Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Скорость диффузии фазы

В случае перлитного превращения образуются фазы, резко отличающиеся по составу от исходной феррит, почти не содержащий углерода, и цементит, содержащий 6,67%, С. Поэтому превращение аустенит->перлит сопровождается диффузией, перераспределением углерода. Скорость диффузии резко уменьшается с понижением температуры, следовательно, с этой точки зрения увеличение переохлаждения должно замедлять превращения.  [c.243]


Если перейти от равновесных процессов плавления и затвердевания к почти равновесным условиям, как это наблюдается на практике, то окажется, что идеальные кривые на рис. 4.23, б и в слегка изменят свою форму. Очень малая скорость диффузии В в твердом А—В приводит к градиенту состава в направлении границы раздела фаз. Растворы, для которых Ао<1, концентрируются в последней порции замерзающей жидкости, в то время как растворы с йо>1 более концентрированы в части.  [c.172]

На первом этапе отпуска из мартенсита выделяются высокодисперсные частицы карбида. Центры кристаллизации растут до момента обеднения С и прекращения притока атомов соседнего элемента вследствие малой скорости диффузии из твердого раствора. Вокруг них образуются области твердого раствора с меньшей концентрацией С, находящегося в неустойчивом (коллоидном) равновесии с этими частицами. Поскольку, кроме исходного, возникает новый твердый раствор с меньшей концентрацией С, то распад мартенсита на этом этапе является двухфазным (гетерогенным). Длительность процесса обусловливается числом образующихся центров кристаллизации карбидной фазы, а скорость распада — скоростью зарождения карбидных частиц.  [c.107]

Влияние броуновского движения частиц. Как отмечалось в разд. 5.9, даже если броуновское движение субмикронных частиц очень незначительно, им нельзя пренебречь у стенки, где скорость непрерывной фазы уменьшается до нуля. Прежде чем плотность [уравнение (8.92)1 достигнет величины Ррз, возникает обусловленная броуновским движением диффузия, описываемая уравнением  [c.359]

Гетерогенные химические реакции и диффузионные процессы, идущие на границе раздела двух фаз, особенно характерны для сварочной металлургии при взаимодействии расплавленного металла с газовой фазой (жидкость — газ) или с расплавленным флюсом-шлаком (жидкость — жидкость), а также в процессе охлаждения сварного шва в активной газовой атмосфере (воздух). Скорость гетерогенных процессов зависит от размеров границы раздела, а также от ее состояния, так как если граница закрыта слоем продуктов реакции, затрудняющим диффузионный подвод реагентов, то может изменяться весь процесс и скорость диффузии будет лимитировать скорость химической реакции.  [c.304]

Конечное состояние показанной на рис. 5 системы должно, следовательно, зависеть от того, зафиксировано положение поршня или нет, т. е. являются параметрами Т, V или Р, V. Надо, конечно, иметь в виду, что этот вывод получен для приближенной модели. В реальной системе, строго говоря, нельзя поддерживать постоянными термодинамические параметры. При испарении или конденсации вещества, например, чтобы обе фазы в соответствии с принятой моделью оставались однородными, требуется бесконечно большая скорость диффузии вещества, иначе поведение системы зависит от локальной плотности пара над поверхностью жидкости. Даже в термодинамически однородной системе имеют место флюктуации параметров. Подобные трудно учитываемые детали внутреннего строения системы могут влиять на ее состояние, в особенности если это состояние находится вблизи границы области устойчивого равновесия. На последнем замечании следует остановиться особо.  [c.119]


Дислокации наряду с другими дефектами участвуют в фазовых превращениях, рекристаллизации, служат готовыми центрами при выпадении второй фазы из твердого раствора. Вдоль дислокаций скорость диффузии на несколько порядков выше, чем через кристаллическую решетку без дефектов. Дислокации служат местом концентрации примесных атомов, в особенности примесей внедрения, так как это уменьшает искажения решетки. Примесные атомы образуют вокруг дислокации зону повышенной концентрации, которая мешает движению дислокаций и упрочняет металл.  [c.14]

Хромирование проводилось из газовой фазы неконтактным способом, путем пропускания через находящийся в реакционной камере раскаленный феррохром смеси водорода и хлористого водорода в соотношении 3 5 см /сек. Этот состав газовой смеси является оптимальным для обеспечения наибольшей концентрации хрома на поверхности сплавов на основе железа [2]. Через 35—40 мин. после начала процесса количество подаваемого в газовую смесь хлористого водорода уменьшалось до 1—1.5 см /сек., так как после образования на поверхности хромируемого изделия тонкого диффузионного слоя скорость хромирования определяется уже скоростью диффузии атомов хрома через этот слой. Температура процесса составляла 1000 и 1100° С, продолжительность — 4 часа.  [c.162]

Так как любая граница фаз представляет собой энергетический барьер для диффундирующих атомов, в многослойных покрытиях скорость диффузии ниже, чем в однослойных.  [c.5]

Принципиальной трудностью для защиты тугоплавких металлов от окисления при температурах выше 2000°С является большая скорость диффузии кислорода в тугоплавких окислах. В связи с этим необходимо изыскание сложных окисных фаз с высокой температурой плавления и низкой диффузионной подвижностью компонентов.  [c.7]

Для интенсификации роста диффузионного слоя нужно уменьшить скорость диффузии насыщающего элемента в насыщаемом металле, а также уменьшить стабильность кристаллической решетки исходной фазы. Этого можно добиться путем легирования элементами, повышающими энергию активации диффузии или влияющими на точки фазовых превращений либо область стабильности исходной фазы.  [c.21]

Регулируя состояние поверхности раздела, можно добиться усиления связи, подавления образования нежелательных фаз, уменьшения градиента химического потенциала и снижения скорости диффузии, определяющей рост реакционной зоны. Каждое из этих направлений будет обсуждаться в последующих разделах.  [c.126]

В бинарной смеси на границе раздела фаз жидкая фаза обедняется низкокипящим компонентом, а паровая им обогащается (в подавляющем большинстве случаев). Вследствие этого на границе раздела фаз бинарной системы температура насыщения увеличивается, а перегрев относительно снижается, что замедляет испарение в паровой пузырь. Возникающая разность концентраций также замедляет испарение. Восстановление равновесия в пограничном слое зависит от скорости диффузии в жидкости низкокипящего компонента. Поэтому в бинарных смесях минимум коэффициентов теплоотдачи обычно соответствует максимуму разности концентраций, в то  [c.113]

В общем, скорость диффузии примесей внедрения значительно выше, чем скорость самодиффузии молибдена. Но при[ одном и том же количестве второй фазы в молибдене по мере коагуляции частиц пути диффузии между ними увеличиваются, градиент концентрации примеси внедрения между большими и малыми частицами падает, что приводит к уменьшению скорости диффузии примесных атомов. Кроме того, уменьшение поверхностной энергии, движущей силы процесса коагуляции, связанное с ростом радиуса кривизны частиц, также способствует уменьшению скорости процесса коагуляции, которая выражается так  [c.47]

При лазерной обработке имеют место высокие скорости нагрева (до 10 ) и охлаждения (до 5 10 град/с), образование метастабильных фаз, сверхтонкой структуры вещества, пересыщенных твердых растворов, а также может возникнуть аморфная структура. Поверхность можно также насыщать упрочняющими легирующими добавками с высокой скоростью диффузии в жидкой фазе, в отличие от твердой фазы при химико-термической обработке.  [c.200]


Полученное уравнение представляет собой логарифмический закон роста пленки по времени. При низких температурах логарифмический закон обычно сохраняется, так как константы скорости реакций в твердой фазе очень малы и процессы диффузии не лимитируют развитие химических реакций. При высоких температурах увеличивается кристаллическая неупорядоченность поверхностных слоев, резко возрастает скорость диффузии и количество поступающих атомов кислорода, а скорость химических реакций возрастает еще больше, так как энергия активации химической реакции выше, чем энергия активации диффузионных процессов (Л > Q)  [c.24]

Установление абсорбционного равновесия в общем случае протекает со значительно меньшей скоростью по сравнению со скоростью установления адсорбционного равновесия (в силу меньшей скорости диффузии в твердой фазе). Поэтому практическое использование процесса адсорбции может иметь место только при соблюдении ряда условий. С этой точки зрения различные иониты, в которых возможно абсорбционное равновесие, целесообразно разбить на следующие три группы 1) иониты с жесткой кристаллической решеткой 2) иониты, у которых параметры кристаллической решетки могут изменяться в некоторых пределах 3) иониты гелеобразной (гелевой) структуры.  [c.172]

Урановое или уран-плутониевое карбидное топливо по сравнению с окисным имеет существенно более высокую теплопроводность, более высокую плотность ядер деления и низкую замедляющую способность, однако химическая совместимость его с наиболее распространенными материалами оболочек, в частности, нержавеющими сталями и цирконием, гораздо хуже. Так, при температуре 1100° С сталь 0Х18Н9Т науглероживается, зона взаимодействия 100 мкм появляется всего через 6 суток, а с цирконием и карбидом циркония карбид урана образует непрерывный твердый раствор. Карбид урана взаимодействует при 1500 С с ванадием и образует жидкую фазу. Карбид урана хорошо совместим вплоть, до температур 1500—1600° С с карбидами тяжелых металлов (ниобия, молибдена, вольфрама, тантала), а также с пиролитическим углеродом и карбидом кремния. Карбидное топливо сравнительно хорошо удерживает продукты деления. Так, скорость утечки газообразных продуктов деления составляет менее 0,1% (скорость диффузии при температуре 1500°С).  [c.10]

Хотя характер термообработки, который вызывает склонность к межкристаллитной коррозии высокохромистых и хромоникелевых сталей типа Х18Н9, различен, что обусловлено различием скоростей процессов диффузии в твердых а- и у-растворах (скорость диффузии в а-фазе больше), процессы, приводящие к появлению этой склонности у сталей обоих типов, почти идентичны.  [c.424]

Для уп1)0н1.сн 1я прн як1, что однородность, соответствующая равновесию, по и1С )/кивается только в жидкой фазе, но не в твердой, где скорость диффузии значнгельпо меньше.  [c.93]

Исходя из особенностей движения одиночной частицы (разд. 3.2), можно считать твердо установленным факт влияния перел1ешивания на скорость испарения и скорость реакции в некоторых гетерогенных системах. Относительно систем газ — твердые частицы и жидкость — твердые частицы существует мнение [360], что если скорость массообмена определяется скоростью диффузии в жидкой фазе, то она начинает линейно зависеть от скорости перемешивания.  [c.180]

Данные, приведенные на фиг. 4.28, служат иллюстрацией того, что распределение плотности и скорости дискретной фазы зависит от отношения заряда к массе частиц и коэффициента диффузии частиц. Если построить зависимость параметров, характеризующих распределения скорости и плотности [в соответствии с формулами (4.86) и (4.87)] от турбулентного числа электровязкости Еу, величины (Нро — Мрш)/иро и т будут стремиться к единице, т. е. пределу, отвечающему вязкому движению частиц дискретной фазы (разд. 5.5). Профиль плотности, однако, в очень сильной степени зависит от Еу. При больших значениях Еу невозможно поддержать стационарное течение взвеси, поскольку  [c.195]

Задача о диффузии в газовой среде решается методами кинетической теории газов, так как в этом случае не требуется особой энергии активации для проникновения одного газа в другой. Если диффузия происходит в конденсированных фазах (жидкая, твердая), то в этом случае для перемещения частиц диффузанта требуется энергия активации, так как в жидкости и в кристалле частицы между собой связаны значительной энергией межатомного или межмолекулярного взаимодействия, находясь на малых расстояниях друг от друга. Скорость диффузии в этом случае будет значительно меньше.  [c.296]

Такой диссипативной структурой для области 2 являются диффузионные потоки атомов углерода, обеспечивающих транспорт к бывшим зародышам фазы, и как следствие рост фазы. Скорость ее роста определяется скоростью диффузии. При этом до тех пор пока сохраняется пластичная форма карбидных частиц сохраняется и когерентность решеток твердого раствора и карбида. Распад мартенсита заканчивается образованием отпущенного мартенсита в виде высокодисперсной ферритокарбидной смеси.  [c.207]

Дислокации наряду с другими дефектами участвуют в фазовых превращениях, рекристаллизации, служат готовыми центрами при выпадении второй фазы из твердого раствора. Вдоль дислокаций скорость диффузии на иаскп1п.ко порядков чем через 1фисталлическую решетку без дефек-  [c.266]

Построим теперь динамическую модель процесса абсорбции в насадочном аппарате, учитывающую продольное перемешивание фаз. В реальных аппаратах продольное перемешивание фаз объясняется рядом причин прежде всего различием скоростей движения фаз в разных точках аппарата и, кроме того, турбулентной диффузией фаз, уносом частиц одной фазы (например жидкости) потоком другой фазы (газа). Подробное теоретическое описание продольного перемешивания, учитывающее все перечисленные факторы, в настоящее время отсутствует. Для описания структуры потоков в аппарате обычно используют упрощенные модельные представления. Наиболее распространенными из них являются ячеечная и диффузионная модели. В данной книге для описания структуры потоков используем вторую из этих моделей, согласно которой перемешивание фаз в аппарате аналогично процессу диффузии. В диффузионных процессах при наличии градиента концентрации какого-либо вещества возникает поток этого вещества, называемый диффузионным потоком, который пропорционален градиенту концентрации. Поскольку процесс перемешивания аналогичен процессу диффузии, можно считать что и в насадочном аппарате возникает поток вещества определяемый законом Фика / = = —pZ)grad0, который в одномерном случае имеет вид / =  [c.17]


В атомном механизме сверхпластичности важную роль, видимо, играет скольжение по межфазным границам. Поэтому при большом количестве второй фазы должны иметь существенное значение структура межфазных границ и скорость диффузии по этим границам по сравнению с межзеренными внутрифазовыми границами.  [c.561]

В механизме окислительного изнашивания важную роль играют строение окисных пленок и их механические свойства. Строение и свойства пленок окислов в значительной степени зависят от их толщины. Тонкие сплошные пленки (1-10) 10 м, как правило, образуются при невысоких и умеренных температурах. Однослойная окалина (окисная пленка) образуется только на чистых металлах с постоянной валентностью, например на алюминии и никеле. Металлы с переменной валентностью (железо, медь, кобальт, марганец), имеющие различные степени окисления, могут давать многослойнук окалину - несколько окисных фаз, отвечающих различным степеням окисления. Порядок расположения слоев от внешней к внутренней поверхности будет соответствовать убыванию содержания кислорода в каждой окисной фазе. Однако эти же металлы в определенных условиях окисления могут образовывать практически однофазные слои, отвечающие одной степени окисления. Более сложная картина наблюдается при окислении сплавов. Металлы, входящие в состав сплавов, обладают различным сродством к кислороду. Это обстоятельство и разная скорость диффузии металлов в пленке окислов обусловливают более или менее сильную сегрегацию атомов металла в окисной пленке. В сложных сплавах при окислении происходит обогащение или обеднение пленки окислов элементами, входящими в сплавы. При этом степень обогащения ИЛИ обеднення зависит от сродства металла к кислороду и от скорости диффузии металла в слое окисла.  [c.131]

К числу физических явлений, оказывающих влияние на жаростойкость покрытий, относятся полиморфные превращения и рекристаллизация. Даже покрытие с нулевой начальной пористостью может утратить свои защитные свойства в результате рекристаллизации, которая способствует проникновению газов через покрытие к металлу за счет граничной диффузии [1, 2]. В случае фазовых превращений из-за напряжений, возникающих вследствие разницы удельных объемов фаз, участвующих в превращении, должна происходить диффузия входящего в избытке в данную фазу компонента по направлению к растущему центру, тем самым автокаталитически ускоряя реакцию. Скорость диффузии, вызванной напряжениями, может значительно превысить скорость объемной диффузии. Именно эти диффузионные токи приводят к быстрому и полному разделению компонентов в большинстве фазовых превращений диффузионного типа [3, 4]. Поэтому предотвращение рекристаллизации и полиморфных превращений материала покрытия имеет существенное значение для повышения его жаростойкости.  [c.20]

А1, или №зА1. Скорость изменения размеров и фазового состава первой зоны при 950° определяется скоростью диффузии алюминия в никель и никеля к поверхности. Через 100 часов остается только один, четко выделяющийся слой со структурой М1зА1. После 1000 часов на поверхности обнаруживается почти чистый никель (а=3.518 кХ) и окись- никеля N10. Никаких следов фаз с алю минием нет.  [c.153]

В статье описаны методика процесса нанесения металлических п карбидных покрытий из парогазовой фазы и аппаратура. Исс.ледованы условия образования покрытий в заВиспмостп от скорости подачи компонентов, длительности процесса, температуры и концентрации компонентов реакции. Показано, что процесс осаждения покрытий в зависимости от условий протекает как в кинетической, так и в диффузионной области и определяется либо скоростью химической реакции на поверхности, либо скоростью диффузии углерода. Изучено влияние добавок метана в парогазовую смесь на процесс образования карбида ниобия. Найдены кинетические параметры процесса, а также энергия активации и значения предэкспонеициальиых множителей. Библ. — 9 назв., рис. — 4.  [c.337]

Другой механизм, при котором возможно коррозионное растрескивание, заключается в образовании и развитии разрушения только за счет механических факторов. При этом предполагается [57], что коррозионная среда содержит ионы или компоненты, которые могут или диффундировать в металл, образуя хрупкую фазу (например, гидрид) в вершине трещины, или сегрегировать в районы, непосредственно прилегающие к трещине, способствуя зарождению новой трещины. В качестве специфического элемента обычно рассматривают водород, скорость диффузии которого может быть сопоставима со скоростью развития трещины. При этом многие исследователи [ 58 и др.] указывают на возможность образования гидридов, обладающих низкой пластичностью и вязкостью и затрудняющих пластическую деформацию металла перед вершиной трещины. По мнению В. А. Маричева и И. Л. Розенфельда [59, с. 5—9], следует учитывать эти возможности понижения когезивной прочности титановых сплавов под действием достаточно высокой концентрации водорода в твердом растворе.  [c.58]

Движущей силой этого типа нестабильности является межфаз-ная поверхностная энергия, которая снижается по мере уменьшения величины межфаз ной поверхности. Сфероидизация в сталях перлитного класса — один из наиболее известных примеров такой нестабильности. Грэхем -и Крафт [12] рассмотрели факторы, влияющие на высокотемпературную стабильность эвтектических композитных материалов. Они указали на существование особого кристаллографического соответствия между фазами, которое не меняется при огрублении эвтектической структуры. Они установили также, что, хотя механизм роста фаз состоит в растворении одной из них и в повторном осаждении ее на имеющихся зернах, процесс лимитируется скоростью диффузии, а не скоростью растворения. Для анализа иопользовались уравнения Томсона — Фрейндлиха, определяющие концентрацию элемента у поверхности волокна известного радиуса кривизны.  [c.90]

Особенности процесса кристаллизации при эвтектической реакции рассмотрены Шайлем [53], Тиллером [60], Джексоном и Хантом [35] и многими другими авторами и приведены в обзоре Хогана и др. [29]. Шайль и Тиллер показали, что для стабильного роста пластинчатой эвтектической структуры необходимо некоторое переохлаждение расплава ниже равновесной эвтектической температуры. Во-первых, освобождающееся при кристаллизации расплава тепло идет на создание поверхностной энергии двух твердых фаз. Следовательно, степень переохлаждения определяется энергией поверхности раздела фаз, сосуществующих в твердом материале последняя, в свою очередь, отражает разницу свободных энергий твердых и жидких фаз [64]. Во-вторых, некоторое переохлаждение необходимо для того, чтобы достичь равновесия между скоростями диффузии атомов на поверхности раздела и общей скоростью ее перемещения.  [c.356]

Значения микротвердости внутри зерен и в приграничных участках перед началом испытания были почти одинаковы. В течение первых 100 ч старения при 650° С значительно повышается твердость тела зерна и приграничных слоев за счет выпадения карбидной фазы. При дальнешем старении до 1000 ч микротвердость сохраняется высокой, однако ее значения в приграничных зонах заметно выше из-за большой скорости диффузии и интенсивного выделения дисперсных карбидов по границам зерен, затем твердость зерна и границ непрерывно снижается во времени.  [c.63]

Из рпс. 2 также следует, что скорости роста кристаллов впд-манштеттового феррита как на поверхности, так и в объеме образцов в стали 20С2 при всех температурах ниже, чем в углеродистой стали. В марганцовистой п никелевой сталях наблюдается дальнейшее понижение скоростей роста. Влияние. легирующих элементов па скорость роста кристаллов видманштеттового феррита может быть связано с различными факторами, в частности, с влиянием легирования па критические точки в стали и разность свободных энергий фаз, па скорость диффузии углерода, на степень разупрочнения аустенита в процессе роста кристаллов и др.  [c.133]


В исходном состоянии исследуемый сплав БрОФб,5—0,15 представляет собой пересыщенный а-твердый раствор, термодинамически неустойчивый при повышенных температурах. Согласно диаграмме состояния резкое уменьшение концентрации олова наблюдается при температуре 350° и выше. На рис. 10 представлены результаты изменения параметра а решетки оловянистой бронзы после трения в течение 30 и 10 ч (й сх = 3,675 А). Видно, что на глубине 5 мкм а = 3,62 А и сохраняется постоянным до глубины 2 мкм. На меньшем расстоянии от поверхности наблюдается значительное обеднение сплава оловом и образование медной пленки (рис. 10, а). Однако возрастание скорости диффузии атомов в процессе трения может привести к совершенно другому эффекту— распаду неравновесного твердого раствора. На рис. 10, б представлены результаты рентгенографического анализа образца, который после 10 ч испытаний проявил скачкообразное увеличение трения и износа. Падение периода решетки а-твердого раствора сопровождалось появлением новой системы интерференционных линий, свидетельствующих об образовании в зоне контакта фазы, близкой по составу к интерметаллиду е. Распад твердого раствора и образование новой фазы являются следствием микродиффузион-ных процессов при трении и наличия флуктуаций концентрации олова в деформированных микрообъемах.  [c.24]


Смотреть страницы где упоминается термин Скорость диффузии фазы : [c.103]    [c.140]    [c.111]    [c.293]    [c.41]    [c.69]    [c.93]    [c.48]    [c.21]    [c.100]    [c.47]    [c.96]    [c.197]   
Механика жидкости и газа (1978) -- [ c.69 ]



ПОИСК



Влияние диффузии на скорость растворения твердой фазы в неподвижной среде

Диффузия

Диффузия скорость

П фазы

Фаза скорость

Фазы диффузия



© 2025 Mash-xxl.info Реклама на сайте