Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Защитные покрытия гальванические

Коррозионную стойкость детали восстанавливают нанесением защитных покрытий (гальванических или лакокрасочных).  [c.34]

Получение защитных покрытий гальваническим путем имеет большие преимущества. Защитное металлическое покрытие получается высокой чистоты и равномерной толщины толщину слоя можно регулировать в определенных пределах.  [c.160]

Метод определения кинетики развития коррозионно-усталостных трещин в образцах с защитными покрытиями [100] основан на том, что при нарушении сплошности покрытия в системе возникает гальванический ток, по изменению величины которого можно судить  [c.249]


Есть основание полагать, что защитное действие гальванических покрытий обусловлено, в первую очередь, возникновением  [c.117]

Защитные покрытия в основном подразделяются на две группы — неметаллические и металлические. В свою очередь неметаллические покрытия бывают органическими (лаковые, битумные, пластмассовые, эпоксидные, резиновые и др.) и неорганическими (цементные, асбоцементные, окисные, силикатные, фосфатные, сульфидные и др.). Часто в защитных системах применяют комбинации из органических и неорганических покрытий, например фосфатирование перед нанесением лакокрасочного покрытия для улучшения адгезии органического покрытия и одновременно его защитной способности. Металлические покрытия отличаются от органических тем, что они непроницаемы для коррозионной среды. Однако в них имеются дефекты — поры, царапины, посторонние включения и др., которые создают предпосылку для коррозионного воздействия на основной металл. При наличии пор в коррозионном покрытии коррозионное действие агрессивной среды зависит от электрохимического поведения обоих металлов — основного и металла покрытия. По этому признаку покрытия делятся на катодные и анодные. По отношению к стали, например, цинковое покрытие является анодным, а медное — катодным, т. е. цинковое покрытие оказывает защитное действие по отношению к стали, но при этом само разрушается, а медное покрытие в результате гальванического действия повышает скорость коррозионного разрушения стали.  [c.35]

На Турбо- и котлостроительных заводах расход тепла на отопление и вентиляцию составляет в среднем 75— 90% общего расхода. Расход тепла на технологические нужды составляет 10—20% от максимально-часового. Наибольшими потребителями тепла для технологических нужд являются кузнечно-термические, гальванические процессы, процессы сушки и защитных покрытий. Теплоносителем для технологических нужд и горячего водоснабжения является пар давлением 0,5—0,8 МПа. Число часов использования максимума тепловой нагрузки в год для технологических нужд относительно низкое и составляет 1200—2800.  [c.34]

Чтобы замедлить или предотвратить ускоренное разрушение, связанное с образованием гальванической пары, следует соблюдать определенные правила. Во-первых, следует рассмотреть возможность разорвать электрическую цепь, поместив в месте соединения двух металлов изолирующую прокладку. Во-вторых, если надежную изоляцию осуществить невозможно, на катод следует нанести непроводящее защитное покрытие. Ни при каких обстоятельствах не следует наносить покрытие только на анод. Любой дефект или нарушение сплошности покрытия приведут в этом случае к тому, что вся поверхность катода окажется замкнутой на маленькую площадь материала анода, скорость растворения станет крайне высокой.  [c.25]


Антикоррозионные покрытия. В широком смысле к антикоррозионным покрытиям относятся все защитные покрытия лакокрасочные металлические, наносимые горячим способом, гальваническим методом, напылением (металлизацией) и др. пленки на основе смазок силикатные эмали окисные и другие пленки и т. д. Здесь описаны лишь некоторые специальные композиции, применяемые в качестве антикоррозионных покрытий.  [c.224]

Поверхности изделий, не подлежащие азотированию, покрывают защитными пленками (гальваническое покрытие оловом, медью и цинком или цинком с последующей обмазкой жидким стеклом).  [c.236]

Материалы деталей силовых цилиндров должны быть антикоррозионными или иметь защитные покрытия. Для защиты от коррозии применяют гальванические или лакокрасочные покрытия. Основные сведения по защитным покрытиям приведены в табл. 129, 130.  [c.186]

Выпускаемый металлический кадмий используется большей частью для нанесения защитных покрытий на железо и сталь и, в значительно меньшей степени, на медь 150]. Несмотря на сходство свойств цинка и кадмия, кадмий значительно легче дает ровные и гладкие покрытия, которые обладают большим сопротивлением к атмосферной и гальванической коррозии, чем соответствующие цинковые покрытия. Кроме того, кадмий устойчив к действию щелочей, в то время как цинк разъедается щелочными растворами. Цинк и кадмий не особенно устойчивы к действию кислот.  [c.275]

Винипласт хорошо поддается механической обработке, легко сваривается, склеивается различными клеями. Материал применяют для облицовки гальванических ванн и в качестве защитного покрытия металлических емкостей.  [c.231]

Известны различные методы повышения коррозионно-усталостной прочности (помимо уменьшения химической агрессии среды) и в первую очередь — общие методы защиты металлов от коррозии — различные защитные покрытия (смазка, покраска, химические и гальванические покрытия, эмалирование и др.).  [c.28]

За прошедшие годы с момента выхода в свет первого издания Руководства произошло значительное усовершенствование методов защиты металлов от коррозии и разработаны новые, бо лее прогрессивные режимы гальванических процессов нанесения защитных покрытий. Поэтому при подготовке рукописи ко второму изданию авторы расширили материал второй и третьей части книги, дополнив их лабораторными работами по осаждению блестящих покрытий, по применению реверсивного тока в гальваностегии и др.  [c.5]

Нарушенные защитные покрытия (оксидные, фосфатные, гальванические и лакокрасочные) возобновляются вновь по соответствующим технологическим инструкциям.  [c.20]

Оседающие на металлических конструкциях твердые частицы могут стать центрами конденсации влаги. Кроме того, они могут вызвать механическое разрушение защитных покрытий и привести к возникновению гальванических элементов.  [c.82]

Использование гальванических покрытий имеет целью защиту металла-основы от коррозии (защитные покрытия). Типичными примерами защитных покрытий являются повсеместно распространенные анодные цинковые и кадмиевые покрытия на стали  [c.209]

Для обеспечения коррозионной стойкости паяных соединений прежде всего необходимо при пайке использовать такие присадочные материалы, которые создавали бы гальваническую пару с основным металлом при минимальной разнице потенциалов. Кроме того, необходимо создавать такие защитные покрытия, которые предотвратили бы возможность контактирования коррозионноактивных сред с паяным соединением. Это особенно важно  [c.255]

По роду защитного действия гальванические покрытия делятся на анодные и катодные. Анодные покрытия защищают металл электрохимически, и при наличии в них пор или оголенных участков происходит разрушение только самого покрытия металл детали не разрушается. Примером анодного покрытия является цинк. Защитное действие катодных покрытий является только механическим и основано на изолировании поверхности детали от коррозионной среды.  [c.644]


Основное значение для защитных свойств гальванических покрытий имеет толщина осажденного слоя металла. Повышение толщины покрытия соответственно увеличивает его коррозионную стойкость. Толщина защитных и защитно-декоративных покрытий, применяемых в оптикомеханической промышленности, приведена в табл. 3.  [c.646]

Фосфатирование известно еще с начала нашего столетия и благодаря техническим усовершенствованиям последних лет оно стало приобретать все большее значение. Фосфатная пленка, сама по себе более устойчивая, чем пленка, получаемая при воронении, после заполнения ее хромпиком или маслом является достаточной защитой от коррозии. Фосфатирование дешевле гальванических покрытий и с успехом применяется для защиты от коррозии глубоко профилированных деталей, которые по своей конфигурации недоступны для нанесения покрытий электрохимическим путем. Наибольшее применение фосфатирование получило в качестве грунта для нанесения лакокрасочных покрытий эти покрытия обладают большей сцепляемостью с фосфатной пленкой, чем с основным металлом. Значительное преимущество фосфатных пленок состоит еще в том, что они препятствуют распространению ржавчины. При различных металлических и неметаллических покрытиях ржавчина, появляясь в каком-либо месте на основном металле, распространяется под всем защитным покрытием, что приводит к его отслаиванию. При фосфатных пленках этот недостаток не наблюдается образовавшаяся ржавчина не распространяется далее, вероятно вследствие того, что фосфатная пленка входит  [c.78]

Защитные покрытия. Здесь следует различать покрытия на органической основе (лакокрасочные и высокополимерные покрытия, смазки) покрытия на неорганической основе (окисные, фосфатные, хроматные и др.) и металлические покрытия различных типов (гальванические, металлизационные, горячие, диффузионные покрытия, плакирование). Защитные покрытия мог т быть различной толщины как очень тонкие защитные слои (адсорбционные пассивные пленки толщиной десятки ангстрем), так и толстые обкладки (футеровки) конструкции защитными материалами (толщиной, превышающей иногда 2—3 см).  [c.154]

В настоящем кратком руководстве нет возможности иллюстрировать все возможные способы защиты металлов от коррозии. Но по приведенным здесь работам можно достаточно детально ознакомиться с методами получения и основными приемами исследования таких защитных покрытий как диффузионные, горячие, гальванические, оксидирование, фосфатирование, анодирование (работы № 21—29). Две работы (№ 30 и 31) посвящены исследованию электрозащиты (катодная электрохимическая защита и применение протекторов), одна работа (№ 32) —важному вопросу исследования понижения скорости коррозии путем применения замедлителей (ингибиторов) коррозии и одна (№ 33) —исследованию защитного действия смазок и лакокрасочных покрытий.  [c.155]

Кроме того, с помощью приборов, основанных на применении таких методов, нельзя определять твердость мелких и тонких предметов (например, фольги, металлических нитей и деталей часовых механизмов). Также нельзя определять твердость незначительных по толщине слоев гальванических и других защитных покрытий, так как применяемые нагрузки слишком велики и наконечник продавливает тонкую деталь или поверхностный слой.  [c.284]

Основное значение для защитных свойств гальванических покрытий имеет толщина осажденного слоя металла. Повьппение толщины покрытий увеличивает их коррозионную стойкость.  [c.675]

Различают следующие методы нанесения защитных покрытий 1) гальванический 2) диффузионный 3) распыление (металлизация) 4) погружение в расплавленный металл (горячий метод) 5) механо-термпческий (плакирование).  [c.318]

Для определения пористости применяют реактив, состоящий из красной кровяной соли, хлористого натрия н желатины. Водным раствором указанных веществ пропитывают полости филь-Tpo. ia.iiiHoii бумаги и во влажном состоянии прикладывают их к образцу, покрытому пленкой. По прошествии 4--5 мин в местах пор появляются резкие синие пятна. Пористость выражают числом пор па 10 гдЕ поверхности испытуемого образца. Пористость опре ц лиется также гальвапометрическим путем. Этот метод основан па появлении гальванических токов, которые возникают вследствие обнажения металла в случае разрушения защитного покрытия. При испытании погружают образец металла с покры-тие 11 угольный. электрод в агрессивную среду и присоединяют.  [c.365]

Цинк применяют для защитных покрытий, в качестве составной части латуней и как материал для электродов гальванических элементов. Кроме того, его используют в фотоэлементах и для металлизации бумаги в металлобумажных конденсаторах. Нанесение метшшического слоя на бумагу производят путем испарения цинка в вакууме при температуре порядка 600°С.  [c.34]

Для ряда покрытий сжимающие остаточные напряжения имеют максимум у линии раздела защитный слой — подложка (рис. 15, б, слева). Такая эпюра напряжений может иметь мёсто при насыщении углеродистых сталей некарбидообразующими элементами, оттесняющими углерод из зоны насыщения в глубь основного металла, а также при получении защитных покрытий гальванотермическим способом. При диффузионном отжиге деталей с гальваническими покрытиями, металл которых способен диффундировать в сталь, на границе раздела покрытие—подложка будет возникать диффузионный слой, обладающий большим удельным объемом, чем основной металл покрытия, что вызовет в этом месте появление сжимающих напряжений.  [c.75]

Цинк — светлый металл, получаемый металлургическими методами и очищаемый электролитически. Цинк марки ЦВ (высокоочн-щенный) содержит не менее 99,99 % Zn и не более 0,01 % примесей (РЬ, Fe, d, Си). При комнатной температуре цинк хрупок при нагреве до 100 °С он становится тягучим и пластичным, а при дальнейшем нагреве (свыше 200 Т) — снова хрупким. Цинк применяется в качестве защитных покрытий, составной части латуней, из него изготовляются электроды гальванических элементов. Кроме того, он пспользуется в фотоэлементах и для металлизации бумаги в малогабаритных металлобумажных конденсаторах. Нанесение металлического слоя на бумагу производят путем испарения цинка в вакууме при температуре 600 °С.  [c.218]


Раарабся-ана упрощенная модель, позволяющая оценивать срок службы подэемньпс трубопроводов. Предполагается, что трубопровод имеет защитное покрытие, в котором возникают круглые дефекты. В местах этих дефектов происходит гальваническая коррозия металла, из которого изготовлен трубопровод, т.е, эти участки являются анодами. Коррозия протекает со 100%-ным выходом по току и скорость коррозии определяется законом Фарадея  [c.44]

Нами исследованы смачиваемость и прилипание стекла к защитным покрытиям на среднеуглеродистой стали, образованным гальваническим хромированием [1], химическим никелирова-  [c.68]

Долговечность защитных покрытий исследовалась при периодическом взаимодействии их с расплавом стекла [10] и оценивалась по изменению толщины. После 60 циклов испытаний толщина гальванически нанесенного хрома уменьшается почти в два раза, а после 100 циклов во многих местах наблюдается полное разрушение покрытия. Диффузионное хромовое покрытие более долговечно. Его толщина уменьшается вдвое после 120 циклов испытаний. Нарушение сплошности покрытия наблюдается после 160—170 циклов, а полное разрушение — после 200 циклов. Покрытие, полученное при карбохромировании, начинает разрушаться после 200 циклов и при 300—350 циклах испытаний разрушается полностью. Диффузионное хромоалитирование и хромо-силицирование не обеспечивают надежной защиты стали в расплаве стекла. После 100—120 циклов испытаний эти покрытия разрушаются полностью.  [c.70]

Несмотря на то что цинк обладает низкой химической устойчивостью, он широко применяется преимущественно в слабокоррозионных средах. Использование цинка и его сплавов основано на их способности образовывать защитные пленки при взаимодействии с коррозионной средой. Цинк непригоден для изготовления химической аппаратуры, но сравнительно хорошо ведет себя в атмосферных условиях и воде. Детали из цинковых сплавов, полученные литьем под давлением и предназначенные для работы в атмосферных условиях, можно дополнительно защитить путем нанесения гальванического покрытия из меди, никеля и хрома. Цинк применяется в качестве защитного покрытия для стальных изделий и для плакирования арматуры.  [c.108]

Покрытия (гальванические, нанесенные методом распыления и др.) 1) защитные антикоррозионные металлопокрытия индием или его сплавами. Сплав Zn—1п — коррозионноустойчивое покрытие по стали 2) деталей, от которых требуются высокие антифрикционные свойства. Например, покрытие высокоответственных подшипников свннцово-серебряно-пндиевым сплавом увеличивает срок их службы в 5 раз. Индиевое покрытие в подшипниках предотвращает эрозию маслом и придает поверхности хорошие смазывающие свойства 3) рабочей поверхности стальных фильер, применяемых в приборостроении при волочении проволоки из А1, при этом поверхность фильер приобретает хорошие смазывающие свойства и увеличивается их срок службы (на 50 %) 4) специальных деталей приборов (как острия выключателей, графитовые щетки и др.), улучшающих контакт и сопротивление износу 5) зеркал и рефлекторов с высокой отражательной способностью.  [c.344]

В практике имели место попытки защитить сплавы от коррозии в контакте с золой, содержащей пятиокись ванадия, путем нанесения защитных покрытий. Исследовались различные гальванические, диффузионные, керамические и металлокерамические покрытия. Гальванические никелевые и хромовые покрытия разрушались быстро. Через несплошности в них проникает жидкая фаза золы, вызывающая окисление под защитной пленкой. Попытки защитить сплав покрытиями из благородных металлов также не дали положительных результатов, так как даже платина не обладает достаточной стойкостью в контакте с пятиокисью ванадия. Более стойкими оказались диффузионные защитные покрытия, получаемые путем силицирова-ния, однако силицированный слой очень хрупок. До настоящего времени не удалось найти покрытие, которое обеспечило бы надежную защиту от коррозии в контакте с пятиокисью ванадия.  [c.67]

Бесфлюсовую низкотемпературную пайку алюминия можно осуществить Б газовых средах без применения защитных покрытий (контактно-реактивным методом). В качестве припоя применяют кремний, медь или серебро, которые наносят на алюминий гальванически, термовакуумным напылением или методом горячего плакирования. Высокое качество паяного соедин ения получают при пайке в вакууме 10 Па и толщине покрытия 10—12 мкм.  [c.266]

На рис. 2 схематически изображены процессы, протекающие на поверхности стали при нарушении сплошности металлизаци-онных и лакокрасочных защитных покрытий. Так как электрохимический потенциал Zn и Л1 более электроотрицателен, чем у стали, то металлизационное покрытие является анодом в образующейся гальванической паре и корродирует раньше, при этом  [c.28]

Не всегда проста осушка металлической поверхности под окраску, в особенности конструкций на открытом воздухе в условиях влажной атмосферы. Большую важность имеет также удаление окалины, которое может представлять определенную трудность. Подвергавшаяся горячей прокатке сталь почти всегда имеет очень плотно сцепленную окалину, которая может остаться даже после травления в конце процесса изготовления сортамента. Окалина будет поглощать влагу, вызывая ухудшение сцепления слоя краски, который будет отлущиваться при взаимодействии окалины с водой, сопровождающемся увеличением объема. Кроме того, окалина на стали состоит из окислов, обладающих известной электронной проводимостью, а поэтому функционирующих в качестве достаточно эффективных катодов, способных стимулировать коррозию на обнаженной части поверхности. В местах поглощения влаги возникают местные гальванические элементы и начинается питтинг. Невзирая на значительные затраты ручного труда, необходимо с особой тщательностью удалять окалину. Для этого чаще всего применяют пескоструйную обработку, обработку струей ингибированной воды высокого давления, а также очистку пламенем. При очистке последним способом окалина после обезжиривания быстро нагревается с таким расчетом, чтобы она в результате сильного расширения при нагревании отслоилась от нижележащего сравнительно холодного металла. Затем без промедления наносится защитное покрытие. Часто используется также выветривание, при котором неокрашенная конструкция выдерживается до шести месяцев на открытом воздухе. Прокатная окалина подвергается изменениям размеров и отслаивается. При этом значительно облегчается последующее ее механическое удаление. Большое значение придается полному удалению окалины. Это наиболее важная операция при окраске, поскольку хорошая подготовка поверхности в сочетании с плохой окраской предпочтительней плохой подготовки при хорошей окраске.  [c.158]

Олово весьма стойко в органических кислотах, хот-я и здесь кислород способен усиливать коррозионное воздействие. Олово стойка во всевозможных водах и особенно в мягких, и дистиллированной воде. Оно достаточно стойко и в воде, содержащей углекислый газ, и в растворах нейтральных солей, например хлоридах или сульфатах. Высокая стойкость олова наблюдается в пищевых средах и различных органических соках. Поэтому, а также вследствие иетоксичности и бесцветности продуктов коррозии,его широко применяют для защитных покрытий в пищевой и консервной промышленности, в домашнем обиходе. Потенциал олова во фруктовых кислотах отрицательнее, чем железа и особенно при отсутствии или недостатке кислорода, что предотвращает образование ржавчины в закрытых консервных банках, несмотря на тонкий слой олова, получаемого при гальваническом лужении, всегда имеющего некоторую пористость. В атмосферных условиях, наоборот, железо более электрохимически отрицательно, и поэтому открытые консервные банки во влажной атмосфере довольно быстро ржавеют.  [c.291]


Защитные металлические покрытия могут получаться различными способами электролитическим (гальванические покрытия), металлизацией (покрытие расплавленным металлом), совместной, прократкой (двухслойные металлы), погружением (горячие покрытия), диффузионным (термодиффузионные покрытия), химическим и контактным. Недостатком всех металлических защитных покрытий является их пористость исключение составляют биметаллы. Покрытия могут быть анодными (цинковые) или катодными (никелевые, медные). Анодные покрытия лучше защищают металл, но только на срок до своего разрушения. Катодные покрытия являются защитными только при условии их сплошности и. отсутствия пор.  [c.134]


Смотреть страницы где упоминается термин Защитные покрытия гальванические : [c.48]    [c.261]    [c.193]    [c.106]    [c.147]    [c.43]    [c.323]    [c.280]    [c.232]   
Коррозия химической аппаратуры и коррозионностойкие материалы (1950) -- [ c.160 ]



ПОИСК



Гальванический цех

Гальваническое осаждение защитных покрытий цинком, кадмием, оловом и свинцом

Защитно-декоративные свойства гальванических и химических покрытий на магниевых сплавах

Покрытие защитное

Покрытия гальванические

Покрытия гальванические — ем. Гальванические покрытия

Розенфельд, Л. В. Фролова. Электрохимический метод определения защитных свойств гальванических покрытий



© 2025 Mash-xxl.info Реклама на сайте