем лучше совпадают результаты теоретических и опытных исследований.  [c.10]

Французский ученый Пуассон ввел этот коэффициент в сопротивление материалов и теорию упругости в начале 30-х годов прошлого столетия. Коэффициент Пуассона, как и модуль упругости, является характеристикой упругих свойств материала. Для изотропных материалов модуль упругости и коэффициент Пуассона постоянны для любых направлений действия растягивающих и сжимающих сил. Для анизотропных материалов, у которых свойства в разных направлениях различны, устанавливается ряд значений этих постоянных, в зависимости от направлений. К таким материалам относятся древесина, слоистые пластмассы, камни, ткани.  [c.70]

Для некоторых материалов (дерево и др.) это допущение весьма условно, так как их упругие свойства вдоль и поперек волокон различны. Материалы, обладающие различными упругими свойствами по разным направлениям, называются анизотропными  [c.9]

Для материалов с анизотропными механическими свойствами предел прочности определяют отдельно на образцах, вырезанных вдоль длины и ширины листа.  [c.13]

Наряду с материалами изотропными существуют и анизотропные материалы, т. е. такие, свойства которых в различных направлениях различны. К таким материалам относятся в первую очередь дерево, слоистые пластмассы, некоторые ка.мни, ткани и другие.  [c.39]

Анизотропность (различие свойств вдоль и поперек волокон) у древесины проявляется больше, чем у других строительных материалов. Так, например, прочность при сжатии вдоль волокон в 2— 4 раза больше, чем поперек волокон, а прочность при растяжении поперек волокон составляет примерно 7го—74о от прочности при растяжении вдоль волокон. Прочность древесины в значительной степени зависит от плотности, а также от неоднородности строения, неравномерности расположения волокон, сучковатости, влажности и т. п.  [c.134]

Магнитный метод анализа текстур менее универсален, чем описанные выше. Но он весьма широко используется для многих ферромагнитных материалов, обладающих анизотропией магнитных свойств (трансформаторная и динамная сталь и др.) - Метод основан на том, что образец из магнитно анизотропного материала при намагничивании стремится ориентироваться направлением легкого намагничивания вдоль магнитного поля. При этом создается крутящий момент, величина которого зависит от положения образца. Определение этого крутящего момента при разных положениях образца и позволяет судить об анизотропии магнитных свойств (константе магнитной анизотропии). Метод весьма эффективен для анализа рассеяния текстуры, однако не позволяет расшифровывать кристаллографические па-раметры текстуры. Благодаря своей простоте метод широко используется как контрольный в производственных условиях. В сочетании с рентгеновским методом может быть полезен и для анализа текстур.  [c.274]


ГТри больших нагрузках реальные материалы обнаруживают свойства пластичности, выражающиеся в отклонении от линейности и возникновении остаточных деформаций после устранения нагрузки. Таким образом, реальные конструкционные материалы являются упругопластическими. Экспериментачьно показано, что разгрузка всегда происходит упруго. Это явление обычно называют законом упрутой разгрузки. Диаграмма деформирования приведена на рис. 9.2. Для обоснования справедливости применения анализа явлений в пределах бесконечно малых объемов и последующего интегрирования все материалы считаются однородной, изотропной, сплошной средой. Изотропными являются материалы, имеющие одинаковые свойства по всем направлениям. Так называемые анизотропные материалы рассматриваются в специальных курсах. Примеры анизотропньгх материалов древесина, материалы на ее основе, пластики на основе различных тканей и волокон и др. При решении задач методами сопротивления ма-териазюв определяют напряжения, возникающие при приложении внешних нагрузок. Материалы, таким образом, находятся в естественном состоянии.  [c.149]

Высокие жесткость и прочность армирующих волокон, составляющие основу прочности и жесткости композиционных материалов, реализуются лишь в случае их определенного расположения по отношению к действующему полю напряжений (действующей нагрузке). Вследствие большого разнообразия нагрузок применяются различные схемы укладки арматуры. Варьируя направлением укладки слоев, можно получить слоистые материалы с различной ориентацией армирующих волокон, обладающие в плоскости укладки изотропными и анизотропными свойствами. Именно в возможности придания материалу оптимальной для каждого частного случая анизотропии заключается главное преимущество волокнистых композиционных материалов [44]. В зависимости от ориентации армирующих волокон в плоскости укладки слоистые структуры можно подразделить на следующие основные группы однонаправленные, ортогонально-армированные с переменным углом укладки волокон по толщине, перекрестно-армированные и хаотически-армированные.  [c.5]

Никитенко А. Ф., Ц в е л о д у б И. Ю. О ползучести анизотропных материалов с разными свойствами на растяжение и сжатие.— В кн. Динамика сплошной среды. Вып. 43.— Новосибирск Ин-т гидродинамики СО АН СССР, 1979, с. 69—78.  [c.323]

Некоторые из перечисленных в табл. 10.1 материалов используются в современных конструкциях так называемых супермаховиков. Особый интерес представляют материалы из волокон — углеволокно, стекловолокно или силикатное волокно, поскольку они обладают анизотропными физическими свойствами. Для таких материалов допустимые растягивающие напряжения, направленные вдоль волокна, на несколько порядков больше, чем допустимые напряжения в поперечном направлении.  [c.248]

Учитывая, что монокристаллы можно получать с заданной кристаллографической ориентацией, а от последней вследствие анизотропности зависят свойства, можно говорить, с определенным ограничением, что монокристаллы — это материалы с наперед проектируемыми свойствами. Отмеченное ограничение состоит в том, что выбор осуществляется из заранее известного дискретного мпожества.  [c.331]

Натуральная древесина, несмотря на развитие синтетических материалов и пластмасс, является в зонах благоприятного использования ценным непревзойденным конструкционным материалом по высокой прочности и декоративности, сочетающимся с небольшой плотностью, теплоемкостью, теплопроводностью, электропроводностью. Она хорошо сопротивляется воздействию газов и других агрессивных сред и ртличается хорошей обрабатываемостью и невысокой стоимостью. К недостаткам древесины относятся большая анизотропность механических свойств и большая их изменчивость в зависимости от влажности.  [c.231]

Генерация Р. д. в твердотельных материалах сопровождается изменением их свойств. Так изменяются форма и размеры облучённых образцов (радиац. распухание), причём анизотропный характер этих изменений зависит как от концентрации, так и от конфигурации Р. д. Изменяются механич. свойства твёрдых тел, что проявляется в увеличении предела текучести пластичных материалов, век-ром повышения модуля упругости, ускорении ползучести. Накопление Р. д. изменяет степень упорядоченности структуры сплавов и ускоряет фазовые переходы. Электропроводность облучённых тел изменяется прежде всего нз-за появления заряж. дефектов. Особенно сильно это проявляется в полупроводниках, где Р. д. не только выступают как центры рассеяния носителей заряда, но способны изменить концентрацию н природу осн. носителей заряда. Нейтральные дефекты также влияют на проводимость, т. к. являются центрами рассеяния носителей. Для оптич. свойств характерно появление новых областей поглощения в разл. спектральных областях (см. Центры окраски). Специфически влияет облучение на поверхность твёрдых тел, не только вызывая образование иных, не свойственных объёму дефектных структур, но и изменяя физ.-хим. свойства поверхности (напр., кинетику окисления и адсорбции).  [c.204]

Учет специфики анизотропных и деформатнвных свойств, неразрывно связанных с самой структурой композиционных материалов, потребовал развития теоретических подходов к расчету многослойных оболочек. Обзоры основных направлений н результатов исследований по этим проблемам можно найтн в работах [I, 18].  [c.122]

Изотропные материалы имеют одинаковые свойства во всех направлениях, анизотропные - разные. К числ> изотропных композитов относятся псевдосплавы и хаотично армированные материалы. Упрочнение хаотично армированных композитов осуществляется короткими (дискретными) частицами игольчатой формы, ориентированными в пространстве случайным образом. В качестве таких частиц используют отрезки волокон или нитевидные кристаллы (усы), при этом композиты получаются квазиизотропными, т е. анизотропными в микрообъемах, но изотропными в макрообъеме всего изделия.  [c.9]

Форма ячейки. Все сотовые структуры являются анизотропными 11 их свойства в выбранном направлении должны соответствовать прилагаемым нагрузкам. На рис. 21.7 показаны типич-лые различия в прочностных характеристиках при сдвиге в направлениях L и W. Для большинства сотовых структур наблюдаются очень малые потерн соотношения прочность/масса при формовании или отверждении материала. Обладание такими св011сгвамн является явным преимуществом при производстве методом отверждения структур большой толщины. Форма ячейки может иметь различнукз конфигурацию в зависимости от производителей этих заполнителей композитов. Для некоторых материалов, например для алюминия, форма вольно или невольно может быть изменена при переработке.  [c.341]

Условие начала пластичности для анизотропного материала. Как уже отмечалось, поликристаллические металлы на макроскопическом уровне изотропны. Однако в результате обработки давлением (прокатка, ковка) поликристаллические металлы могут стать анизотропными материалами, у которых свойства зависят от направления. Это так называемая деформационная анизотропия в отличие от начальной анизотропии кристалла. Одной из причин деформационной аиизотропии является появление текстуры, т. е. системы закономерно ориентированных кристаллографических элементов большинства кристаллитов (зерен), составляющих деформируемое тело. Анизотропией свойств обладают и слоистые металлы, например биметаллы, а также композитные материалы, производство и применение которых непрерывно увеличивается.  [c.200]

В рамках рассматриваемого варианта теории ползучести анизотропных разносопротивляющихся сред возможны различные модификации физических уравнений, позволяющие как уточнить известные процессы деформирования, так и учесть новые эффекты. В частности, выбор линейного инварианта s (IV.36) в виде s = b,/s,-, позволяет описать поведение материалов, обладающих асимметрией свойств относительно знака сдвиговых напряжений. Можно, например, положив коэффициенты b j равными нулю в выражении р = Ъцрц, получить модель материала, процесс разупрочнения которого не зависит от вида напряженного состояния. Приняв равными единице коэффициенты ацы в выражении для р , придем к модели изотропного разупрочняющегося материала. По аналогии с выражениями для (IV.38) или Д (ро) (IV.39) можно сконструировать и /j оц), считая, что скорости упрочнения обладают потенциалом. Возможны и другие варианты соотношений, вытекающие из выражений (IV.42), описывающих свойства конкретных материалов.  [c.110]


Рассматривается некоторое идеализированное тело, обладающее свойствами идеальной упругости, изотропии или ортотропии. Изотропными называются однородные тела, у которых физико-механические свойства одинаковы по всем направлениям (в инженерных расчетах к таким материалам можно отнести сталь, стекло, бетон) ортотропные — это такие тела, у которых физико-механические свойства одинаковы для определенных направлений (например, проволока). Анизотропные материалы (ие обладающие свойствами изотропности или ортотропности) в сопротивлении материалов не рассматриваются.  [c.4]

Аналогичная зависимость наблюдается и при растяжении, где предел прочности линейно зависит от плотности графита в интервале 1,56—1,84 г см и изменяется от 200 до 360 кГ1см [28]. Температурная зависимость предела прочности показывает, что с повышением температуры до 2400—2500° С величина его возрастает, а при более высоких температурах — резко падает. Различные исследователи выдвигают свои гипотезы, объясняющие такое аномальное поведение графита (и некоторых других материалов) при повышении температуры. Мрозовский [108] объясняет эту зависимость тем, что снимаются остаточные напряжения, возникшие вследствие анизотропного изменения размеров отдельных кристаллитов при охлаждении графита после графитизации. Эта теория была дополнена Хо-вом, который, основываясь на различных величинах коэффициента термического расширения по осям сна, показывает возможность заклинивания кристаллитов при повышении температуры. В этом случае структура становится более жесткой. По мнению авторов работ [89, 90], повышение прочности может быть обусловлено дегазацией графита (удалением сорбированных газов) при повышенных температурах. Мартенс и др. [91] связывают повышение прочности с проявлением ресурса пластичности графита при повышении температуры, в связи с чем снижается влияние внутренних напряжений, возникающих в местах структурных неоднородностей, в том числе в порах. Грин [92] объясняет изменение механических свойств графита по аналогии с полимерными материалами, у которых таким же образом возрастает модуль упругости и кривая напряже-  [c.47]

Пьезоэлектрические материалы анизотропны. Для описания их пьезоэлектрических, диэлектрических и упругих свойств необходимо знание набора компонент пьезомодулей у, упругих констант Зц и диэлектрических проницаемостей е , по разным направлениям. Такой набор может быть представлен в виде матрицы 9x9, столбцы которой связаны с механическими и электрическилга напряжениями, а строки — с деформацией и поляризацией  [c.232]

Большинство твердых материалов способно выдерживать, не разрушаясь, очень высокое всестороннее давление, если только оно действует равномерно со всех сторон, как это, например, имеет место в твердом теле, окруженном жидкостью. Материалы с неплотной или пористой структурой, как, например, дерево, под действием высокого гидростатического давления подвергаются значительной остаточной деформации, и после снятия давления их объем остается уменьшенным. (Достаточно спрессованное таким образом дерево теряет свойство пловучести в воде.) С другой стороны, в кристаллических телах (металлах, твердых плотных горных породах) в тех же условиях наблюдается лишь упругая деформация весьма небольшой величины. В отношении сжимаемости плотные поликристаллические и аморфные тела ведут себя подобно жидкостям. Они упруго ся имаемы и способны противостоять высоким гидростатическим давлениям, достигающим почти любой технически возможной величины, не претерпевая остаточной деформации. Зато в твердых материалах меньшей плотности всестороннее давление вызывает явные признаки разрушения, как, например, в подвергнутых гидростатическому давлению цилиндрических образцах мрамора (Карман), а также в образцах дерева, которые при сжатии принимают неправильную форму вследствие своей клеточной анизотропной структуры (А. Фёппль). Если, подвергая такие материалы высоким всесторонним давлениям, не принять особых мер предосторожности, то передающая давление жидкость проникает в материал через его мельчайшие щели и трещинки. По наблюдениям Т. Паултера, стеклянные шары, подвергнутые в течение короткого периода времени очень высокому всестороннему давлению жидкости, разрушаются не прп максимальном давлении, а либо в течение периода уменьшения давления, либо же вскоре после быстрого снятия последнего. Ничтожные количества жидкости, способные проникнуть через невидимые мельчайшие поверхностные трещины в наружных слоях шаров, не успевают достаточно быстро вытечь из этих трещин при внезапном снижении давления. Поэтому при снятии внешнего давления в жидкости, попавшей в узкие трещины или каналы поверхностного слоя, возникает градиент давления, который и приводит к высокой местной концентрации растягивающих напряжений, создающих опасность разрыва стекла. В сравнительно более слабых материалах, как мрамор и песчаник, внешнее давление жидкости приводит к образованию трещин, в результате чего может произойти разрушение структуры этих пород.  [c.199]


Смотреть страницы где упоминается термин Материалы анизотропные — Свойства свойства : [c.82]    [c.5]   
Несущая способность и расчеты деталей машин на прочность Изд3 (1975) -- [ c.417 ]



ПОИСК



Анизотропность

Материал анизотропный

Материалы анизотропные метастабильные — Свойства

Материалы анизотропные — Свойства

Материалы анизотропные — Свойства

О свойствах соотношений закона анизотропного упрочнения пластического материала

Свойства материалов



© 2025 Mash-xxl.info Реклама на сайте