Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Поляризация потенциостатическая

Склонность металлических сплавов к пассивности можно определить, изучив зависимость скорости его коррозионного растворения от потенциала или получив анодную поляризационную кривую (лучше потенциостатическим методом). Основными электрохимическими характеристиками, определяющими пассивируемость металла, как отмечалось, являются потенциал начала пассивации потенциал полной пассивации У . плотность тока анодного пассивирования / и плотность тока растворения в пассивном состоянии . Определив изменение этих характеристик титана при легировании его каким-либо элементом, можно судить о пригодности этого элемента как компонента в коррозионно-стойком сплаве. Таким образом, исследование анодной поляризации потенциостатическим методом и определение зависимостей скорости коррозии от потенциала может служить основой для выбора легирующих компонентов и построения теории коррозионно-стойкого легирования не только применительно к титану, но и к другим металлам, устойчивость которых определяется пассивным состоянием.  [c.145]


Анализ кривых заряжения показывает, что при гальванической анодной поляризации потенциал, приобретаемый сталью, может значительно превысить критическое значение (< ), обычно определяемое потенциостатическим методом, а сталь заметной питтинговой коррозии не подвергается. Активно работающие питтинги на электроде появляются лишь тогда, когда на кривой заряжения исчезают периодические колебания потенциала, что достигается при определенной плотности анодного тока [37].  [c.189]

При непрерывном нагружении для каждого текущего значения степени деформации с увеличением скорости деформации интенсивность механохимического растворения возрастала по закону, близкому к линейному. Это проявлялось в росте деформационного разблагораживания потенциалов активного растворения Аф (см. рис. 26, кривые 1—4) при гальваностатической поляризации (0,75 мА/см ) и увеличении плотностей токов активного растворения и пассивного состояния при потенциостатической поляризации соответственно при —250 мВ и 900 мВ по н. в. э. (рис. 27).  [c.84]

Потенциостатическая стандартизация поверхности электрода заключается в выдержке электрода при определенном потенциале в электролите. В отличие от метода катодного восстановления потенциалы выбираются в различных областях в зависимости от того, какую поверхность хотят получить, Потенциостатическая поляризация применяется при исследованиях металла в пассивном состоянии. Продолжительность выдержки в этом случае определяется по моменту стабилизации анодного тока.  [c.31]

Тормо к<е ние ПСР легированных латуней проявляется и в том случае, когда исходные рабочие растворы не содержат ионов меди [126, 137].- Так, на оловянистой р-латуни в условиях потенциостатической поляризации после начального СР процесс переходит на стадию равномерного растворения. При том регистрируемый анодный ток не только не возрастает, НО даже несколько уменьшается со временем (рис. 4.22). На простой же латуни вслед за начальным СР цинка наблюдается кратковременное равномерное растворение, сменяющееся обратным осаждением меди. Последнее сопровождается быстрым ростом анодного тока (см. рис. 3.8).  [c.180]

Эффективность ингибирования процесса коррозии указанными соединениями определяли методом потенциостатической поляризации. Испытания проводили в синтетической аэрированной воде при начальном pH 7,0. Конечное значение pH указано в табл. 1.29.  [c.42]

При гальваностатической поляризации металла в средах, вызывающих питтинговую коррозию, легко обнаруживается критический потенциал питтингообразования (Впит) — пороговый потенциал, при котором электрод становится практически не-поляризуемым. Он может быть найден по потенциостатическим или потенциодинамическим поляризационным кривым (рис. 1.4).  [c.18]


Очень широкое распространение получили электрохимические методы исследования пассивности снятие потенциостатических кривых, анодных и катодных кривых заряжения, изучение кривых спада потенциала, исследование емкости двойного слоя, кинетики электродных процессов при поляризации импульсным и переменным током. Для определения структуры, толщины и состава образующихся при пассивации защитных пленок применяют электронографический, оптический, микрохимический, радиографический и некоторые другие методы.  [c.18]

Потенциостатический метод поляризации используется также для окисления и восстановления различных органических и неорганических веществ, при электроосаждении металлических по-  [c.48]

Для решения вопроса о возможности применения анодной поляризации в качестве метода защиты необходимо для каждых конкретных условий получить анодные потенциостатические кривые  [c.113]

Анализируя потенциостатическую анодную кривую, можно прийти к выводу о возможности с помощью внешнего катода перевести металл, находящийся в активном состоянии, в пассивное. В этом случае контакт с более благородным металлом как бы оказывается полезным (ср. на диаграмме влияния катода ki и ks). Хотя в принципе такая возможность и имеется, но на практике она редко реализуется. Дело в том, что при активном растворении металлов катодные процессы, как правило, протекают с гораздо большей поляризацией, нежели анодные. Поэтому катодные процессы обычно протекают не столь эффективно и потенциал катода подтягивается к потенциалу анода. Для того чтобы с помощью внешнего катода запассивировать металл, находящийся в активном состоянии, необходимо, чтобы катодный процесс на нем протекал с весьма большой скоростью например, для железа в нейтральном электролизе  [c.38]

При потенциостатическом методе поляризации, как известно, потенциал электрода поддерживается на постоянном уровне и измеряется плотность тока в системе.  [c.364]

Теория дифференциальных анодных кривых позволяет также дать объяснения явлениям межкристаллитной коррозии сталей и сплавов, наблюдаемым в некоторых растворах при анодной поляризации. В зависимости от природы раствора можно задать такой анодный потенциал потенциостатическим методом, при котором границы зерен будут в активном состоянии, а тело зерна — в пассивном состоянии. На этом принципе основаны некоторые методы ускоренных испытаний на межкристаллитную коррозию сталей и сплавов путем анодной поляризации, например, нержавеющих сталей в 10%-ной щавелевой кислоте, в 65%-ной фосфорной кислоте и др.  [c.59]

Замечание (Эпельбауен). Для того чтобы получить данные о кинетике процесса коррозии, мы систематически сочетали измерение кривых поляризации потенциостатическим путем с микрокинематографией. Этот последний метод состоит в кинематографической регистрации микроскопических данных, наблюдаемых во время быстрого развития процесса активации электрода.  [c.214]

Уменьшение механохимического э( )фекта на стадии динамического возврата проявляется в условиях статического нагружения (см. рис. 21, кривая /) сильнее, чем в условиях динамического (см. рис. 21, кривые 2, 3, 4), что указывает на более полное протекание процессов возврата в статических условиях. Особенно значительно уменьшается мехапохимический эффект на этой стадии при потенциостатической поляризации в случае более высоких значений плотности тока (ср. кривую и кривую г а на рис. 21). Это связано с тем, что одна и та же величина деформационного сдвига потенциала вызывает одинаковое приращение логарифма плотности тока (в тафелевской области), т. е. приращение плотности тока больше при более высоком ее исходном значении. -  [c.84]

Из соотношения (229) видно, что изменение стационарного потенциала вследствие деформации электрода не является одно- значной функцией термодинамического состояния металла (обу- словливающего анодное поведение) из-за участия катодного процесса. Поэтому выявление взаимосвязи напряженного состояния металла и его электрохимических свойств должно проводиться только в условиях внешней поляризации до значений потенциала, обеспечивающих преимущественное протекание реакции анодного растворения (т. е. в области тафелевского участка анодной поляризационной кривой). Измеренные таким способом значения потенциала при гальваностатической поляризации или плотности тока при потенциостатической поляризации могут использоваться для  [c.166]


Было изучено [31] воздействие на электродные процессы твердых частиц, диспергированных в сульфатхло-ридном электролите никелирования с добавкой сахарина и бутиндиола. Из потенциостатических данных следует, что наблюдаемое затруднение пассивирования никелевого анода тем больше, чем крупнее частицы корунда. Крупнозернистые порошки или полностью выводят анод из пассивного состояния, или способствуют существенному увеличению плотности тока. Порошки с частицами порядка нескольких микрометров (например, порошок корунда КО-7) не вызывают активирования анода. Деполяризующее действие частиц концентрацией 25— 150 кг/м на катод различно в зависимости от pH электролита. При рН = 5 оно достигает 100—200 мВ при 1 к< <0,1 кА/м и незначительно при более высоких плотностях тока. В кислом электролите (рН=1,8) деполяризация в 80—120 мВ наблюдается лишь при / >0,15 кА/м . Отсутствие эффекта изменения поляризации, наблюдаемого при некоторых условиях электролиза, объясняется одновременным воздействием деполяризующего (от движения частиц, уноса пузырьков водорода и обновления электролита в приэлектродном пространстве) и поляризующего (адсорбции частиц, диффузионного ограничения) действия полидисперсных порошков.  [c.39]

Катодная поляризация в потенциостатических режимах увеличивает условный предел коррозионной выносливости латуни ЛМцЖ — 55-3-1 в естественной морской воде с 90 МПа без защиты до 160 МПа, что выше  [c.194]

На рис. 2 представлены потенциостатические поляризационные кривые стали 12X18Н10 в 3%-м хлориде натрия со свободным и затрудненным доступом кислорода (моделирование щелевой коррозии). Как видно из рис.2, при затрудненном доступе кислорода исследуемая сталь теряет пассивность и ведет себя как активная (что характерно для углеродистых и низколегированных сталей). При этом плотность тока саморастворения увеличивается в 2-2,5 раза, а при поляризации - на порядок и более.  [c.10]

Рис. 6.010. Кристаллографический питтинг высокой плотности на поверхности листа из сплава В95Т1. Потенциостатическая поляризация в 3 %-ном растворе Na l. = —780 мВ, Рис. 6.010. <a href="/info/138251">Кристаллографический питтинг</a> высокой плотности на поверхности листа из сплава В95Т1. Потенциостатическая поляризация в 3 %-ном растворе Na l. = —780 мВ,
Как видно из рис. 1.3, данные, относящиеся к окислителям, хорошо укладываются на кривую для 1 н. Н25О4, полученную потенциостатическим методом. Такое совпадение наблюдается не только при потенциалах, соответствующих активному состоянию поверхности, но и при более положительных потенциалах, лежащих в областях устойчивой пассивности и перепасснза-ции. Таким образом, как при химической, так и при анодной пассивации для перехода металла в пассивное состояние требуется достижение оиределенного потенциала, при смещении которого в область положительных значений скорость растворения и степень запассивированности металла определяются только значением потенциала и не зависят от того, обеспечивается ли оно поляризацией металла внешним током или сопряжено с протекающей катодной реакцией восстановления окислителя.  [c.12]

Изучение пассивационньа характеристик металлов и сплавов классическим методом потенциостатической потенциодинамической поляризации предусматривает проведение предварительной катодной обработки образцов с целью удаления поверхностных загрязнений я оксидных слоев. При этом считается, что состав и структура такой поверхности и объемных участков сплава идентичны, поэтому ее электрохимические характеристики определяют электрохимическое поведение системы в целом. Вместе с тем, результата рада работ показывают, что в аморфных сплавах (АС) имеют место значительные сегрегации легирующих элементов, в том числе и пассивирующих в поверхностных слоях глубиной до 20 нм. Очевидно, использование катодной обработки в условиях существования сегрегационных образований может исказить реальные электрохимические характеристики поверхности АС.  [c.79]

Для изучения влияния состояния поверхности сплава на его электрохимическое поведение проводили различную подготовку механическую зачистку, обезжиривание, электрохимическую полировку, ультразвуковую очистку. Стабилизацию поверхности и восстановление воздушнообразованной пленки осуществляли потенциостатической или циклической обработкой в области небольших катодных потенциалов во избежание образования гидридов. На анодной кривой сплава в растворе Н2504 сила тока монотонно возрастает о поляризацией от О до 4 В. Парциальше кривые титана, циркония и кремния выявили максимум тока в области ол-1,6 Б (н.в.э.), который связывается с анодным выделением кислорода и последующими изменениями в пассивирующей пленке. Такое различие обусловлено, очеввдно, однородностью поверхности сплава и отсутствием в пленке на сплаве достаточно проводящих участков дай реализации термодинамически возможного выделения кислорода, что подтверждено исследованием распределения электрического потенциала на поверхности сплава и кристаллических компонентов в растровом электронном микроскопе. При достаточной анодной поляризации начинается электрохимическое образование беспористой анодной пленки на сплаве и его компонентах. По сравнению с цирконием и титаном сплав, имеет наиболее ПОЛО.ЖИтельный стационарный потенциал и устойчивое пассивное состояние.  [c.98]

Таким образом, благодаря специфической адсорбции неорганических ингибиторов пассивация, как уже указывалось, может быть достигнута без восстановления самих ингибиторов. Обнаруженный эффект памяти у стали после воздействия ингибиторов указывает на возникновение электрического поля в окисле. Подтверждением выдвигаемого механизма могут служить данные по электрохимической пассивации стали с помощью внешней анодной поляризации с одновременным изменением КРП после извлечения электрода из электролита. Было обнаружено, что при поляризации стали в интервале потенциалов от —0,4 до +0,55 В кривая фэл=/(А1 к) внешне сходна с обычной потенциостатической кривой фэл=f(tKopp), где г корр — плотность тока коррозии, определенная по потерям массы (рис. 2,28).  [c.82]


Потенциостатические исследования кинетики анодного растворения железа (рис. 5,23) показали, что анион бензойной кислоты оказывает сильное влияние на скорость анодного растворения железа. Даже в концентрированном растворе сульфата (1 н.) бензоат натрия при концентрации, равной 7-10- моль/л, вызывал сильную анодную поляризацию, сдвигал потенциал пассивации в положительную сторону и уменьшал ток пассивации примерно на два порядка. Такое пассивирующее влияние бензоата натрия в присутствии кислорода объясняется тем, что анион бензойной кислоты СбНбСОО- образует с железом через карбоксильные группы прочную химическую связь. Это уменьшает реакционную способность значительной части атомов железа на поверхности и облегчает пассивацию остальной части кислородом воды. На катодную реакцию, как и ожидалось, бензоат влияния не оказывает.  [c.180]

При потенциостатическом методе поляризации после достижения точки В наблюдаете яуменьшение тока (BF), свидетельствующее о пассивации металла, участок пассивного состояния FG) и затем увеличение тока G D), связанное так же, как и па гальваностатической кривой, с протеканием другого анодного процесса. Из этого следует, что из гальваностатической кривой нельзя определить потенциал полной пассивации Еаа (точка F), область пассивности FG) и величину тока в пассивном состоянии inn- Таким образом, преимущество потен-циостатического метода по сравнению с гальваностатическим состоит в том, что он позволяет установить закономерность скорости растворения металла в области потенциалов, наиболее интересной для изучения именно — в области пассивирования  [c.48]

Влияние анодной поляризации на межкристаллитную коррозию изучали путем снятия анодных потенциостатических кривых и коррозионных испытаний при заданных значениях потенциалов. Из анализа кривых закаленной и отпущенной стали 2Х18Н9 в 20%-ной H2SO4 при 25° С (рис. 83) следует, что по достижении потенциала пассивирования (—0,075 в) поведение закаленной и отпущенной стали различается. В случае закаленной стали для поддержания потенциалов в области -j-0,1 -f- - -0,3 в требуется катодный ток (наблюдается так называемая петля катодного тока), в случае отпущенной стали — анодный ток. Различия в анодном поведении этих сталей обнаруживаются и при обратном ходе поляризационных кривых. Закаленная сталь сохраняет пассивное состояние вплоть до стационарного потенциала. Отпущенная сталь сначала незначительно начинает активироваться с -t 0,4 в, затем, при достижении потенциала -f0,13 в, анодный ток быстро растет. Таким образом, пассивное  [c.121]

Катодное восстановление производится путем катодной поляризации электрода в рабочем растворе непосредственно в электрохимической ячейке. При потенциостатических измерениях катодное восстановление проводят часто при потенциале, отрицательнее стационарного на 100—200 мВ выдержка не должна быть слишком длительной 80 избежание наводорбживания металла.  [c.47]

Рис. 89. Потенциостатическая кривая, характеризующая поведение металлов в щелях АБВГД — кривая анодной поляризации Ки /<2, Кз — катодные поляризационные кривые для открытой поверхности — тоже, для поверхности, находящейся в щели Рис. 89. Потенциостатическая кривая, характеризующая поведение металлов в щелях АБВГД — <a href="/info/160966">кривая анодной поляризации</a> Ки /<2, Кз — катодные <a href="/info/116215">поляризационные кривые</a> для открытой поверхности — тоже, для поверхности, находящейся в щели
Рис. 204. Потенциостатическая кривая анодной поляризации для различных концентраций хлористого натрия (сталь Х18Н10Т) Рис. 204. <a href="/info/138136">Потенциостатическая кривая анодной</a> поляризации для различных концентраций <a href="/info/18151">хлористого натрия</a> (сталь Х18Н10Т)
Благодаря тому, что существует критический потенциал, выше которого питтинговая коррозия не возникает, оказывается возможным осуществить электрохимическую защиту. Опыты в изученных нами электролитах показали, что катодная поляризация надежно защищает нержавеющую сталь от питтинговой коррозии. Достаточно сместить потенциал нержавеющей стали в отрицательную сторону за критическую величину [( +0,15)-ь(—0,20 в)], чтобы питтинговой коррозии не было. В подтверждение этого положения производились потенциостатические измерения. В качестве электролита был взят 0,1-н. раствор хлористого натрия, подкисленный соляной кислотой до pH = 2, близкого к значению pH раствора, содержащего 2% окислителя [FeNH4(S04)2-12НгО] и 3% активатора (NH4 I). С помощью потенциостата электродный потенциал стали сдвигался от стационарного значения как в область более отрицательных, так и в область более положительных значений и поддерживался при заданном потенциале в течение 1 ч. Из рис. 205 видно, что питтинговая коррозия на электроде имеет место только при более положительных потенциалах, чем +0,25 в. При сдвиге потенциала стали в область более положительных значений вероятность возникновения питтингов на электроде резко возрастает. Это находится в хорощем согласии с установленной нами закономерностью, указывающей на то, что с увеличением окислительной способности раствора резко увеличивается вероятность возникновения питтинга. Таким образом, для появления склонности к питтингообразованию безразлично, увеличиваем ли мы до определенного предела окислительно-восстановительный потенциал системы или подвергаем металл анодной поляризации.  [c.370]

Время, затраченное на построение поляризационной кривой, оказывает влияние на результат. При анодной поляризации растворение может изменить шероховатость поверхности. В гальваноста-тических условиях произойдет изменение плотности тока, и, следовательно, сдвиг потенциала. При потенциостатических условиях требуемый для поддержания потенциала ток будет меняться. Помимо изменения шероховатости, вызываемо5 о анодным растворением, возможно накопление продуктов коррозии или другие поверхностные реакции, которые станут препятствовать построению поляризационной кривой. Изменение условий при любом отсчете будет влиять на регулировку контура в дальнейшем. В связи с этим важное значение имеет скорость измерения. На результат влияет также направление смещения потенциала. Применяются разнообразные многочисленные экспериментальные устройства, включая электронные приборы, позволяющие изменять потенциал во всем исследуемом интервале за миллисекунды. Это сложные проблемы, являющиеся предметом многих дискуссий и исследований. Сопоставление поляризационных кривых, полученных в различных условиях, зачастую очень затруднительно и должно выполняться с большой осторожностью.  [c.125]

Крайней мере на 750 мВ сверх этой величины. Была высказана гипотеза, что в острие трещины не только достигается значительная скорость нагружения, но и обеспечивается постоянное освежение раствора. Эти условия были воспроизведены на отрезке проволоки, анодно поляризованном при 0,5 А/см и подвергнутом нагружению в потоке коррозионной среды [116]. В этих условиях устранялся значительный потенциал поляризации. Исследование было повторено в потенциостатических условиях при —150 мВ при этом плотность тока выросла более чем в 10 раз [117]. Такое весьма значительное увеличение скорости растворения при нагружении стали было установлено только для сталей с содержанием 18% Сг и 8% Ni в концентрированном растворе хлорида. Не склонные к растрескиванию в хлоридных растворах материалы, например железо, обнаруживают весьма слабую тенденцию к таксшу увеличению скорости растворения. Сказанное относится и к стали с содержанием 18% Сг и 8% Ni в сульфатных растворах, в которых они не растрескиваются.  [c.186]



Смотреть страницы где упоминается термин Поляризация потенциостатическая : [c.40]    [c.60]    [c.82]    [c.133]    [c.133]    [c.135]    [c.169]    [c.16]    [c.20]    [c.51]    [c.146]    [c.154]    [c.142]    [c.188]    [c.366]    [c.63]    [c.150]   
Ингибиторы коррозии (1977) -- [ c.9 , c.18 , c.29 , c.163 ]



ПОИСК



Поляризация



© 2025 Mash-xxl.info Реклама на сайте