Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отпуск сталей — Характеристика твердости

Исследовался материал сталь 40Х. Статические характеристики прочности и пластичности стали 40Х после закалки (860° С) и отпуска (620° С) на твердость 241—255 НВ следующие Оцц = = 66,5 кге/мм , Оо,2 = 68, = 88,5, г() = 53%, б = 15,4%.  [c.58]

Из характеристик механических свойств стали при образовании сверхструктуры значительно повышаются твердость и предел прочности и резко падают пластичность и вязкость. Это обстоятельство препятствует самостоятельному использованию повышенной прочности сверхструктурных фаз в конструкционной стали. Однако сверхструктуры, как и химические соединения, могут быть использованы как упрочняющие фазы при закалке и отпуске стали, хотя следует считаться со значительным падением пластичности и вязкости стали.  [c.565]


Укрупнение зериа аустенита в стали почти не отражается на статистических характеристиках механических свойств (твердость. сопротивление разрыву, предел текучести, относительное удлинение), ио сильно снижает ударную вязкость, особенно при высокой твердости (отпуск при низкой температуре). Это явление сказывается из-за повышения порога хладноломкости с укрупнением зерна.  [c.241]

Для инструмента, требующего повышенной вязкости, например для штампов горячего деформирования, применяют доэвтектоидные стали, которые после закалки на мартенсит подвергают отпуску при более высокой температуре для получения структуры троостита и даже сорбита. Износостойкость и твердость этих сталей ннже, чем заэвтектоидных. Одной из главных характеристик инструментальных сталей является теплостойкость (или красностойкость), т. е. устойчивость против отпуска при нагреве инструмента в процессе работы.  [c.295]

Термическая операция, состоящая из закалки и последующего высокого отпуска, называется улучшением. С увеличением температуры отпуска твердость и предел прочности понижаются, тогда как пластичность стали (б, ф) увеличивается. Магнитные и электрические характеристики стали (4лУ,, р. Не) с увеличением температуры отпуска уменьшаются, В , fia — повышаются.  [c.123]

Одинаковые свойства (ударная вязкость, вид излома и твердость, а также критическая температура хрупкости) могут быть получены на двух сталях за счет изменения количества мартенсита в структуре. В качестве условных критериев могут быть приняты характеристики стали 40Х. После отпуска на твердость HR = 35 сталь 40Х с 60% мартенсита при температуре +20° С имеет ударную вязкость 3,9 /сг/сж  [c.115]

Установлено, что температура, генерируемая при трении, приводит к отпуску приповерхностных слоев сопряженного с металлокерамикой материала. В результате этого при высоких скоростях резко ухудшаются характеристики пары трения. Замена материала контртела на наплавленное покрытие ВЗК, не изменяющее твердость до 300—400° С, значительно стабилизирует процесс трепия и в несколько раз повышает износостойкость материала. Эти данные выдвигают как одно из основных требований при использовании новых металлокерамических материалов па основе нержавеющих сталей необходимость подбора материала сопряженной пары.  [c.120]

С уменьшением содержания С твердость стали, а также другие характеристики ее механических свойств, после закалки с высоких температур сближаются со значениями этих параметров, получаемыми в ходе отпуска при 700-800 °С с последующим охлаждением в воде. Например, сталь с 0,035 % С после закалки с 1200 °С имеет = 539 МПа, а после отжига при 800 °С 0 =425 МПа.  [c.15]


Для изготовления высокопрочных изделий с высокой устойчивостью к повышенным температурам эксплуатации используют стали с вторичным твердением. Эффект вторичного твердения при отпуске закаленных на мартенсит сталей основан на выделении специальных карбидов в интервале температур 550-650 °С. При этом повышаются прочностные характеристики стали и падает пластичность и вязкость. Возрастание прочности и твердости сталей при вторичном твердении происходит при определенной объемной доле выделяюш ихся карбидов.  [c.365]

Х, закаленные по заводской технологии, отпускали при 250-470"С. В результате отпуска механические свойства стали 40Х с содержанием углерода на верхнем и нижнем пределе марочного состава плавно снижаются. Каких-либо провалов характеристик прочности (а а и твердости не выявлено. Однако фрактографический анализ хрупких изломов болтов отчетливо обнаруживает максимум ослабления границ зерен при 350 С (рис. 4.9). Приведенная доля межзеренного разрушения (доля межзеренного разрушения, отнесенная к хрупким составляющим) достигает 80%. Хрупкие трещины распространяются в основном по границам бывших зерен аустенита (рис. 4.10).  [c.138]

С помощью термообработки можно в широких пределах изменять структурное состояние и механические свойства металлических материалов. При отсутствии четко выраженных аномалий, как правило, термообработка оказывает на усталостную прочность примерно такое же влияние, как на предел прочности и твердость, при этом отношение предела вьшосливости к пределу прочности имеет линейную зависимость и зависит от структуры. Отклонения от этого правила наблюдаются у высокопрочных материалов их можно, вероятно, объяснить влиянием остаточных напряжений, концентраторов напряжений, возникших при обработке поверхности, и неблагоприятными структурными изменениями. У углеродистой стали наиболее высокая усталостная прочность наблюдается у образцов со структурой мартенсита отпуска, а характеристики усталости мартенситной структуры с доэвтектоидным ферритом уступают характеристикам циклической прочности нормализованных образцов. Термическая обработка, изменяя  [c.228]

Из сказанного следует, что при отпуске механические характеристики прочности и твердости стали по сравнению с закалкой снижаются, а характеристики пластичности и вязкости повышаются.  [c.189]

Корреляция между характеристиками механических свойств и тонкой кристаллической структурой при отпуске закаленных и холоднодеформированных сталей установлена К. Ф. Стародубовым [254], а между твердостью и величиной блоков при отпуске закаленных углеродистых и низколегированных конструкционных сталей — Л. И. Миркиным [524]. Таким образом, можно сделать вывод, что связь между ударной вязкостью и величиной микроискажений кристаллической решетки матрицы, а также величиной областей когерентного рассеяния является закономерной и проявляется во многих случаях. Следовательно, рентгеновским методом можно оценить запас вязкости после различных обработок. При этом необходимо учитывать, что рентгеновский метод дает возможность определить лишь среднюю величину микроискажений матрицы. Зависимость свойств углеродистых сталей от температуры деформации аналогична по характеру зависимости свойств от температуры испытании. Поэтому установленная для случая теплой прокатки взаимосвязь между характеристиками механичес-  [c.280]

Такая структура окажется неудовлетворительной во всех отношениях. В самом деле, если целью закалки было получение высокой твердости, то наличие в структуре зерен мягкого феррита не позволит ее достичь твердость стали окажется пониженной. Если цель закалки состояла в получении высокой прочности и упругости, то опять-таки наличие в структуре зерен феррита, обладаюш,их малой прочностью и низкой упругостью, не позволит достичь при отпуске высоких значений этих характеристик.  [c.131]

Этот метод разработан и предложен А. П. Гуляевым в 1937—1939 гг. Если мартенситное превращение заканчивается в области отрицательных температур, то в закаленной стали при комнатных температурах содержится значительное количество остаточного аустенита. Благодаря этому уменьшается твердость закаленного изделия, ухудшаются магнитные характеристики, не сохраняются размеры в процессе эксплуатации и т. п. Субструктура остаточного аустенита — большая плотность несовершенств по сравнению с исходным аустенитом (дислокаций, дислокационных сплетений и дефектов упаковки). Охлаждением изделия ниже температуры конца мартенситного превращения (точки Мк) можно добиться полного или почти полного превращения остаточного аустенита в мартенсит. Обычно изделие охлаждают до температуры порядка —80° С. Чтобы избежать стабилизации аустенита, обработку холодом рекомендуется проводить сразу же после закалки. Обработке холодом подвергают детали шарикоподшипников, точных механизмов, измерительный инструмент и т. д. Обработка холодом не уменьшает внутренних напряжений, поэтому после такой обработки необходим отпуск.  [c.265]


Из табл. 69 видно, что понижение твердости во время отпуска при температуре 400° С достигает примерно 20%. На фиг. 89 показаны кривые 1 и 2 зависимости ударной вязкости от температуры нитроцементации, из которых следует, что температура нитроцементации 860—950° С почти не оказывает влияния на значения ударной вязкости. Анализируя результаты по ударной вязкости нитроцементованных сталей в зависимости от продолжительности выдержки, можно заметить, что с увеличением продолжительности выдержки (глубины нитроцементованного слоя) ударная вязкость снижается. С увеличением глубины нитроцементованного слоя наблюдалось снижение и других механических характеристик как при нитроцементации, так и при цементации. Интересные данные по влиянию глубины слоя получил Н. К. Ипатов [41]. При исследовании сталей 20 и 45 на динамическую прочность он обнаружил, что число ударов до разрушения в сталях 20 с увеличением глубины слоя от 0,6 до 1,8 или 2,4 мм уменьшается в 3—4 раза. При этом установлено, что сопротивление. многократному удару с увеличением глубины слоя понижается непрерывно и падает примерно с 8000 при глубине слоя 0,6 мм до 2000 ударов при 2,4 мм при двойной закалке с отпуском.  [c.148]

В результате отпуска сталей Н16 и Н25 при 43Q° G, I ч происходит значительное уменьшение ширины линий интерференции. Разделение эффекта уширения интерференционных линий за счет наличия микроискажений и малости областей когерентного рассеяния позволило установить, что резкое уменьшение ширины линий, наблюдаемое при отпуске сталей Н1б и Н25 в основном связано с уменьшением величины неоднородных микроискажений. Так, в сплаве Н25 отпуск при 430° G приводит к снижению Дй/о с 2,8 до 0,3 х 10 [68 J. Размер же областей когег рентного рассеяния и твердость остаются практически неизменными (рис. 50), а предел текучести несколько- возрастает. Аналогичная закономерность в характере изменения характеристик тонкой структуры и механических свойств при отпуске наблюдается  [c.119]

На рис. 4.4 представлены прочностные характеристики стали ШХ15 в зависимости от твердости. Максимальные их значения приходятся на твердость 57. .. 59 HR , которая получается в результате отпуска стали при 250 °С.  [c.327]

По химическому составу качественная углеродистая сталь подразделяется на стали с нормальным содержанием марганца (0,25—0,8%) и с повышенным содержанием марганца (0,7—1,0% и 1,2 —1,8 о). Марганец понижает критические точки А, и Аз, обеспечивает получение мелкозернистой структуры после закалки и высокого отпуска, повышает прочность и твердость стали, увеличивает глубину прокаливаемости. Основные характеристики качественной стали. опреде.тяются содержанием углерода, от которого зависит вид термообработки и область применения сталей.  [c.116]

При нагреве стали во время сварки до температуры ниже Тотп никаких изменений в структуре и механических свойствах стали не происходит. Нагрев в интервале температур от Тотп ДО вызывает дополнительный отпуск стали, сопровождаемый понижением ее прочности и твердости по сравнению с этими же характеристиками исходного металла, при соответствующем повышении пластичности. Электрический нагрев значительно ускоряет процессы отпуска, заметно сказываясь на свойствах стали даже в условиях контактной сварки, при которой длительность теплового воздействия очень мала.  [c.61]

Так, в результате обработки методом аусформинг серии высоколегированных конструкционных сталей [116] с содержанием легирующих элементов в пределах 0,28—0,57% С 1,42— 1,46% Сг 4,5—4,75% N1 1,43—1,78% Si (марганец отсутствовал) было получено увеличение предела прочности (при низкотемпературном отпуске на 95°) до величины свыше 280 кГ/мм , а предела текучести — свыше 210 кГ1мм - (отпуск при 260°). Ха ктеристики пластичности при этом возросли с 5 до 8— 97о (относительное удлинение) и с 10 до 50% (поперечное сужение). Деформирование данных сталей в процессе НТМО производилось при двух температурах 535° (область относительной устойчивости аустенита) и 315° (игольчато-троостит-ный интервал переохлажденного аустенита). Если в случае деформации при 535° было получено закономерное монотонное увеличение прочностных характеристик с ростом степени обжатия стали, то в случае деформирования заготовок при 315° прочность стали (в частности, ее твердость) возрастала лишь до деформаций порядка 30% после максимума при 30% обжатия твердость стали начинала уменьшаться [116]. Такое снижение твердости при больших степенях деформации объясняется образованием игольчатого троостита в структуре стали, чего не наблюдается в случае деформирования стали в температурной области относительной устойчивости аустенита.  [c.66]

Известны исследования 43] магнитных свойств стали ЗОХГС. Как и для других марок сталей с содержанием углерода более 0,3%, ход изменения магнитных свойств с температурой отпуска рюрмально закаленных образцов позволяет на основании измерений магнитных характеристик осуществить контроль качества термической обработки только сравнительно низкотемпературного отпуска (примерно до 450°С). В интервале температур отпуска 500—650 °С отсутствует однозначный ход зависимости магнитных свойств и твердости. В работе [44] изучены магнитные свойства стали 50ХГ (рис. 3). Все изученные магнитные свойства стали, достигнув некоторого значения при температуре закалки 780 °С, с дальнейшим повышением температуры остаются практически постоянными, что свидетельствует о малой чувствительности стали к перегреву. Изменения магнитных, электрических и механических свойств стали, закаленной от 850 °С и отпущенной при 100—700°С, протекают аналогично рассмотренным выше.  [c.84]


В интервале температур отпуска 250—350° С их вязкость и предел прочности на изгиб больще, чем вольфрамовых быстрорежущих сталей, поэтому они также имеют большие значения этих характеристик и при более высоких температурах отпуска. Твердость молибденовых быстрорежущих сталей в процессе отпуска при температурах свыше 560 С в некоторых случаях начинает убывать несколько быстрее, чем твердость легированных вольфрамом сталей (табл. 87—89). Поэтому температура, характеризующая теплостойкость легированных молибденом быстрорежущих сталей "ОнксбО меньше, чем легированных вольфрамом.  [c.221]

Изменения предела прочности и предела текучести при изгибе, твердости быстрорежущих сталей марки R6, закаленных с различных температур, в зависимости от температуры отпуска приведены в табл. 90. Температуры нагрева под закалку, обеспечивающие наибольшую твердость и наибольший предел прочности при изгибе, тоже не совпадают, но путем вариаций температур отпуска можно установить оптимальное значение для того и другого. Предел прочности на изгиб и ударная вязкость быстрорежущей стали марки R6, полученной с помощью электрошлакового переплава, при той же твердости существенно выше тех же характеристик стали с более неоднородной структурой. Данные о влиянии трехкратного отпуска по одному часу на предел прочности при изгибе быстрорежущих сталей марок R6 (6—5—2) и R10 (2—8—1) приведены в табл. 91. Предел прочности на изгиб быстрорежущей стали типа 6—5—2, полученной путем электрошлакового переплава, в случае, почти такого же предела текучести при сжатии немного меньше, чем быстрорежущих сталей типа 2—8—1, легированных почти исключительно молибденом, но существенно больше, чем у сталей, содержащих 18 % W (см. табл. 78). Данные о влиянии температуры закалки на предел прочности при изгибе и работу разрушения при изгибе в продольном и поперечном направлениях для сталей марки R6, полученных электрошлаковым переплавом и обычного качест,-ва, приведены в табл. 92. Благоприятное воздействие электрошлакового переплава очевидно как в продольном, так и в поперечном направлениях. Значительно уменьшается анизотропия свойств.  [c.225]

Изменение механических свойств инструментальной стали К14 в зависимости от температуры закалки и отпуска, а также продолжительности обработки представлено в табл. 105. Из этих данных (см. также рис.. 202) следует, что увеличение температуры закалки стали марки К14 выше 1000° С только в незначительной степени улучшает прочностные характеристики, при этом вязкие свойства ухудшаются. Стали, полученные методом электрошлакового переплава и, кроме того, хорошо обработанные путем пластической деформации, по сравнению с обычными инструментальными сталями, имеют более высокие значения вязкости при одних и тех же значениях прочности. Поэтому стали, полученные способом переплава, можно закаливать на ббльшую прочность (твердость) и благодаря этому увеличить износостойкость и долговечность инструмента. С уменьшением скорости охлаждения (охлаждение в масле или в соляной ванне вместо охлаждения на воздухе) или же с увеличением количества заэвтектоидных карбидов и содержания бейнита (см. рис. 199, б) в значительной степени ухудшаются прочностные и главным образом вязкие свойства сталей. Наиболее предпочтительные свойства получаются при ступенчатой закалке в соляной ванне. На прогрев детали с толщиной поперечного сечения 100 мм требуется около 15 мин. При закалке в масле нет необходимости держать детали в масле до полного охлаждения, а достаточно только до тех пор, пока температура сердцевины не достигнет 500° С. При толщине поперечного сечения 100 мм на охлаждение требуется таким образом около 8 мин, а при толщине 250 мм 25 мин. Повышение температуры отпуска выше 600° С приводит к ухудшению вязких свойств стали марки К14, а также сталей, полученных способом электрошлакового переплава. Сталь марки К14 более склонна к обезуглероживанию, чем стали марок К12 и К13. Обезуглероживание можно уменьшить путем цементации упаковкой в ящики с твердым карбюризатором При повышении температуры отпуска теплостойкой штамповой инструментальной стали для горячего деформирования марки 40 rMoV5.3 с содержанием 3% Мо и 5% Сг снижаются прочностные характеристики, растет значение ударной вязкости, значение вязкости при разрушении вначале также увеличивается. Путем отпуска при температуре 560—580° С можно добиться более благоприятного сочетания свойств. Отпуск при температуре выше 600° С охрупчивает эту сталь в меньшей степени, чем сталь К14.  [c.249]

При рассмотрении сталей перлитного класса наиболее удобна классификация, разделяющая их в зависимости от содержания углерода, поскольку этим определяются такие особенности, как деформируемость и свариваемость, твердость мартенсита после закалки, а также уровень магнитных свойств. Содержание углерода определяет и режимы термической обработки, используемые для придания неаустенитным сталям оптимальных свойств для малоуглеродистых сталей это преимущественно нормализация для среднеуглеродистых, как правило, улучшение [закалка с высоким (600—700 °С) отпуском] для высокоуглеродистых (за исключением быстрорежущих) — закалка с низким (150—200 °С) отпуском. Отпуск штамповых сталей с 0,45 — 0,7 мае. % С и быстрорежущих сталей проводится при средних температурах (450—580 °С). Легирование сталей позволяет изменять ряд свойств прокаливаемость, механические и другие характеристики, термопрочность и термостойкость и, следовательно, диапазон температур возможного применения сталей.  [c.41]

При развитии обратимой отпускной хрупкости, если исключено протекание процессов отпуска, не имеющих отношения к этому виду охрупчивания, не изменяются твердость, предел текучести и другие характеристики механических свойств, получаемь е в результате обычных статических испытаний при комнатной температуре, электрические и магнитные свойства стали, плотность, период Кристаллической решетки феррита и т,д, [1]. Так, даже при весьма сильном охрупчивании (при 510°С в течение 3000 ч после закалки и стабилизирующего отпуска при бБО С продолжительностью 60 ч) стали 15Х2НЗМФА, когда повышение критической температуры хрупкости достигает 120°С (рис. 3, в), не обнаружено статистически значимых изменений таких структурно-чув-  [c.17]

Получают распространение малолегированная борсодержащая сталь марки 20ХГР, 25ХГР. Введение небольших количеств бора (0,002—0,005%) значительно увеличивает прокаливаемость, прочностные характеристики и вязкость. После закалки и низкого отпуска твердость стали HR 36—40.  [c.235]

Цементация — это процесс насыщения поверхности детали углеродом, проводимый с целью повышения твердости, износостойкости и предела выносливости при переменных нагрузках. Повышение перечисленных характеристик достигается, однако, только в том случае, если цементация сопровождается термической обработкой, заключающейся в закалке и низком отпуске. Обычно для цементации берут малоуглеродистую сталь с содержанием углерода до 0,2% в этом случае твердость ненауглероженных внутренних слоев изделия после закалки не изменяется и остается равной примерно НВ 160—170, в то время как твердость поверхности. изделия повышается до НВ 600. Если от изделия требуются повышенные прочностные свойства в сердцевине, можно применять стали с большим содержанием углерода (до 0,3), однако вязкость при этом окажется несколько сниженной. Обычно толщина цементованного слоя не превышает 1 —1,5 мм, а концентрация углерода в нем — 0,8—1,0%.  [c.116]


Свойства стали определяются величиной действительного зерна аустенита. Увеличениезерна не оказывает существенного влияния на характеристики, полученные при статическом испытании на разрыв и твердость, но резко снижает ударную вязкость, особенно при высокой твердости (после закалки и низкого отпуска). Чем крупнее зерно аустенита, тем выше прокаливаемость, тем более  [c.537]

Снижение ударной вязкости и пластических свойств стали наблюдается также при отпуске в интервале 590—650° С. Однако в отличие от отпуска при 450° С в этом случае вследствие отпуска мартенсита снижаются прочностные характеристики и твердость. Интервал 590—650° С соответствует второй области хрупкости, по-вндимому, связанной с образованием дисперсных частиц фазы типа Ме Х, в которой часть атомов углерода замещена атомами азота [45, 96].  [c.117]

Осевые пуансоны 3, 4 (рис. 58) — наиболее нагруженные элементы ц тампа, причём наибольшая контактная нагрузка возникает от осадки заготовки на периферийной части торца пуансона. Материал осевых пуансонов должен быть таким же, как и при холодном выдавливании. В процессе опытных работ удовлетворительную стойкость показали пуансоны из инструментальной легированной стали Х12М. При этом термообработку лучше производить на первичную твердость, при которой прочностные характеристики выше, а хрупкость ниже. Закалку стали Х12М на первичную твердость производят в масло после нагрева до температуры 1030 °С с последующим низким отпуском при температуре 200—250°С, При такой термической обработке твердость пуансонов достигает НКС 56—59, что вполне удовлетворяет процессу холодной штамповки. Кроме названной 1иарки стали могут быть использованы и другие стали с подобными свойствами.  [c.170]

Большое влияние на режущие свойства инструмента оказывает твердость. Разброс не должен превышать двух единиц твердости по шкале С Роквелла. Нормальная твердость зуборезного инструмента HR 64—66. Опыт показал, что даже такое небольшое изменение твердости (2 единицы) может оказать существенное влияние на режущие свойства инструмента. В настоящее время уже достигнуто регулирование твердости в пределах одной единицы по шкале С Роквелла благодаря тщательному выбору стали и точному контролю процесса термической обработки. Кроме твердости на качество инструмента оказывают влияние другие компоненты отпуск, процент науглероживания и обезуглероживания, размер зерна, размер и распределение карбидов и образование полосчатой структуры. Инструмент должен иметь мелкозернистую структуру, а частицы карбидов распределятся равномерно в массе стали когда карбиды сгруппированы, они образуют хрупкие зоны, которые легко разрушаются. Эти характеристики проверяются путем ыегаллографического анализа.  [c.125]


Смотреть страницы где упоминается термин Отпуск сталей — Характеристика твердости : [c.370]    [c.58]    [c.113]    [c.271]    [c.265]    [c.44]    [c.394]    [c.546]    [c.246]    [c.236]    [c.272]    [c.404]    [c.143]    [c.157]    [c.103]   
Справочник металлиста Том2 Изд3 (1976) -- [ c.154 , c.155 , c.161 ]



ПОИСК



ОТПУСК СТАЛЕ

Отпуск

Отпуск сталей — Характеристика

Отпуск — Характеристика

Отпуская ось

Сталь Отпуск

Сталь Твердость

Сталь Характеристики



© 2025 Mash-xxl.info Реклама на сайте