Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Медные сплавы коррозия в агрессивных среда

Кроме рассмотренных покрытий сплавами на медной основе, нашли применение покрытия и другими сплавами. Таковы свинцово-оловянные покрытия. Они используются в качестве антифрикционных, защитных покрытий от коррозии в агрессивных средах и для облегчения пайки или спекания деталей.  [c.189]

Скорость обесцинкования латуней связана с качеством металла и агрессивностью рабочей среды. Об основных факторах коррозии конденсаторных труб и мерах ее предупреждения с паровой стороны сказано в 2.3. Охлаждающая вода, проходящая через водяные камеры и трубки конденсатора, по отношению к углеродистой стали и медным сплавам также является агрессивной. В природных водах, используемых для охлаждения конденсаторов, содержатся такие коррозионно-активные вещества, как О2, СО2, соли, и, кроме того, грубодисперсные примеси, в частности частицы песка и золы, обладающие абразивными свойствами. При больших скоростях движения воды (2—2,5 м/с) твердые частицы, царапая и истирая поверхность металла, вызывают механическое повреждение защитных пленок и тем самым облегчают протекание коррозии. В промышленных районах в источники водоснабжения часто попадают со сточными водами аммиак, нитриты, сероводород и другие стимуляторы коррозии. В процессе стабилизационной обработки охлаждающей воды (см. 10.3), например при рекарбонизации и подкислении, возможно понижение pH до значений, меньших 7.  [c.83]


Существенное влияние а развитие коррозии латуней и других медных сплавов оказывает температура. Об этом свидетельствуют данные сравнительных коррозионных испытаний конструкционных материалов в воде применительно к условия м работы конденсаторов турбин с температурой охлаждающей воды 20 и сетевых подогревателей— с температурой 60° С. В сетевых подогревателях за годичный срок пребывания образцов в агрессивной среде с солесодержанием 600 и концентрацией хлоридов 35 мг/кг скорость коррозии для сплава Л-68 составила 0,03, а для сплава МНЖ-5-1—0,01 г/(м -ч) в охлаждающей воде подобного же состава — соответственно 0,01 и 0,03 г/(м2.ч).  [c.221]

Медные сплавы могут контактировать друг с другом в любых атмосферах, поскольку между ними существует незначительная разность потенциалов. В сильно агрессивных средах следует проявлять лишь некоторую осторожность при контактировании меди с латунями, содержащими большое количество цинка. Латуни типа 60—40 являются анодами в паре с медью. При этом в морской воде усиливается коррозия латуни в основном за счет обесцинкования последней.  [c.142]

Это весьма важное наблюдение, так как оно подсказывает два пути предотвращения коррозии можно замедлить либо реакцию окисления, либо реакцию восстановления. При прочих равных условиях эффект будет одинаковым. Например,ингибиторы,как это показано в разд. 3.4, могут замедлять либо анодную, либо катодную реакции или в некоторых случаях и ту и другую. Обеспечение баланса.между этими двумя реакциями также важно при любом анализе проблемы коррозии. Коррозия металла связана с существованием легко восстанавливаемых частиц, и их удаление может существенно снизить агрессивность среды. Например, медные сплавы обычно не выделяют водорода и обладают существенной стойкостью к кислотам, содержащим в качестве окислителя только ионы водорода.  [c.81]

Чтобы в условиях аммиачной обработки уменьшить коррозию медных сплавов, необходимо поддерживать высокую воздушную плотность аппаратуры, находящейся под разрежением, а также регулировать дозировку аммиака. По действующим нормам содержание кислорода в турбинном конденсате должно быть менее 20 мкг/кг концентрация ННз в питательной воде барабанных котлов не должна превышать ЮОО мкг/кг. В паровом пространстве конденсаторов турбин наиболее агрессивная среда создается в воздухоохладительной секции, так как здесь концентрации Ог и ЫНз выше, чем в других зонах. С целью увеличения срока службы трубок этих секций рекомендуется выполнять их из нержавеющей стали.  [c.72]


Основное преимущество медных сплавов — низкий коэффициент трения (что делает особенно рациональным применением их в парах скольжения), сочетающийся для многих сплавов с высокой пластичностью и хорошей стойкостью против коррозии в ряде агрессивных сред и хорошей электропроводностью.  [c.424]

Титановые сплавы практически превосходят нержавеющие стали, медные и никелевые сплавы в стойкости против коррозии в морской воде, в том числе и при длительной работе, а также в таких агрессивных средах, как влажный хлор, горячая азотная кислота высокой концентрации (и некоторых других). Коррозионная стойкость титановых сплавов дополнительно возрастает при введении очень малых количеств палладия.  [c.435]

Коррозионное разрушение является результатом взаимодействия металла с внешней средой и интенсивность его развития зависит от свойств самого металла, а также от природы окружающей среды. Большинство металлов, будучи стойкими в одних средах, довольно легко разрушается при взаимодействии с другими средами. Например, медные сплавы устойчивы во влажной атмосфере, но сильно подвергаются коррозии, если в атмосфере присутствует даже незначительное количество аммиака тантал и титан при комнатных температурах весьма стойки во многих агрессивных средах, но приобретают высокую химическую активность при нагреве их выше 600° С.  [c.323]

Детали, работающие в морской воде (лопасти гребных винтов, валы и др.), детали агрегатов, работающих в агрессивных средах Коррозия Ручная, полуавтоматическая, автоматическая 06X18Н9Т, бронзы, латуни, медно-никелевые сплавы 27 — 30, 80-140 НВ  [c.424]

В последние годы большое внимание было уделено теоретическим вопросам коррозионного растрескивания. Среди медных сплавов в наибольшей степени исследовано поведение латуней в аммиачных средах. Хотя было показано, что растрескивание возможно и в контакте с некоторыми другими агрессивными средами, но воздействие аммиака остается наиболее сильным. Согласно предположению Эванса [132], это связано, во-первых, со слабой коррозионной активностью аммиака, вызывающего существенную коррозию только таких участков, как границы зерен или другие несовершенства, а во-вторых, с тем, что аммиак предотвращает скопление ионов меди в возникающих трещинах, образуя с медью стабильные комплексы [Си(ЫНз)4] +. Тип растрескивания (межкристаллитное или транскристаллитное) может меняться при изменении состава латуни или природы окружающей среды [175]. Матссон [176] установил, что при погружении в аммиачные растворы с различными значениями pH самое быстрое растрескивание напряженных латуней наблюдается при 7,1—7,3, и в этих же условиях иа поверхности металла возникают черные пленки. Роль тусклых поверхностных пленок изучалась и в дальнейшем [177]. Механизм коррозионного растрескивания медных сплавов обсуждался в многочисленных исследованиях посвященных электрохимическим [178] и металлургическим [179] аспектам проблемы. Статьи, посвященные этому явлению, включены в материалы нескольких симпозиумов и конференций по коррозии металлов под напряжением [159,  [c.106]

В первом случае после действия агрессивной среды взвешивают образцы, обрав все продукты коррозии во-втором — необходимо все прод укты коррозии удалить. Если не удается собрать все продукты коррозии или они удалены не полностью, образец протирают до полного удаления продуктов коррозии. Если их при этом также не удается удалить, то прибегают к травлению поверхности металла такими реагентами, которые растворяют только продукты коррозии, но не металл. В частности, с поверхности алюминия продукты коррозии можно удалять 5%- или 6%-иым раствором азотной кислоты. Для стали можно рекомендовать 10%-иый раствор винно- или лимоннокислого аммония, нейтрализованного аммиаком (температура раствора 25— 100° С) для свинца, цинка и оцинкованной стали — иасьпценный раствор уксуснокислого аммония, нейтрализованный аммиаком для меди и медных сплавов—5%-ный раствор серной кислоты, имеюгций температуру 10—20° С.  [c.337]


Так, при одинаковой прочности (например, 0 =450 МПа) изделия из титановых сплавов в 1,8 раза легче стальных. У этих сплавов хорошие жаропрочные свойства и отсутствует хладноломкость, в том числе при очень низких температурах. Титановые сплавы практически превосходят нержавеющие стали, медные и никелевые сплавы в стойкости против коррозии в морской воде, а также в таких агрессивных средах, как влажный хлор, горячая азотная кислота высокой концентрации и др. Титановые сплавы немагнитны, обладают низкой теплопроводностью и малым коэффициентом линейного расширения. Вместе с тем они уступают сталям, особенно с повышенным содержанием углерода, в твердости и износостойкости. Титановые сплавы удовлетворительно обра-батьгоаются резанием, могут свариваться.  [c.197]

Контакт с медью или со сплавами меди не всегда приводит к повреждениям, особенно при условиях слабо агрессивной среды (мягкая водопроводная вода без углекислого газа, воздух с незначительной относительной влажностью). Если же среда является сильно агрессивной (морская вода, соляные растворы, кислые растворы), то железо растворяется интенсивнее. Медь является катодом для деполяризации кислорода или для других процессов восстановлергия, например ионов железа (III) или меди (II). В теплофикационных установках наблюдаются повреждения, когда медные нагревательные змеевики соединяются с железными кипятильниками или с железными (а также с оцинкованными) трубами. Повреждения вследствие непосредственного контакта ограничиваются зонами мест соединения. Но значительную коррозию может вызвать медь, перешедшая в раствор и осадившаяся на поверхности железных труб [23]. Так, в воде, содержащей 4,1 мг/л углекислого газа, можно обнаружить около 0,3 мг/л ионов меди. Это количество уже является вредным оно может вызвать осаждение меди на железе и резко усилить коррозию железа. В то же время в воде, содержащей 1,1 мг/л СОг, медь появляется в количестве не более 0,03 мг/л. Эта концентрация не является опасной [24]. >  [c.572]

Коррозионное разрушение всегда начинается с поверхности металла. В большинстве случаев оно сопровождается изменением внешнего видя поверхности. Металл, взаимодействуя с агрессивной средой, образует химические соединения, которые или остаются на поверхностн металла или частично переходят во внешнюю среду. Образуюидаеся соединения (продукты коррозии) силыю изменяют поверхность металла Коричневая ржавчина на стали, зеленая пленка на меди и медных сплавах, белый налет на алюминии и т. п.—все это прод кты коррозии.  [c.15]


Смотреть страницы где упоминается термин Медные сплавы коррозия в агрессивных среда : [c.387]    [c.79]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.139 ]



ПОИСК



1---медные

Агрессивные коррозия

Агрессивные сплавов

Агрессивные среды

Агрессивные среды сплавы ill

Коррозия в агрессивных средах

Коррозия и сплавы

Коррозия медных сплавов

Медные коррозия

С агрессивная

Сплавы медные

Среды агрессивность



© 2025 Mash-xxl.info Реклама на сайте