Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Анизотропность механических свойств

Испытания на коррозионную усталость, как известно, характеризуются неизбежным разбросом результатов эксперимента. Разброс вызывается погрешностью машин, условиями проведения опыта, точностью и технологией изготовления образцов и др., а также неоднородностью структуры и химического состава испытываемого материала. (наличие неметаллических включений, микротрещин, химическая неоднородность, анизотропность механических свойств и пр.). Если влияние первой группы факторов можно значительно уменьшить усовершенствованием оборудования и методики испытаний, то рассеяние экспериментальных данных, вызванное неоднородностью материала, связано со статистической природой коррозионно-усталостного разрушения и его нельзя полностью устранить. Его необходимо учитывать при испытаниях достаточно большого числа образцов, а результаты опыта желательно обрабатывать с помощью методов математической статистики.  [c.32]


Наполнитель определяет структуру материала и влияет на анизотропность механических свойств.  [c.309]

Аристов В. С. Анизотропность механических свойств металла швов при сварке толстых листов аустенитными электродами. Автоматическая сварка , 1960, № 9.  [c.97]

Наличие в стали примесей вызывает различные ликвационные явления. В местах скопления примесей металл становится менее прочным. Неравномерное распределение примесей приводит к анизотропности механических свойств стали в отдельных микрообъемах. Вследствие этого их разрушение при микроударном воздействии происходит неравномерно.  [c.126]

Для материалов с анизотропными механическими свойствами предел прочности определяют отдельно на образцах, вырезанных вдоль длины и ширины листа.  [c.13]

Из рассмотренных данных следует, что отжиг прокатанной рессорной кремнистой стали при 1050° С приводит к существенному улучшению некоторых свойств повышается ударная вязкость, уменьшается анизотропность механических свойств, устраняется "слоистость излома и, что особенно важно, значительно повышается усталостная прочность 113]. Итак, гомогенизации следует подвергать не прокатанную полосу, а промежуточную заготовку (штангу), чтобы последующей прокаткой измельчить зерно, что даст значительное улучшение всех прочностных и пластических свойств. При отжиге сталь необходимо защищать от обезуглероживания.  [c.249]

Анизотропность реальных материалов в большой степени зависит от технологии их производства и обработки. Практически все материалы со слоистой и волокнистой структурой обладают анизотропией свойств текстурованные поликристаллические тела, волокнистые и пленочные материалы, железобетон, пластмассы со слоистыми наполнителями и т. п. Литые сплавы обычно обладают невысокой степенью анизотропии механических свойств. С увеличением степени обжатия при обработке давлением анизотропность механических свойств сплавов увеличивается.  [c.67]

Никель благоприятно влияет на анизотропность механических свойств чугуна в отливках с различной толщиной стенки (фиг. 77, 78), так как он, с одной стороны, уменьшает склонность к отбелу и, с другой стороны, тормозит выпадение феррита.  [c.123]

Неоднородность строения дерева в различных направлениях по отношению ч древесным волокнам (вдоль или поперек) является причиной анизотропности механических свойств.  [c.473]

Прокатка делает сталь анизотропной. Прокатанная сталь имеет характерную структуру, у которой зерна, вытянутые в направлении прокатки, образуют своего рода волокна. Механические свойства стали в направлении прокатки существенно отличаются от таковых в направлении, перпендикулярном к ней. Образцы, вырезанные таким образом, что их ось совпадает с направлением прокатки, оказываются более прочными, чем те из них, ось которых перпендикулярна к направлению прокатки.  [c.112]


Материал изотропен, т. е. физико-механические свойства одинаковы по всем направлениям. Таким образом, выделенный из сплощной среды элемент не зависит от ориентации относительно выбранной системы координат. Металлы благодаря своей мелкозернистой структуре считаются изотропными. Но есть много не-изотропных — анизотропных — материалов. К ним относятся древесина, ткани, фанера, многие пластмассы. Однако в сопротив-  [c.153]

Мы уже ознакомились с важнейшими фактами, характеризующими распространение света в кристаллах. Основное отличие кристаллической среды от сред, подобных стеклу или воде, состоит в явлении двойного лучепреломления, обусловленном, как мы видели, различием скорости распространения света в кристалле для двух световых волн, поляризованных во взаимно перпендикулярных плоскостях. С этой особенностью связано и различие в скорости распространения света по разным направлениям в кристалле, т. е. оптическая анизотропия кристаллической среды. Обычно, если среда анизотропна по отношению к одному какому-либо ее свойству, то она анизотропна и по другим свойствам. Однако можно указать случаи, когда среда может рассматриваться как изотропная в одном классе явлений и оказывается анизотропной в другом. Так, кристалл каменной соли обнаруживает изотропию оптических свойств, но механические свойства его вдоль ребра и диагонали различны.  [c.495]

Объяснение всех механических свойств тел, как изотропных, так и анизотропных, следует искать в природе и характере тех сил, которые действуют между отдельными атомами и молекулами твердого тела. Это, конечно, задача атомной и молекулярной физики, а не механики, и мы ее не будем касаться. Мы ограничимся только самыми общими соображениями о связи между свойствами изотропных и анизотропных тел.  [c.476]

Материал тела считается изотропным, т. е. его механические свойства в каждой точке одинаковы во всех направлениях. В противном случае материал называется анизотропным. В некоторых разделах курса делаются отступления от этого допущения, что будет оговариваться особо.  [c.8]

Все другие механические свойства в большей или меньшей степени структурно, чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения обычно в продольном направлении относительно оси деформации полуфабриката выше, чем в поперечном. Однако для некоторых, например титановых, сплавов характерна обратная анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов  [c.46]

Тела называются изотропными в точке, если механические свойства не зависят от выбора направления, исходящего из этой точки. Если механические свойства зависят от направления, то тела называются анизотропными, а в частном случае — ортотропными, если в точке есть взаимно ортогональные плоскости, относительно которых механические свойства симметричны. Примером орто-  [c.19]

Многие деформируемые тела, используемые как материалы в инженерном деле, не обладают изотропией механических свойств. Из числа анизотропных тел особо широко распространены орто-тропные тела, для которых в каждой точке существуют три взаимно ортогональные плоскости симметрии механических свойств.  [c.149]

Свойство тел деформироваться под нагрузкой, а затем восстанавливать свою форму и размеры называется упругостью. Исчезающая часть деформации называется упругой, а ту часть, которая остается, называют остаточной. Если механические свойства во всех направлениях одинаковы, материал называется изотропным. У анизотропных материалов свойства в различных направлениях разные. К числу таких материалов относится, например, дерево.  [c.4]

В Предыдущих опытах наблюдалось поведение изотропных материалов при статическом сжатии. Древесина является анизотропным материалом, т. е. ее механические свойства в разных направлениях различны. Согласно ГОСТу 11492—65 испытание на сжатие древесины проводится вдоль и поперек волокон (рис. 52 и 53).  [c.99]

На основе теорий, рассматривающих механическое поведение композита в целом, можно получить близкое к действительности описание связи напряжений с деформациями в композиционном материале в том случае, когда отношение наибольшего характерного размера структуры к наименьшему характерному размеру неоднородности деформации достаточно мало по сравнению с единицей. Самые элементарные сведения о механическом поведении композита в целом находятся путем осреднения перемещений, напряжений и деформаций по представительному объему. Простейшая теория для таких осредненных параметров связывает средние напряжения со средними деформациями при помощи так называемых эффективных упругих постоянных. В этой теории, которая называется теорией эффективных модулей , механические свойства композита отождествляются со свойствами некоторой однородной, но, вообще говоря, анизотропной среды, эффективные модули которой определяются через упругие модули компонентов композита и параметры, характеризующие его структуру.  [c.355]


Как только станут доступны воспроизводимые образцы композитов, основное внимание следует уделить влиянию условий эксплуатации материала на сплошность поверхности раздела и механические свойства, зависящие от состояния поверхности раздела. Подобно тому как это было при разработке композитов А1 — В, такие исследования очень важны для установления точных параметров технологии изготовления материала, с тем чтобы получить именно то особое состояние поверхности раздела, которое необходимо для конкретных условий применения материала. Если композит предназначается, например, для лопаток газовых турбин, то конструктор должен установить реальные требования к этим анизотропным материалам с ограниченной пластичностью таким образом, чтобы применительно к условиям использования можно было эффективно воздействовать на свойства, зависящие от со стояния поверхности раздела, например, на поперечную прочность В данной главе показано, что в настоящее время известны основ ные принципы, с помощью которых может быть изменена струк тура поверхности раздела в металлах, армированных окислами Однако из-за отсутствия образцов с воспроизводимыми характе ристиками влияние изменения состава и структуры поверхности раздела на механические свойства композитов практически не изучено.  [c.351]

Возможность проведения таких микроструктурных исследований реализована в установке ИМАШ-11 (см. гл. III). На этой установке изучали особенности изменения структуры образцов на примере термостойких ориентированных стеклопластиков АГ-4С и ЭФ-С в зависимости от интенсивности и продолжительности теплового воздействия при одностороннем программированном нагреве. Стеклопластик ЭФ-С представляет собой анизотропный прессованный волокнистый материал, связующим в котором служит эпоксидно-фе-нольная смола, а наполнителем являются стеклонити. Стеклопластик АГ-4С— это анизотропный прессованный волокнистый материал на основе модифицированной фенольно-формальдегидной смолы. Выбор стеклопластиков ЭФ-С и АГ-4С для исследования обусловлен тем, что уже накоплены основные данные о механических свойствах этих эффективных и широко применяемых в высокотемпературной технике материалов при их статических испытаниях в условиях нормальных температур и изотермических режимах нагрева [77 114] .  [c.263]

К группе трансверсально-изотропных композиционных материалов относят материалы, физико-механические свойства которых изотропны в плоскости листа и анизотропны по толщине. Напряженно-деформированное состояние трансверсально-изотропной среды описывается пятью упругими постоянными. Характерной особенностью данных материалов является то, что армирование производится укладкой изотропных или анизотропных слоев.  [c.6]

Ортотропные материалы получают укладкой анизотропных элементарных слоев, в качестве которых используют шпон, ткани, первичную нить, ленты, жгуты. Характерной особенностью этих материалов являются их высокие удельные физико-механические свойства в заданных направлениях. Из них изготавливают корпусные конструкции, трубы, оболочки, резервуары, гребные винты различные профильные элементы. Изделия из ортотропных материалов получают методами горячего, контактного или вакуумного формования, намотки, протяжки.  [c.6]

Современные композиционные анизотропные материалы получили широкое распространение в ответственных силовых и несущих элементах конструкций, в деталях и изделиях. Это объясняется высокой удельной прочностью и жесткостью, возможностью проектирования материала с заданными физическими и механическими свойствами. Отличительной особенностью данных материалов является анизотропия физико-механических характеристик, причем степень анизотропии зависит от структуры материала и может быть получена соответствующей укладкой армирующего наполнителя. Это дает возможность конструктору проектировать не только детали и изделия, но и сам материал.  [c.19]

Механические свойства 4 — 301 — Влияние анизотропности 4 — 309 — Влияние надреза 4 — 309 — Влияние температуры 4 — 304,306 — Испытания 4 — 311  [c.196]

Механические свойства кованого и штампованного металла характеризуются анизотропностью — вдоль направления волокна они, как правило, выше, чем поперёк. При этом как продольные, так и поперечные свойства с увеличением степени уковки изменяются [10]. Следовательно, при установлении технологии и для оценки качества металла, подвергнутого определённой степени деформации, необходимо руководствоваться данными О влиянии степени уковки на про-  [c.283]

Как уже отмечалось, на механические свойства пластмасс большое влияние оказывают наполнители. Наиболее механически прочными являются пластики с волокнистыми наполнителями в виде параллельно расположенных ориентированных волокон или нитей (так называемые слоисто-волокнистые анизотропные материалы типа СВАМ) в виде параллельных или перекрещивающихся листовых волокнистых материалов (стеклянные, хлопчатобумажные, асбестовые ткани, древесный шпон, бумага), а также в виде хаотично расположенных волокон, нитей, кусочков пряжи и тканей (стекло-асбо- хлопчатобумажные волокниты, прессматериалы из пропитанных кусочков различных тканей и древесного шпона).  [c.390]

Все слоистые пластики являются отличными диэлектриками, обладают высокими механической прочностью, химической стойкостью, почти не склонны к пластическим деформациям, очень чувствительны к ударам, кроме стеклотекстолита и стеклопластиков СВАМ характеризуются неоднородностью и анизотропностью (механические характеристики различны во взаимно перпендикулярных направлениях). Свойства этой группы пластмасс во многом зависят от наполнителя, его подготовки и соотношения наполнителя и связующего.  [c.266]

Натуральная древесина, несмотря на развитие синтетических материалов и пластмасс, является в зонах благоприятного использования ценным непревзойденным конструкционным материалом по высокой прочности и декоративности, сочетающимся с небольшой плотностью, теплоемкостью, теплопроводностью, электропроводностью. Она хорошо сопротивляется воздействию газов и других агрессивных сред и ртличается хорошей обрабатываемостью и невысокой стоимостью. К недостаткам древесины относятся большая анизотропность механических свойств и большая их изменчивость в зависимости от влажности.  [c.231]


Анизотропность механических свойств многопроходных однофазных аустенитных сварных швов типа X22HI5  [c.240]

Осадкой называют кузчечную операцию, при которой высота заготовки уменьшается, а поперечное сечение увеличивается. Осадка осуществляется на плоских бойках (фиг. 40,а), имеющих хвостовик 1 для крепления к молоту. При осадке заготовку устанавливают нижним торцом на боек (фиг. 40,6) и подвергают обжатию ударами или нажатием пресса. Осадка применяется как для изменения формы, так и для уменьшения векториальности (анизотропности) механических свойств поковки (например, при изготовлении зубчатых колес, фланцев, дисков). Длина исходной заготовки при осадке не должна превышать трех толщин (диаметров) во избежание продольного изгиба заготовки в начале осадки.  [c.108]

Среда, физические свойства которой зависят от направления, называется анизотроппой. Анизотропия среды имеет место по отногиеиию к каким-либо свойствам среды — механическим, оптическим и т. д. Обычно анизотропные по отношению к какому-либо свойству тела являются анизотропными н по другим свойствам. Однако есть и исключения. Например, оптически изотропный кристалл каменной соли, где в узлах кубической решетки расположены отрицательные ионы хлора и положительные ионы на 1 рпя, обладает анизотропией по механическим свойствам — его мехаин-ческие свойства вдоль ребра и диагонали различны.  [c.246]

Так как наряду с деформацией удлинения могут быть и деформации сдвигов, то, считая деформации малыми, нужно принять, что сдвигающие напряжения не влияют на деформации удлинения и, наоборот, нормальные напряжения не влияют на деформации сдвигов. Высказанные утверждения не справедливы в случае анизотропного материала, но они верны для материалов изотропных и ортотропных, механические свойства которых симметричны относительно трех взаимно ортогональных плоскостей, а оси координат Oj yz при этом должны быть совмещены с линиями пересечения плоскостей симметрии механических свойств.  [c.144]

В настоящее время накоплен большой опыт по испытанию композиционных материалов. Созданы различные разрушающие [78] и неразрушающие 46] методы определения механических свойств. При корректной постановке эксперимента и иравилышм выборе геометрических размеров образцов разрушающие м неразрушающие методы позволяют получать весьма близкие ио значениям механические характеристики на некоторых тниах анизотропных материалов 46]. Необоснованный выбор схемы нагружения и параметров образца может привести к несопоставимым значениям характеристик, полученных на одних и тех же материалах одними и темн же разрушающими методами 112, 26, 84, 93]. Это объясняется прежде всего тем, что не все разрушающие методы достаточно изучены . многие методы разработаны для изучения свойств изотропных материалов, позже перенесены на исследования пластмасс, а затем распространены на композиционные материалы. Естественно, они не учитывают особенностей структуры и свойств композиционных материалов, что приводит к результатам, которые невозможно повторить, а часто соио-ставнть даже при таких видах нагружения, как испытание на растяжение, сжатие п изгиб. Испытание на сдвиг композиционных материалов изучено мало [78, 119].  [c.26]

Ввиду анизотропности древесины изучение ее механических свойств при сдвиге производится при различных направлениях действия сдвигающего усилия относительно родичных слоев. Согласно ГОСТу 11496—65 регламентируются следующие виды испытания древесины  [c.111]

Таким образом, облучение AI2O3 вызывает некоторое анизотропное расширение, но не воздействует значительно на стабильность размеров, что иллюстрируется уменьшением плотности менее чем на 1% после облучения высокими интегральными потоками нейтронов при комнатных температурах. Механические свойства AI2O3 существенно не меняются при облучении интегральным потоком тепловых нейтронов вплоть до 1,6 10 нейт,рон/см при 50° С. Тепловые и электрические свойства изменяются наиболее сильно как теплопроводность, так и удельное электросопротивление при облучении заметно уменьшаются. Во многих случаях изменения электрических свойств, видимо, недостаточно существенны, что позволит применять AI2O3 как изоляционный материал в радиационном поле.  [c.152]

Теория наибольших нормальных деформаций Сен-Венана была распространена на анизотропные материалы в работах [17—19]. При этом предполагалось, что исчерпание несущей способности однонаправленного композита происходит тогда, когда любая из компонент деформации в направлении главных осей достигает предельного значения. Первоначальные формулировки предполагали линейность диаграмм деформирования материала слоя до разрушения, следовательно, жесткость и податливость слоистого композита в процессе нагружения оставалась неизменной. Дальнейшее совершенствование указанного подхода позволило учесть и нелинейность механических свойств композита [19].  [c.143]

Предварительные замечания. Древесина как конструкционный материал, пожалуй, в большей мере, чем какой-либо другой, имеет свойства, присущие только ему. Первым долгом отметим огромное разнообразие пород дерева, порождающее исключительную по широте гамму физических и механических свойств древесины. Свойства древесины каждой породы при прочих равных условиях существенно зависят от влажности ее. Говоря о механических свойствах древесины, нельзя не принимать во внимание большое количество всевозможных дефектов и отклонений от нормальных условий роста дерева, снижающих прочность древесины. К числу таких относятся сучки, неправильное расположение волокон, крень (эксцентричное расположение сердцевины), тяювость (связанность волокон в определенной области лишь между собой), Смятия (от чрезмерного искривления растущего дерева), плесень и деревоокрашивающие грибы, гниль, повреждение насекомыми, смоляные кармашки, минеральные пятна (образуются после продалбливания древесины птицами, вследствие окисления и других химических процессов). Причиной дефектов может явиться и неправильно-выполняемая сушка древесины. Наконец, весьма большое значение для свойств древесины имеет направление прикладываемой силы (по отношению к волокнам и годичным кольцам) при определении этих свойств — древесина существенно анизотропна. Вот почему изменчивость физико-механических свойств древесины очень велика — показатели свойств имеют разброс гораздо больший, чем у любых других материалов.  [c.370]

Применение последующей пластической деформации в результате создания ориеатированной структуры может обеспечить значительное анизотропное упрочнение при сохранении специальных-физико-химических или физ Гко-механических свойств сплава.  [c.41]

При решении вопроса о применении отдельных видов пластиков следует учитывать их специфические особенности. Так например, слоистые пластики (текстолит, гетинакс, дельта-древесина или лигнофоль и др.) анизотропны, т. е. имеют различные свойства в различных направлениях, зависящие главным образом от расположения слоёв и соотношения наполнителя и смолы в готовом материале. Высокое сопротивление воздшштвию вибрационных нагрузок хотя и выгодно отличает пластмассы от металлов, однако повышенная хрупкость (и не всегда достаточная прочность) прессованных деталей из порошкообразных пластмасс ограничивает их применение в силовых элементах конструкций. Термореактивные, а в особенности термопластичные материалы подвержены пластической деформации (текучести на холоду) под влиянием постоянно действующих нагрузок физико-механические свойства большинства пластиков сильно зависят от температуры и влаасности среды, в которых должен работать материал размеры деталей из пластмасс могут изменяться не только под влиянием постоянно действующих нагрузок и окружающей среды, но и в результате изменений, происходящих в процессе старения.  [c.293]


Точность обработки деревянных изделий зависит а) от метода обработки и точности технических средств, используемых при выполнении операций (станок и его наладка, режущий инструмент, приспособления) б) от размеров и формы обрабатываемой детали в) от механических свойств древесины, в основном определяемых породой и влажностью. Точность обработки древесины фактически не превышает 0,05 мм. Это объясняется её формоизменяемостью под воздействием переменной влажности окружающего воздуха, а также низкой поверхностной твёрдостью материала и анизотропностью его строения. Однако указанная предельная точность может быть достигнута только специальной подгонкой размеров в серийном и массовом производстве она неприемлема. Здесь принимается средняя экономическая точность, т. е. те пределы точности, которых возможно достигнуть при рентабельной стоимости обработки древесины на оборудовании, эксплоатируемом в средних производственных условиях.  [c.665]


Смотреть страницы где упоминается термин Анизотропность механических свойств : [c.361]    [c.719]    [c.732]    [c.667]    [c.106]    [c.20]    [c.238]    [c.265]   
Прикладная механика твердого деформируемого тела Том 1 (1975) -- [ c.230 , c.252 , c.327 , c.330 , c.332 , c.343 , c.353 , c.370 , c.374 ]



ПОИСК



Анизотропность



© 2025 Mash-xxl.info Реклама на сайте