Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отпуск сталей — Характеристик вязкости

Таким образом, чувствительными к режиму нагружения оказались циклически разупрочняющиеся стали, в которых происходит повреждение материала в вершине трещины. Степень повреждения и размеры области, охваченной им, увеличиваются с продвижением фронта трещины и увеличением коэффициента интенсивности напряжения. Для материалов, у которых зоны пластичности очень малы (сталь 45 после закалки и низкого отпуска) или в которых происходит затухание пластических деформаций вследствие циклического упрочнения (армко-железо), отличия в характеристиках вязкости разрушения Кю, т/с iz) найденных при различных режимах нагружения, не наблюдаются.  [c.328]


По мере снижения температуры испытания прочностные свойства этих сталей сильно растут и достигают наиболее высоких значений при —196° С, причем в этих условиях сохраняются достаточно высокие характеристики пластичности и ударной вязкости. Предварительный отпуск стали этого типа при 600—800° С снижает ударную вязкость (рис. 87). Особенно значительно падает ударная вязкость у сталей, не стабилизированных титаном.  [c.150]

Из характеристик механических свойств стали при образовании сверхструктуры значительно повышаются твердость и предел прочности и резко падают пластичность и вязкость. Это обстоятельство препятствует самостоятельному использованию повышенной прочности сверхструктурных фаз в конструкционной стали. Однако сверхструктуры, как и химические соединения, могут быть использованы как упрочняющие фазы при закалке и отпуске стали, хотя следует считаться со значительным падением пластичности и вязкости стали.  [c.565]

Укрупнение зериа аустенита в стали почти не отражается на статистических характеристиках механических свойств (твердость. сопротивление разрыву, предел текучести, относительное удлинение), ио сильно снижает ударную вязкость, особенно при высокой твердости (отпуск при низкой температуре). Это явление сказывается из-за повышения порога хладноломкости с укрупнением зерна.  [c.241]

Для инструмента, требующего повышенной вязкости, например для штампов горячего деформирования, применяют доэвтектоидные стали, которые после закалки на мартенсит подвергают отпуску при более высокой температуре для получения структуры троостита и даже сорбита. Износостойкость и твердость этих сталей ннже, чем заэвтектоидных. Одной из главных характеристик инструментальных сталей является теплостойкость (или красностойкость), т. е. устойчивость против отпуска при нагреве инструмента в процессе работы.  [c.295]

Одинаковые свойства (ударная вязкость, вид излома и твердость, а также критическая температура хрупкости) могут быть получены на двух сталях за счет изменения количества мартенсита в структуре. В качестве условных критериев могут быть приняты характеристики стали 40Х. После отпуска на твердость HR = 35 сталь 40Х с 60% мартенсита при температуре +20° С имеет ударную вязкость 3,9 /сг/сж  [c.115]

Требуемые свойства достигаются при последующем от пуске стали На рис 84 показано изменение механических свойств закаленной углеродистой стали 40 при отпуске на разные температуры С повышением температуры отпуска прочностные характеристики непрерывно уменьшаются, а пластичность и вязкость стали увеличиваются По таким  [c.155]


Для изготовления высокопрочных изделий с высокой устойчивостью к повышенным температурам эксплуатации используют стали с вторичным твердением. Эффект вторичного твердения при отпуске закаленных на мартенсит сталей основан на выделении специальных карбидов в интервале температур 550-650 °С. При этом повышаются прочностные характеристики стали и падает пластичность и вязкость. Возрастание прочности и твердости сталей при вторичном твердении происходит при определенной объемной доле выделяюш ихся карбидов.  [c.365]

Характеристики пластичности й и V возрастают по мере повышения температуры отпуска (см. рис. 6.34). Ударная вязкость непосредственно после закалки низкая. С повышением температуры отпуска ударная вязкость увеличивается, однако есть два температурных интервала, при которых у конструкционных сталей она заметно снижается 250 - 350 и 500 — 600 °С. Понижение вязкости соответственно называют отпускной хрупкостью I и II рода (рис. 6.35). Природа охрупчивания сталей после отпуска при указанных температурах недостаточно ясна.  [c.191]

Данные по маркам стали располагаются на одном или двух листах. На первом листе приведены химический состав по ГОСТ или ТУ, механические свойства в зависимости от сечения и режима термической обработки, примерное назначение марки стали и технологические свойства. На втором листе приведены дополнительные справочные данные по прокаливаемости механическим свойствам в зависимости от температуры отпуска, механическим свойствам при повышенных температурах, физическим свойствам, значениям ударной вязкости при отрицательных температурах, усталостным характеристикам и другим свойствам.  [c.4]

НО больше, чем в закаленном состоянии. Это является одной из важнейших характеристик быстрорежущей стали. В этом состояний быстрорежущие стали имеют наибольший предел текучести при сжатии и наибольшее сопротивление максимальным пластическим деформациям. Однако ударная вязкость в этом интервале температур несколько уменьшается, сталь становится чувствительной к нагрузкам на растяжение, но предел прочности при изгибе все же больше, чем после отпуска при температуре 400—450° С. Иногда после дисперсионного твердения быстрорежущие стали не содержат остаточного аустенита или содержат его, но в очень малых количествах (0,5— 2%). При этом предел прочности при изгибе все же больше, чщ у умеренно теплостойких ледебуритных инструментальных сталей с 12% Сг (см. табл. 69 и 67).  [c.217]

Повышение температуры закалки от 1040 до 1080° С предпочтительно с точки зрения улучшения вязких свойств, однако дальнейшее увеличение температуры нагрева ведет к их ухудшению даже для сталей, полученных электрошлаковым переплавом. Вместе с тем у последних характеристики вязких свойств значительно лучше, чем у сталей обычного качества, в которых, несмотря на незначительное содержание карбидов, может образовываться карбидная сетка. При данной температуре отпуска вязкость в значительной степени зависит от продолжительности отпуска. В результате прохождения максимума дисперсионного твердения вязкость стали продолжает некоторое время возрастать.  [c.269]

Таким образом, сталь 19Г чувствительна к наклепу, приводящему к возрастанию характеристик прочности и величины отношения 0т сгв, снижению пластичности и вязкости стали, а также к повышению критической температуры перехода в хрупкое состояние. Влияние температуры отпуска после закалки (905° С, вода) и толщины листа на механические свойства стали (0,18% С, 0,28% Si и 0,96% Мп) приведены в табл. 21.  [c.62]

Термическая обработка в виде нормализации или улучшения (закалка с последующим высоким отпуском) является одним из наиболее эффективных способов повышения качества низколегированных, а также малоуглеродистых (типа Ст.З) сталей. Нормализация преследует цель снятия напряжений, связанных с горячей обработкой давлением, и некоторого измельчения зерна феррита (практически без изменения уровня прочности) она обычно приводит к большей стабильности механических свойств и улучшению характеристик пластичности, вязкости и хладостойкости по сравнению с горячекатаным  [c.237]


Испытания по определению основных механических характеристик показали, что, например, СТЦО сталей 10 и 20 повыщает удельную работу разрушения не менее чем на 50 % за счет увеличения вязкости. Такая добавочная сверхпластичность способна увеличить обрабатываемость сталей давлением при комнатных температурах возрастает штампуемость с глубокой вытяжкой металла и т. д. В работе [212] показано, что если произвести 2-кратную СТЦО с нагревами стали в печи (в печи 800—900 С) до температуры точки Ас[ и последующими охлаждениями на воздухе до 500 °С, а потом произвести низкотемпературный отпуск при 200 °С в течение 10 ч, то получается измельченная структура. Сталь с такой структурой имеет обычно высокие значения характеристик пластичности и ударной вязкости.  [c.86]

Термомеханическая обработка (ТМО). В настоящее время является самой эффективной в машиностроении. Она относится к комбинированным способам изменения строения и свойств металла, совмещает механическую деформацию металла в горячем состоянии с термообработкой. Как при термической, так и при пластической деформации повышение прочности всегда связано с уменьшением пластичности. Это часто является ограничением применения той или иной обработки. Преимуществом ТМО является то, что при существенном увеличении прочности характеристики пластичности снижаются незначительно, а ударная вязкость в 1,5—2 раза выше по сравнению с ударной вязкостью той же марки стали после закалки с низким отпуском.  [c.83]

ЦНИИМПС [46] были исследованы стали марок 09Г2 (лист 11 мм) и 14Г2 (лист 12 мм). Химический состав стали и средние значения механических свойств в горячекатаном состоянии и после различной термической обработки приведены в табл. 10 и И. Закалка с последующим отпуском стали 09Г2 позволяет заметно повысить характеристики прочности (особенно значения предела текучести) при значительном повышении в то же время и ударной вязкости. Изменение ударной вязкости стали 09Г 2 с температурой испытания (лист толщиной 22 мм) характеризуется рис. 28.  [c.44]

Повышенное содержание марганца сообщает стали более высокие механические свойства, приближающие ее к легированным сталям. Марганец понижает температуру критических точек А, и А , увеличивает прокаливаемость стали. Это позволяет при.менять более низкие температуры термической обработки и получать после высокого отпуска мелкодисперсную структуру сорбитообразного перлита. Марганец входит в состав твердого раствора (феррита), упрочняет его, а также образует прочные двойные карбиды с углеродом и железом, поэтому стали, содержащие повышенный процент марганца, обладают повышенным пределом прочности и текучести, несколько большей твердостью и повышенной износоустойчивостью по сравнению с углеродистыми сталями с нормальным содержанием марганца. Характеристики вязкости и пластичности у этих сталей ниже, чем у углеродистых сталей. При содержании более 1% марганца усталей этой группы отмечается склонность к образованию полосчатой структуры и отпускной хрупкости. Склонность к отпускной хрупкости устраняется при быстром охлаждении после отпуска (охлаждение в воде или в масле). Стали с повышенным содержанием марганца подразделяются на стали, содержащие от 0,7 до 1,2% Мп (маркируются индексом Г, например, ЗОГ), и стали, содержащие от 1,4 до 1,8% Мп (маркируются индексом Г2, например, 30Г2).  [c.144]

На образце диаметром 75 мм после закалки и отпуска для получения предела прочности 100 кг/мм углеродистая сталь марки 40 дает характеристики вязкости О =40-.-45% и а ,= 4,5 кгм см , а хромоникельмолибденовая сталь марки 35ХНЗМ ф = 50-Г-55 %,  [c.26]

В связи с провалом ударной вязкости при средних температурах отпуска конструкционные легированные стали отпускаются или на низкие температуры (до 220°) с получением высоких характеристик прочности, или на высокие температуры (выше 500°) с получением структуры сорбита с высокими характеристиками вязкости и пластич носуги. Промежуточные температуры отпуска (300—400°) примени ются только для конструкционных сталей, требующих высокого предела упругости (пружинные и рессорные стали).  [c.52]

Другое сочетание сталей разнородных структурных классов в сварных конструкциях -сварка перлитных и высокохромистых сталей. При сварке перлитных сталей с 12%-ными хромистыми сталями необходимо предотвратить образование мартенсита и ХТ, а также развитие диффузионных прослоек при отпуске и высокотемператзфной эксплуатации. При выборе сварочных материалов следует исключить образование хрупких переходных участков в зонах перемешивания сталей. Для обеспечения наибольшей пластичности шва применяют сварочные материалы перлитного класса (табл. 13.4). В этом случае в переходных участках со стороны высоколегированной стали, содержащих до 5 % Сг, сохраняются высокая пластичность, вязкость, а также длительная прочность соединения в целом. Для снижения размеров диффузионных прослоек перлитный наплавленный металл должен легироваться определенным количеством более активных, чем хром, карбидообразующих элементов. При сварке деталей больших толщин целесообразно электродами типа Э-ХМ делать наплавку на кромки высоколегированной стали, а разделку заполнять без подогрева электродами типа Э-42 или Э-50 в зависимости от требований прочности перлитного шва. Температуру предварительного подогрева и отпуска определяют по характеристикам более легированной, т.е. 12%-ной хромистой стали, но для уменьшения размеров диффузионных прослоек применяют отпуск при минимально допустимой температуре.  [c.184]


Для сталей с увеличенным содержанием углерода понижают температуру нагрева при закалке. Если для стали 1X13 и 2X13 оптимальная температура закалки 950—975°, то для сталей 3X13 — 900—950°. Применять более высокие температуры закалки не рекомендуется, поскольку при этом возникают более крупные зерна, что уменьшает пластические характеристики стали и ударную вязкость. Сталь Х17 подвергают отпуску при 740—780° с последующим охлаждением на воздухе или в воде.  [c.25]

Последний вариант обработки является более сложным, но позволяет получить не только более высокие характеристики прочности стали, но и более высокие характеристики вязкости, Так, например, в стали марки 45 минимальные значения ударной вязкости ач после нормализации составляют 2—3 кгм1см , а после закалки и отпуска с нагревом до 500° ударная вязкость превышает 6—7 кгм/см [3].  [c.338]

Механизированные процессы сварки ферритных хромистых сталей (сварка в углекислом газе, а также под флюсом) при использовании сварочных материалов, дающих ферритные швы, не обеспечивают улучшения вязкости швов даже после высокого отпуска, хотя отпуск несколько улучшает коррозионные характеристики сварных соединений сталей типа 08Х17Т. Более распространены  [c.275]

Диалогичная закономерность изменения механических свойств наблюдается у сталей ЗОН 12МФ и ЗОН14МФ. Все стали, упрочняемые распадом мартенсита с образованием специальных карбидов после высокотемпературного отпуска (500° С) при = = 180-т-200 кгс/мм , показали высокие характеристики пластичности и вязкости (й = И -ь 15% ijj = 36-ь53% а = 5- -5-7 кгс-м/см ).  [c.109]

Важной характеристикой коррозионностойких сталей и сплавов, в том числе и нержавеющих, является величина предела текучести при повышенных температурах, поскольку в таких условиях эксплуатируются многие аппараты и технологическое оборудование, выполненные из аустенитных хромоникелевьгх сталей. Знание этого параметра необходимо как потребителям стального оборудования, так и металлургам, так как на металлургических и трубопрокатных" заводах для интенсификации технологических процессов применяют подогрев сталей (например, при теплой прокатке листовой стали, теплой прокатке и волочении труб, проволоки и т. п.). Следует иметь в виду, что при повышении содержания С в аустенитных хромоникелевых сталях наряду с возрастанием прочности происходит снижение их коррозионной стойкости, пластичности и ударной вязкости после отпуска при 600-800 Стабильность этих характеристик наблюдается только при содержании около 0,02 % С в отпущенной при 500-800 °С после закалки стали. Отрицательное- влияние повышенного содержания С обьлно частично устраняется присадкой стабилизирующих элементов (Ti, Nb). Аустенитные хромоникелевые стали с очень низким содержанием С по сравнению со стабилизированными обладают большей стойкостью к МКК и к общей коррозии, имеют лучшие технологические свойства.  [c.29]

В большинстве случаев высокохромистые мартенситные стали имеют повышенное содержание углерода, некоторые из них дополнительно легированы никелем (табл. 8.1). Углерод, никель и другие аустенитообра-зующие элементы расширяют область у и способствуют практически полному у а (М) превращению в процессе охлаждения. Применение для закаленной стали отжига при температурах ниже точки Асз способствует отпуску структур закалки и возможности получения одновременно высоких значений прочности, пластичности и ударной вязкости. Ферритообразующие элементы (Мо, W, V, Nb) вводят для повышения жаропрочности сталей. Если обычные 12 %-ные хромистые стали имеют достаточно высокие механические свойства при температурах до 500 °С, то сложнолегированные на этой основе стали обладают высокими характеристиками до 650 °С и используются для изготовления рабочих и направляющих лопаток, дисков паровых турбин и газотурбинных установок различного назначения.  [c.330]

Металл шва наиболее распространенных составов 12-процспт-ных хромистых швов в исходном состоянии после сварки обладает высокой прочностью и низкими пластичностью и вязкостью (рис. 109), исключающими возможность его использования. С повышением температуры и длительности отпуска прочностные характеристики шва снижаются, а пластичность и вязкость растут. Удовлетворительное сочетание его кратковременных свойств достигается проведением отпуска при 720—740° С длительностью около 5 ч. После такого отпуска прочность металла шва близка к прочности самой стали в состоянии оптимальной термической обработки.  [c.201]

Содержание азота в стали в отношении Vioo к содержанию хрома улучшает сварочные характеристики сталей. В сталях с 17—20% Сг уменьшается грубозернистость в зоне, смежной с наплавленным металлом. Однако достаточная вязкость в сварных соединениях может быть достигнута только после дополнительного отпуска при 760° С [133, 149].  [c.195]

Изучение механических свойств стали, содержащей 0,5% углерода и легированной хромом, ванадием, кремнием, показало, что последний является весьма эффективным легирующим элементом для сталей с высокими механическими показателями. Так, легирование сталей типа 50Х, 50ХФ, 50ХН кремнием в количестве до 1,5% повышает их временное сопротивление на 490— 686 МПа н зависимости от температуры отпуска. В то же время для этих сталей не наблюдается снижение относительного удлинения, что позволяет увеличить температурный интервал отпуска для получения высоких прочностных показателей (0 = 1960 МПа) при достаточной пластичности и вязкости. С такими механическими характеристиками стали указанного типа показали при испытании высокую эрозионную стойкость [49, 57 ].  [c.170]

В интервале температур отпуска 250—350° С их вязкость и предел прочности на изгиб больще, чем вольфрамовых быстрорежущих сталей, поэтому они также имеют большие значения этих характеристик и при более высоких температурах отпуска. Твердость молибденовых быстрорежущих сталей в процессе отпуска при температурах свыше 560 С в некоторых случаях начинает убывать несколько быстрее, чем твердость легированных вольфрамом сталей (табл. 87—89). Поэтому температура, характеризующая теплостойкость легированных молибденом быстрорежущих сталей "ОнксбО меньше, чем легированных вольфрамом.  [c.221]

Изменения предела прочности и предела текучести при изгибе, твердости быстрорежущих сталей марки R6, закаленных с различных температур, в зависимости от температуры отпуска приведены в табл. 90. Температуры нагрева под закалку, обеспечивающие наибольшую твердость и наибольший предел прочности при изгибе, тоже не совпадают, но путем вариаций температур отпуска можно установить оптимальное значение для того и другого. Предел прочности на изгиб и ударная вязкость быстрорежущей стали марки R6, полученной с помощью электрошлакового переплава, при той же твердости существенно выше тех же характеристик стали с более неоднородной структурой. Данные о влиянии трехкратного отпуска по одному часу на предел прочности при изгибе быстрорежущих сталей марок R6 (6—5—2) и R10 (2—8—1) приведены в табл. 91. Предел прочности на изгиб быстрорежущей стали типа 6—5—2, полученной путем электрошлакового переплава, в случае, почти такого же предела текучести при сжатии немного меньше, чем быстрорежущих сталей типа 2—8—1, легированных почти исключительно молибденом, но существенно больше, чем у сталей, содержащих 18 % W (см. табл. 78). Данные о влиянии температуры закалки на предел прочности при изгибе и работу разрушения при изгибе в продольном и поперечном направлениях для сталей марки R6, полученных электрошлаковым переплавом и обычного качест,-ва, приведены в табл. 92. Благоприятное воздействие электрошлакового переплава очевидно как в продольном, так и в поперечном направлениях. Значительно уменьшается анизотропия свойств.  [c.225]


Изменение механических свойств инструментальной стали К14 в зависимости от температуры закалки и отпуска, а также продолжительности обработки представлено в табл. 105. Из этих данных (см. также рис.. 202) следует, что увеличение температуры закалки стали марки К14 выше 1000° С только в незначительной степени улучшает прочностные характеристики, при этом вязкие свойства ухудшаются. Стали, полученные методом электрошлакового переплава и, кроме того, хорошо обработанные путем пластической деформации, по сравнению с обычными инструментальными сталями, имеют более высокие значения вязкости при одних и тех же значениях прочности. Поэтому стали, полученные способом переплава, можно закаливать на ббльшую прочность (твердость) и благодаря этому увеличить износостойкость и долговечность инструмента. С уменьшением скорости охлаждения (охлаждение в масле или в соляной ванне вместо охлаждения на воздухе) или же с увеличением количества заэвтектоидных карбидов и содержания бейнита (см. рис. 199, б) в значительной степени ухудшаются прочностные и главным образом вязкие свойства сталей. Наиболее предпочтительные свойства получаются при ступенчатой закалке в соляной ванне. На прогрев детали с толщиной поперечного сечения 100 мм требуется около 15 мин. При закалке в масле нет необходимости держать детали в масле до полного охлаждения, а достаточно только до тех пор, пока температура сердцевины не достигнет 500° С. При толщине поперечного сечения 100 мм на охлаждение требуется таким образом около 8 мин, а при толщине 250 мм 25 мин. Повышение температуры отпуска выше 600° С приводит к ухудшению вязких свойств стали марки К14, а также сталей, полученных способом электрошлакового переплава. Сталь марки К14 более склонна к обезуглероживанию, чем стали марок К12 и К13. Обезуглероживание можно уменьшить путем цементации упаковкой в ящики с твердым карбюризатором При повышении температуры отпуска теплостойкой штамповой инструментальной стали для горячего деформирования марки 40 rMoV5.3 с содержанием 3% Мо и 5% Сг снижаются прочностные характеристики, растет значение ударной вязкости, значение вязкости при разрушении вначале также увеличивается. Путем отпуска при температуре 560—580° С можно добиться более благоприятного сочетания свойств. Отпуск при температуре выше 600° С охрупчивает эту сталь в меньшей степени, чем сталь К14.  [c.249]

Практика технического металловедения убедительно показала, что величина ударной вязкости при комнатной температуре испытаний не может служить мерой сопротивления разрушению материалов в различных ужесточенных условиях испытаний (например, при понижении их температуры) и во многих случаях не может выявить влияние различных структурных и металлургических факторов, ответственных за ухудшение эксплуатационных характеристик. Это обусловлено тем обстоятельством, что при вязком разрушении чувствительность к структурным факторам охрупчивания резко снижается. В то же время изменение условий нагружения, способствующее хрупкому разрушению, позволяет четко выявить отрицательное влияние тех или иных структурных факторов. Такое изменение условий может быть достигнуто путем снижения температуры испытаний, обеспечивающей в ряде о. ц. к. металлов выявление вязко-хрупкого перехода. Определяемая таким образом температура хладноломкости достаточно адекватно отражает склонность сталей к опасному хрупкому разрушению в различных экстремальных условиях эксплуатации. Температуру хладноломкости, вопреки встречающимся ошибочным воззрениям, нельзя рассматривать как константу материала она зависит от конфигурации и размеров образцов, остроты надреза и вида испытаний (рис, 19.1). Положение порога хладноломкости, четко детерминированное для низкоуглеродистых сталей, становится трудноопределяемым при повышении их прочности в связи с увеличением содержания углерода (рис. 19.2) или снижением температуры отпуска после закалки. Тогда в ряде случаев в связи с пологим характером температурных зависимостей ра-  [c.326]

Окончательное раскисление металла в ковше осуществляется добавкой 0,8 кг т А1 и 0,04%Ti (без учета угара). Оптимальная температура конца прокатки листовой стали 10Г2С1 составляет 800—900° С при более низкой температуре имеет место значительный наклеп, сопровождающийся пониженной пластичностью и вязкостью горячекатаных листов. Для повышения свойств таких листов рекомендуется применять отпуск при 600— 620° С. При медленном охлаждении после проката толстых листов возможно понижение прочности. Нормализация таких листов (890—930° С) приводит к повышению характеристик прочности и повышению ударной вязкости.  [c.63]

Независимо от содержания углерода нормализация стали 15ХСНД несколько снижает характеристики прочности и повышает пластичность и ударную вязкость. Температура отпуска после закалки определяется требуемым уровнем прочности. Улучшение стали наряду с повышением прочности снижает склонность стали к хладноломкости и ее чувствительность к деформационному старению.  [c.104]

При термическом улучшении низколегированных сталей важным моментом является отпуск проката, повышающий пластичность и вязкость, а также придающий стали стабильные и малоизменяемые при сварке механические характеристики (категория разупрочняемых сталей). Как было показано в работе [275], можно получить достаточно высокий комплекс механических свойств у сталей 09Г2С, 15ГС и др. непосредственно в процессе закалки путем регулирования скорости охлаждения, что следует из следующих данных для листа толщиной 20 мм [удельный расход воды 150 м Цм -ч)]-  [c.240]

Впоследствии было изучено [199], на сколько описанйая выше ТЦО стали 22К увеличивает характеристики сопротивления разрушению. Получены данные по влиянию ТЦО на выносливость при много- и малоцикловой усталости стали 22К, определена также ударная вязкость разрушения. В этих экспериментах использовали металл листового проката толщиной 160 мм. ТЦО заготовок и их закалку с высоким отпуском по стандартной технологии производили в производственных условиях путем нагрева до 850 °G (первый цикл) и до 780—800 С (два последующих цикла) с промежуточными охлаждениями на воздухе до 500 °С. Металлографические исследования показали, что в этом случае произошло измельчение зерна от 5 до 9—12 баллов. При ТЦО снижается критическая температура начала перехода стали в хрупкое состояние на 25 С по сравнению с обычной нормализацией или закалкой с высоким отпуском. Такое снижение Гко объясняется двумя факторами измельчением зерен и глобулярной формой карбидной фазы.  [c.230]

Получают распространение малолегированная борсодержащая сталь марки 20ХГР, 25ХГР. Введение небольших количеств бора (0,002—0,005%) значительно увеличивает прокаливаемость, прочностные характеристики и вязкость. После закалки и низкого отпуска твердость стали HR 36—40.  [c.235]

Цементация — это процесс насыщения поверхности детали углеродом, проводимый с целью повышения твердости, износостойкости и предела выносливости при переменных нагрузках. Повышение перечисленных характеристик достигается, однако, только в том случае, если цементация сопровождается термической обработкой, заключающейся в закалке и низком отпуске. Обычно для цементации берут малоуглеродистую сталь с содержанием углерода до 0,2% в этом случае твердость ненауглероженных внутренних слоев изделия после закалки не изменяется и остается равной примерно НВ 160—170, в то время как твердость поверхности. изделия повышается до НВ 600. Если от изделия требуются повышенные прочностные свойства в сердцевине, можно применять стали с большим содержанием углерода (до 0,3), однако вязкость при этом окажется несколько сниженной. Обычно толщина цементованного слоя не превышает 1 —1,5 мм, а концентрация углерода в нем — 0,8—1,0%.  [c.116]

Волокнистость макроструктуры приводит к анизотропии механических свойств, особенно ударной вязкости образцы, вырезанные вдоль волокон, имеют значительно большую ударную вязкость, чем образцы, вырезанные поперек волокон. Это учитывают при разработке технологии ковки и штамповки. В последнее время развивается новый апособ упрочнения стали — термомеханическая обработка, представляюшая собой соединение в единый процесс обработки давлением и термической обработки, а не последовательноё проведение этих процессов, как обычно. Различают два вида термомехани-ческо й обработки низкотемпературную (НТМО) и высокотемпературную (ВТМО). При низкотемпературной обработке сталь обрабатывают давлением в состоянии переохлажденного аустенита (400—600°) с последующим отпуском, в результате повышаются характеристики прочности зерна получают вытянутую форму.  [c.162]

Свойства стали определяются величиной действительного зерна аустенита. Увеличениезерна не оказывает существенного влияния на характеристики, полученные при статическом испытании на разрыв и твердость, но резко снижает ударную вязкость, особенно при высокой твердости (после закалки и низкого отпуска). Чем крупнее зерно аустенита, тем выше прокаливаемость, тем более  [c.537]



Смотреть страницы где упоминается термин Отпуск сталей — Характеристик вязкости : [c.173]    [c.312]    [c.313]    [c.394]    [c.629]    [c.93]    [c.199]    [c.404]   
Справочник металлиста Том5 Изд3 (1978) -- [ c.2 , c.159 ]



ПОИСК



ОТПУСК СТАЛЕ

Отпуск

Отпуск сталей — Характеристика

Отпуск сталей — Характеристика нетеплостойких повышенной вязкости

Отпуск сталей — Характеристика полутеплостойких повышенной вязкости

Отпуск — Характеристика

Отпуская ось

Сталь Отпуск

Сталь Характеристики



© 2025 Mash-xxl.info Реклама на сайте