Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гальванические покрытия стали

Термическое сопротивление межконтактной среды R =h j, + a-h j, 2X наиболее эффективно снижается при укладке в зазор олова, при гальваническом покрытии стали медью и при давлении 3—5 МПа в 8—10 раз.  [c.247]

Термическая и термохимическая обработки поверхности стали, а также гальванические покрытия стали другими металлами, применяемые для повышения износостойкости и коррозионной стойкости, а также для декоративных целей, изменяют физико-химические и механические свойства поверхности и относительно тонкого приповерхностного слоя стали. Этот слой изменяется, претерпевая фазовые превращения либо в связи с появлением твердых растворов, благодаря диффузии инородных элементов, либо в связи с появлением на поверхности химических соединений стали. При гальванопокрытиях поверхностный слой изделия образует уже новые металлы. Все эти процессы образования новых приповерхностных слоев сопровождаются возникновением остаточных напряжений, изменением механических свойств стали и его активности в физико-химических процессах. Хотя указанные виды обработки поверхности изменяют только тонкий приповерхностный слой стали, однако они значительно влияют на ее прочность в коррозионных средах.  [c.149]


Однако гальванические покрытия могут защищать металл от растрескивания не только в том случае, когда они выполняют функции анода по отнощению к защищаемой основе. Об этом свидетельствуют данные Уоррена и Бекмана [160], которые установили, что гальваническое покрытие стали никелем (0,125 мм) защищает металл от растрескивания во влажном сероводороде, в отличие от покрытия кадмием, цинком, свинцом и хромом.  [c.171]

Пайка алюминия со сталью (в том числе с нержавеющей) значительно облегчается при предварительном лужении стали оловом, цинковыми, алюминиевыми припоями, эвтектикой Л1 — 51 — Си, эвтектическим силумином, алюминием (136, 247] и особенно при предварительном гальваническом покрытии стали серебром [134], активирующим растекание этих припоев по стали. При лужении сталь подогревают до 100—-150°С, а алюминий или припой перегревают выше температуры их полного расплавления на 150—170° С. Применяются флюсы из хлористых и фтористых солей (типа 34А, ФВЗ и др.). Алюминий и его сплавы паяют со сталью, предварительно покрытой гальваническим серебром, алюминиевыми припоями с соответствующими флюсами [134]. Учитывая возможность образования и рост хрупких интерметаллидов между железом и алюминием, время пайки алю-  [c.297]

В паяных соединениях титана со сталью без промежуточных покрытий при удовлетворительной заполняемости зазора серебряными припоями не образуется гладкая вогнутая галтель из-за различных смачивания и растекания припоев по титану и по стали возможно, это обусловлено и низким поверхностным натяжением титана. Для устранения этого дефекта (так как граница паяного шва становится концентратором напряжений) рекомендуется предварительно облуживать стальные детали тем же припоем с использованием соответствующего флюса. Особенно сильно этот дефект выражен при пайке титана с нержавеющей сталью. Предварительное гальваническое покрытие стали никелем, кобальтом или медью значительно улучшает смачивание деталей и способствует образованию плавной галтели.  [c.351]

Когда гальванические покрытия стали наносить также и на сильно нагружаемые конструкционные детали, то (см. стр. 92) возникли вопросы последующей термической обработки, а также дегазации, удаления водорода, отжига, отпуска, облагораживания , снятия внутренних напряжений.  [c.178]

Никель в чистом виде находит широкое применение в качестве защитного гальванического покрытия для изделий из железа и стали в целях повышения их коррозионной стойкости в атмосферных условиях. Основное применение никель находит в качестве легирующего элемента для изготовления различных марок высококачественных нержавеющих сталей.  [c.255]


Описаны современные методы наводороживания и водородной хрупкости сталей при осаждении гальванических покрытий. Обобщены представления о механизмах процесса абсорбции водорода катодной основой при формировании электролитического осадка. Дан детальный анализ методов снижения и устранения наводороживания и водородной хрупкости сталей при гальванической обработке. Приведены практические рекомендации по контролю процесса наводороживания и водородной хрупкости высокопрочных и пружинных сталей.  [c.318]

Для изготовления электрических разъемов часто используют медные или бронзовые сплавы с гальваническим покрытием (для контактных штырей и гнезд), такие изоляционные материалы, как пластмассы, керамика или стекло, внешние оболочки или экраны из стали, латуни или алюминия. Так как хорошо известно, что электрические характеристики облученных металлов изменяются относительно мало, то изучение влияния излучения на металлические детали разъемов представляет второстепенный интерес. Наибольший интерес представляет влияние излучения на изоляторы и их характеристики. Встречаются два тина повреждений, и оба относятся к диэлектрическим характеристикам изолирующих прокладок. Повреждение, при котором изменяются физические характеристики изоляционных материалов, может привести к механическому ослаблению опоры штырей, о чем можно судить по развитию хрупкости органических материалов. Постоянная и (или) временная потеря сопротивления изоляции между контактами или по корпусу является повреждением другого типа. Таким повреждениям в настоящее время уделяется все большее внимание, о чем можно судить по экспериментальным попыткам изучить влияние излучения на изоляторы.  [c.417]

Испытание пригодно для гальванических покрытий кадмием, кобальтом, медью или бронзой, свинцом, никелем, серебром, оловом или сплавом олово—цинк и цинком на алюминии, меди или латуни, стали и цинке. При нанесении многослойных систем можно успешно определить толщину отдельных слоев покрытий, применяя струю соответствующего раствора на той же площади поверхности образца. Время, необходимое для определения толщины отдельного слоя покрытия,— — 2 мин общая точность испытаний составляет 15%.  [c.142]

Из гальванических покрытий без дополнительной защиты в атмосфере субтропиков могут обеспечить защиту стали в течение 2—4 лет медь, никель и хром толщиной соответственно 20 15—20 0,5—1,5 мкм. Трехслойное покрытие медь, никель хром толщиной соответственно 30 15 1 мкм также обеспечивают защиту стали. Однослойное покрытие хромом при толщине 30 мкм хорошо защищает сталь в течение 3 лет.  [c.94]

Нитевидная коррозия. Коррозия этого типа обычно развивается под органическими, а иногда и под гальваническими покрытиями со слабой адгезией в результате действия влажного воздуха на полированные стальные поверхности. Пораженная поверхность приобретает мозаичный вид. Высоколегированные стали не склонны к нитевидной коррозии. Причиной возникновения нитевидной коррозии являются шлаковые вклЮ чения или механическое повреждение лакового слоя.  [c.93]

В гальванотехнике электрополировку стали применяют значительно реже, чем раньше, в связи с получением блестящих гальванических покрытий непосредственно в процессе электроосаждения.  [c.127]

Прибор конструкции Ю. А. Выгоды. Прибор предназначен для измерения толщины различных гальванических покрытий таких, как цинк на стали, кадмий иа стали, хром на латуни, серебро на латуни, олово на стали, хром на стали.  [c.73]

Большинство применяемых в настоящее время покрытий являются индивидуальными металлами, хотя, как известно, сплавы обладают свойствами, сильно отличающимися от свойств исходных металлов (твердость, коррозионная стойкость идр.). Поэтому неудивительно, что в течение последних лет все чаще стали применять гальванические покрытия электролитическими сплавами [57 ]. Одновременно обращает на себя внимание тот факт, что все большее внимание стало уделяться влиянию гальванопокрытий на механические свойства основного материала детали, особенно в связи с расширяющимся применением сплавов с высокой прочностью.  [c.124]


В данной статье отражены результаты некоторых работ, посвященных гальваническим покрытиям сплавом медь-олово, покрытиям кадмием и хромом по технологии, обеспечивающей минимальное наводороживание высокопрочных сталей, покрытиям серебром, устраняющим возможность охрупчивания тонкостенных латунных деталей, и никелевым покрытиям с малыми внутренними напряжениями.  [c.124]

С целью экономии Ni и Сг при нанесении декоративных покрытий на детали автомобилей, велосипедов и т. п. стали применять гальванические покрытия сурьмой.  [c.222]

Углеродистые стали 0,3-0,5% С Гальваническое покрытие 107 1500 0,35-0,45 0,005—0.015  [c.515]

Детали штампованные и точеные под гальванические покрытия Сталь, латунь До 0,15 Пескоструйный, гидропескоструйный Пескоструйные полуавтоматические аппараты Г идропескоструй-ные установки  [c.104]

Пайка титана и его сплавов со сталью (углеродистой и нержавеющей) осложняется в связи с тем, что титан обладает относительно малыми коэффициентами линейного расширения и теплопроводности кроме того, смачиваемость его припоями отличается от смачиваемости других металлов и сплавов. В связи с этим при пайке со сталью необходимо иметь большие зазоры, чем при пайке титана с титаном. Даже при удовлетворительной заполняемости зазора припоем в разнородных соединениях не образуется гладкой вогнутой галтели. Предварительное гальваническое покрытие стали никелем, кобальтом или медью, а также горячее лужение значительно улучшают смачиваемость стальной детали. Предел прочности соединения титана с нержавеющей сталью при применении серебряного припоя составляет 3—8 кг1мм .  [c.101]

Нанесение па поверхность стальных изделий гальванических покрытий или травление в кислотах для очистки ее связано с опасностью пасыи1еиия стали водородом, что также вызывает охрупчивание. Р сли водород находится в поверхностном слое, то он может быть удален в результате нагрева при 150—180 С, лучше всего в вакууме (I—К) Па). Наводораживание и охрупчивание возможно и при работе с га.гп в контакте с водородом, особенно при высоком давлении. Широко применяемые в последние годы выплавка или разливка в [ акууме значительно уменьшают содержание водорода и л,ругпх газов в стали  [c.131]

При использовании высокопрочных сталей (ЗОХГС, ЗОХГСНА и др.) необходимо учптыват ,, что опн чувств1ггелыпл к концентраторам напряжений, особенно после обычной закалки и отпуска, охрупчиванию в результате насыщения в0Д0рг)Д0м (например, при гальванических покрытиях или травлении) и коррозии под напряжением.  [c.270]

Достоинство покрытий протекторного типа (например, цинка или кадмия, электроосажденных на сталь) в том, что основной металл катодно защищен и на тех участках, где на покрытии есть дефекты. В одном из наиболее ранних исследований коррозионной усталости, проведенном Б. Хэйгом в 1916 г. в связи с преждевременным разрушением стальных буксировочных тросов, контактирующих с морской водой, было показано, что гальванические покрытия заметно увеличивают срок службы тросов [77]. Цинковые покрытия по алюминию эффективны, в отличие от кадмиевых  [c.161]

Рис. 13.2. Подтравливание никелевого гальванического покрытия на стали в результате контактной коррозии в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие циклического нагружения при испьгганиях на коррозионную усталость [2а] Рис. 13.2. Подтравливание никелевого <a href="/info/48864">гальванического покрытия</a> на стали в результате <a href="/info/39675">контактной коррозии</a> в 3 % растворе Na l (ХЮО). Трещина образовалась вследствие <a href="/info/28783">циклического нагружения</a> при испьгганиях на коррозионную усталость [2а]
А.Т. Баграмяном и В.Н. Кудрявцевым была вьщвинута гипотеза, согласно которой у Zr, V, Nb, Ti, Та возможно проявление геттерирую-щих свойств на границе раздела сталь — гальваническое покрытие по отношению к водороду, растворимому в кристаллической решетке стали.  [c.105]

Для защиты крепежных деталей из углеродиетых сталей от коррозии на них наноеят окисные пленки или гальванические покрытия (цинковое, кадмиевое, фосфатное, медное и др.) толщиной 6—12 мкм.  [c.504]

Для ряда покрытий сжимающие остаточные напряжения имеют максимум у линии раздела защитный слой — подложка (рис. 15, б, слева). Такая эпюра напряжений может иметь мёсто при насыщении углеродистых сталей некарбидообразующими элементами, оттесняющими углерод из зоны насыщения в глубь основного металла, а также при получении защитных покрытий гальванотермическим способом. При диффузионном отжиге деталей с гальваническими покрытиями, металл которых способен диффундировать в сталь, на границе раздела покрытие—подложка будет возникать диффузионный слой, обладающий большим удельным объемом, чем основной металл покрытия, что вызовет в этом месте появление сжимающих напряжений.  [c.75]

Кудрявцеве. Н., ПеданК-С. Наводороживание и водородная хрупкость сталей при осаждении гальванических покрытий. — 15 л. — 3 р.  [c.318]

Хотя никель корродирует в активной области с образованием ионов Ni2+, эта реакция требует гораздо более высокого активационного перенапряжения, чем анодное растворение таких обратимых металлов, как Си и Zn. Однако для никеля перенапряжение значительно уменьшается, когда в растворе присутствуют ионы сульфидов. Это явление учитывается при производстве электролитических никелевых анодов, используемых для гальванического никелирования. Аноды получают в никелевой ванне, содержащей органическое сернистое соединение, из которого определенное количество серы (0,02%) выпадает в осадок. Такие аноды разрушаются довольно равномерно по сравнению с анодами, не содержащими серы, и при более отрицательном коррозионном потенциале. Аналогичным образом происходит осаждение блестящего гальванического покрытия в ванне с органическими сернистыми соединениями, которые используются как выравниватели и блескообразова-тели. Осадки, содержащие серу, являются более активными электрохимически и поэтому имеют при той же плотности тока более отрицательный потенциал, чем матовый осадок никеля, получаемый в простой ванне Ватта. Это явление используется для защиты стали двухслойным никелевым покрытием.  [c.40]


Углеродистые стали, находившиеся в контакте с алюминиевыми сплавами, защищенные кадмиевым покрытием с последующим хроматирова-нием, дали удовлетворительные результаты. Однако при переменном воздействии морской воды в атмосфере гальваническое покрытие оказалось непригодным. В этом случае положительные результаты получались с комбинированным покрытием (гальваническое и лакокрасочное).  [c.86]

Под водородной усталостью понимается процесс усталостного разрушения в средах, разупрочняющее воздействие которых сводится в основном к водородному охрупчиванию сталей. На-водороживание металла происходит в результате коррозионного процесса с водородной деполяризацией или же при катодной защите конструкции, когда на ее поверхности в результате интенсивного катодного процесса восстанавливается водород. На практике водородная усталость проявляется при катодной защите различных сооружений и конструкций, при использовании деталей, подвергнутых ранее наводороживающей обработке (кислотная очистка травлением, нанесение гальванических покрытий), при зксплуагашш емкостей в газообразных средах, содержащих водород. Водородная усталость реализуется также в кислых средах [17,18].  [c.50]

Хромовое гальваническое покрытие поиижает примерно на 9% коррозионную усталостную прочность углеродистой стали в пресной воде и на 13% в 3%-ном растворе Na l. Медное покрытие в два раза понижает коррозионную усталостную прочность в пресной и соленой воде, а кадмиевое покрытие не влияет на прочность в пресной воде, но в соленой воде повышает ее на 76%. Наиболее хорошие результаты дает цинковое покрытие в пресной воде оно повышает коррозионную усталостную прочность в 1,5 раза, а в соленой воде в 2,5 раза, так как в этих и многих других средах цинковое покрытие является анодным по отношению к стали.  [c.102]

Сверкающий радиатор автом обиля. Хром защищает и укращает его. Нанесенный на сталь методом гальваностегии, он накрепко приварился к металлу. В связи с простотой технологии и возможностью нанесения на изделия сложной конфигурации гальванические покрытия заслуживают особого внимания.  [c.136]

Гальванические покрытия на основе никеля получают включением в него порошков вольфрама и молибдена и последующим отжигом [1, с. 59]. В результате отжига других электролитических композиций, таких, как Ni— Сг (порошок) и Fe—Сг (порошок), получаются покрытия типа нержавеющей стали. При этом диффузия порошков протекает сравнительно легко из-за малых размеров частиц d —5 mikm).  [c.115]

Различные условия травления в смеси НС1 и HNO3 (1 3) в горячей кипящей HNO3 (50%-ной) в НС1 в NaOH (10%-ной)—не оказали существенного влияния на прочность волокон бора. Более заметно было влияние плотности тока на сцепление волокон с матрицей оно было максимальным при i k=540 А/м . Прочность сцепления определялась вытаскиванием волокон из матрицы и составляла максимально 1500—2200 МПа, т. е. была близка к прочности сцепления гальванических покрытий с нержавеющей сталью.  [c.234]

Цинк. Хотя ЦИНК используется в основном в виде гальванического покрытия для защиты стали от коррозии в морской атмосфере, интересно исследовать и коррозионное поведение самого цинка. В течение первых лет экспозиции в морской атмосфере коррозия цинка постепенно замедляется, затем происходит с определенной стационарной скоростью. Например, после 10- и 20-летней экспозиции в Ла-Джолле (Калифорния) стационарная скорость атмосферной коррозии прокатанных образцов составила 1,75 мкм/год [122]. При испытаниях в Ки-Уэсте (Флорида) установившаяся скорость коррозии была еще меньше — 0,56 мкм/год. В табл. 65 представлены результаты коррозионных испытаний, проведенных в четырех разных местах. В слабо агрессивной сельской атмосфере Стейт-Колледжа (Пенсильвания) скорость коррозии цинка оказалась вдвое выше, чем в Ки-Уэсте, но в полтора раза меньше, чем в Ла-Джолле.  [c.165]

Хотя ЦИНК корродирует в морской воде обычно с меньшей средней скоростью, чем железо, он не применяется в качестве конструкционного металла в условиях погружения как из-за плохих физических свойств, так и из-за склонности к местной коррозии [46]. Основное применение цинка — протекторы для защиты погружаемых конструкций и защитные гальванические покрытия на стали. Трубопроводы из оцинкованной стали используются на кораблях в пожарных системах перекачки морско й воды. Высокая коррозионная стойкость таких труб связана, несомненно, с ограниченной концентрацией кислорода в заполняющей их стоячей воде.  [c.167]

Метод становится особенно эффективным, если через ванну пропускают ток так, чтобы изделие при токе 3—6 в и плотности 5 попеременно являлось анодом и катодом. На поверхности изделия, служащего анодом, энергично окисляется даже графит. При этом частично окисляется и поверхность металла. Но когда в следующий интервал времени изделие будет являться катодом, поверхность раскислится и в результате получится очень чистая поверхность металла не только стали, но и чугуна. Считают, что этим путём можно поверхность чугуна подготовить для нанесения гальванических покрытий.  [c.56]

А.В.Рябченков [20] показал, что многие гальванические покрытия снижают выносливость среднеуглеродистой стали в воздухе на 10—35 %. Хромирование отрицательно влияет на сопротивление усталости стали не только в воздухе, но и в такой агрессивной среде, как 3 %-ный раствор Na I. Только в 0,004 %-ном растворе Na I бьто получено несущественное повышение коррозионной выносливости нормализованной стали 30. Гальваническое хромирование, независимо от методов и режимов его осуществления, не обеспечивает заметного повышения сопротивления коррозионно-усталостному разрушению из-за высокой пористости покрытий.  [c.181]

Покрытие цинком вызывает появление малых остаточных напряжений в приповерхностном слое изделия, причемг цинк во всех средах ано-ден по отношению к углеродистой стали. Это делает покрытие цинком наиболее действенным способом повышения коррозионно-усталостной прочности стали. Гальваническое покрытие кадмием дает меньший эффект защиты, так как кадмий только в некоторых коррозионных средах аноден по отношению к стали, например, в 3 %-ном растворе Na I, в других же средах он либо имеет тот же потенциал, что и сталь (например, в пресной воде), либо является катодом.  [c.187]

ПСр ЗКд — для пайки меди, медных сплавов и сталей по свежеианесенному медному гальваническому покрытию толщиной но менее 10 мкм.  [c.176]

NiAs и др. Распространённость в земной коре 0,020/q. При получении никеля из руды приходится предварительно отделять его от железа, потом от меди и лишь затем выделять металл путём восстановления. Чистый никель получается электролитическим путём. Способ Монда получения никеля основан на образовании тетракарбонила Ni( O)4 и его разложении. Никель используется для гальванического покрытия им металлических изделий, приготовления сплавов (нейзильбер, константан и другие специальные стали) и т. д. В табл. 47 приведены свойства некоторых соединений кобальта.  [c.367]

Оценка прирабатываемости покрытий. Способность к приработке тонких гальванических покрытий возможно оценить на машине трения АЕ-5. Так, например, была произведена оценка способности к приработке пористого хрома в зависимости от характера пористости. Испытывались три стальных цилиндрических образца из стали 40ХНМА с твердостью HR -32, диаметром рабочей части 2,5 мм при трении о стальные кольца, покрытые хромом с различной сеткой пористости.  [c.59]



Смотреть страницы где упоминается термин Гальванические покрытия стали : [c.89]    [c.275]    [c.149]    [c.251]    [c.150]    [c.40]    [c.94]    [c.34]   
Конструкционные материалы Энциклопедия (1965) -- [ c.229 ]



ПОИСК



АЛФАВИТНО стали —см. Воронение стали, Гальванические покрытия стали, Лакокрасочные

Гальванический цех

Осаждение гальванических покрытий на хромистые и хромоникелевые стали

Покрытия гальванические

Покрытия гальванические — ем. Гальванические покрытия

Твердость гальванических покрытий стали после закалки

Твердость гальванических покрытий стали — Зависимость от температуры отпуска



© 2025 Mash-xxl.info Реклама на сайте