Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Локальная катодная защита

Эти условия должны быть соблюдены уже при проектировании и сооружении трубопровода. В старых ранее проложенных трубопроводах должны быть смонтированы разделительные элементы (б). Это мероприятие не всегда возможно и не всегда дает эффект в течение длительного срока, например в промышленных сооружениях. В таких случаях в зону действия локальной катодной защиты должен быть включен весь комплекс подземных сооружений (см. раздел 13). На трубопроводах с муфтовыми соединениями, не имеющих продольной проводимости (а), катодная защита без проведения дополнительных мероприятий неосуществима. При слишком малом сопротивлении покрытия (в) необходимо искать экономически приемлемый компромисс между осуществлением дополнительной изоляции н повышенным потреблением защитного тока.  [c.245]


ЛОКАЛЬНАЯ КАТОДНАЯ ЗАЩИТА ПРОМЫШЛЕННЫХ ОБЪЕКТОВ ОТ КОРРОЗИИ  [c.286]

Опасность коррозии для трубопроводов на промышленных предприятиях обычно более высока, чем для протяженных магистральных трубопроводов, поскольку промышленные трубопроводы в большинстве случаев образуют коррозионный элемент с железобетонными фундаментами (см. раздел 4.3). Такая опасность коррозии на определенных ограниченных участках промышленных объектов может быть устранена методами локальной катодной защиты. Этот способ аналогичен известному [1] методу защиты горячих (наиболее опасных) мест. Зона защиты при этом не ограничивается, т, е. трубопроводы не нужно электрически отсоединять от других участков трассы или от ответвлений.  [c.287]

ОСОБЕННОСТИ ЛОКАЛЬНОЙ КАТОДНОЙ ЗАЩИТЫ ОТ КОРРОЗИИ  [c.287]

Локальная катодная защита от коррозии достигается, если выполняется один из следующих критериев [2]  [c.288]

Трубопроводы для охлаждающей воды имеют важное значение для работы электростанций и их нормальное функционирование не должно нарушаться. Пожарные трубопроводы важны для обеспечения безопасности. Те и другие трубопроводы обычно имеют надежное изолирующее покрытие, но в местах неизбежного повреждения покрытия они подвергаются опасности язвенной (сквозной) коррозии вследствие образования коррозионного элемента со сталью в бетоне. На сравнительно тонкостенных пожарных трубопроводах такие дефекты действительно нередко наблюдаются уже после непродолжительной эксплуатации. Локальная катодная защита от коррозии предотвращает появление таких повреждений.  [c.290]

На рис. 13.2 показано примерное расположение анодных заземлителей для локальной катодной защиты от коррозии на электростанции. Трубопроводы для охлаждающей воды имеют условный проход 2000 и 2500 мм и проложены на глубине до 6 м пожарные водопроводы с условным проходом (диаметром) 100 мм заглублены в грунт на 1 м. На тех и других трубопроводах применено битумное покрытие.  [c.290]

Рис. 13.2, Локальная катодная защита на электростанции а — глубинные анодные заземлители 6 — горизонтальные анодные заземлители вдоль трассы пожарного водопровода. Значения потенциалов по медносульфатному электроду сравнения /г (Л — стационарный потенциал перед пуском Рис. 13.2, Локальная катодная защита на электростанции а — <a href="/info/495022">глубинные анодные заземлители</a> 6 — горизонтальные <a href="/info/39582">анодные заземлители</a> вдоль трассы пожарного водопровода. Значения потенциалов по <a href="/info/39694">медносульфатному электроду сравнения</a> /г (Л — <a href="/info/39792">стационарный потенциал</a> перед пуском
Для транспортирования продуктов по трубопроводам нужны насосные и компрессорные станции. Эти станции обычно электрически изолируются от протяженных магистральных трубопроводов, имеющих катодную защиту. Требуемые для них железобетонные фундаменты гораздо меньше, чем фундаменты на электростанциях и на нефтеперерабатывающих заводах. Однако поскольку трубы на этих станциях подвергаются опасности коррозии вследствие образования коррозионного элемента с фундаментами, для них рекомендуется локальная катодная защита.  [c.294]


Трудность, указанная в пункте в, может быть преодолена применением локальной катодной защиты от коррозии, как указано в разделе 13. Однако это возможно,, например, на промышленных объектах, но не может быть осуществлено для сетей коммунального электроснабжения. Эффект локальной катодной защиты может быть получен также при специально подобранном расположении анодных заземлителей в грунтах с высоким омическим сопротивлением (см. раздел 13.2) и — с ограничением протяженности зоны защиты—на защищаемых объектах с высоким продольным сопротивлением. Это наблюдается в случае кабелей со свинцовой оболочкой (см. рис. 14.1). Обычная катодная защита от коррозии возможна, если защищаемый объект отсоединен от заземлителей при помощи специальных разъединительных устройств. Это технически выполнимо при прокладке высоковольтных кабелей в стальных трубах.  [c.307]

Рис. 4.12, Катодная защита — наложение внешнего тока на тон локального элемента Рис. 4.12, <a href="/info/6573">Катодная защита</a> — наложение <a href="/info/469390">внешнего тока</a> на тон локального элемента
Разрушение пассивности ионами С1 чаще происходит локально, на тех участках поверхности, где структура или толщина пассивной пленки изменены. Образуются мельчайшие анодные участки активного металла, окруженные большими катодными площадями пассивного металла. Разность потенциалов между подобными участками 0,5 В или более, и эти элементы называют активно-пассивными элементами. Высокие плотности тока на аноде обусловливают высокую скорость разрушения металла, что создает катодную защиту областей металла, непосредственно окружающих анод. Фиксирование анода на определенных участках приводит к образованию питтингов. Чем больше ток и катодная защита около питтинга, тем меньше вероятность образования другого питтинга по соседству. Поэтому плотность расположения глубоких питтингов обычно меньше, чем мелких. Исходя из вероятности образования активно-пассивного элемента очевидно,  [c.84]

При потенциале ниже критического ионы С1 не могут заместить адсорбированный кислород до тех пор, пока пассивная пленка остается неповрежденной, поэтому питтинг не развивается. Если бы пассивность была нарушена другим путем, например снижением концентрации кислорода или деполяризатора в щелях (щелевая коррозия) или локальной катодной поляризацией,- пит-тинг мог бы тогда возникнуть независимо от того, выше или ниже критического значения находится потенциал основной поверхности. Но в условиях однородной пассивности на всей поверхности металла, чтобы организовать катодную защиту для предотвращения питтингообразования, требуется лишь сдвинуть потенциал металла ниже критического значения. Это противоречит обычному правилу применения катодной защиты, согласно которому необходима более глубокая поляризация металла — до значения анодного потенциала при разомкнутой цепи.  [c.88]

Если у трубопроводов с катодной защитой сопротивления изоляции значительно меньше обычных практических значений и нет никаких контактов с низкоомно заземленными сооружениями (см. раздел 3.6.1), то должны иметься значительные повреждения изоляционного покрытия. Для оценки эффективности коррозионной защиты эти повреждения могут быть локализованы путем измерения интенсивности и оценены по величине (см. раздел 3.6.2.2), причем определяется и локальный потенциал труба — грунт.  [c.130]

При наличии значительных блуждающих токов во время ежегодных повторных измерений (в отличие от практики контроля обычной катодной защиты) следует записывать по крайней мере отдельные значения потенциалов труба—грунт в течение полного цикла изменения нагрузки по режимному графику работы. Хорошо зарекомендовали себя синхронные записи с показателями какой-либо защитной установки, в частности с величиной тока в трубопроводе. Для прерывания тока ни в коем случае не следует нарушать соединение трубопровод—рельс. Для этого нужно всегда выключать преобразователи станций катодной защиты на первичной стороне. Однако в принципе потенциалы выключения можно измерять только ночью. Проходит опробование новый способ измерения потенциалов [19]. Данные об измерительных зондах для локального определения потенциалов имеются в разделе 3.3.3.2.  [c.336]


В сжатой информационной форме в виде графиков и таблиц, а также пояснений к их использованию, представлен материал об электрохимических методах катодной защиты от коррозии. Описаны методы пассивной и катодной защиты. Приведены данные о гальваническом влиянии высокого напряжения и способы коррозионных измерений, необходимые сведения об измерительной технике, о локальной катодной защите, катодной защите в морской воде и внутренней катодной защите.  [c.159]

Существуют также бактерии, которые поглощают железо и выделяют гидрозакись железа, что вызывает локальную щелевую коррозию. Другие бактерии окисляют аммиак, в результате чего образуется азотная кислота, действующая на большинство металлов. Кроме того, большинство бактерий производит двуокись углерода, из которой образуется оказывающая коррозионное действие угольная кислота. Грибы и плесень усваивают органические вещества и выделяют органические кислоты. Просто благодаря своему присутствию грибы, а также водоросли и рачки могут способствовать возникновению щелевой коррозии. Предотвращение или уменьшение биологической коррозии может быть достигнуто путем воздействия на окружающую среду, применения соответствующих покрытий, ингибиторов, бактерицидов и катодной защиты.  [c.601]

КИЙ ПОТОК создает локальные участки низкого давления, которые свою очередь вызывают образование в воде пузырей низкого давления. Молочный цвет воды, содержащей кислород, не возникает в обескислороженных водах. Разрушение кавитационных пузырьков на поверхности металла или вблизи нее создает сильную волну сжатия. Это явление возникает в результате совместного механического и химического воздействий. Оно было обнаружено на неметаллических материалах, не вступающих в химическую реакцию с водой, например на бакелите. Для борьбы с кавитацией предполагается усовершенствование конструкции, использование химически стойких сплавов с применением катодной защиты.  [c.202]

Катодной защитой можно достичь полного прекращения тока в цепи локальных микроэлементов металла, т. е. коррозии металла. Для этого нужно катодно заполяризовать защищаемый металл до значения обратимого потенциала его наиболее отрицательных анодных составляющих. Для стали таким потенциалом является обратимый потенциал железа в данном электролите.  [c.199]

Механизм защиты металлов от коррозии с помощью протектора аналогичен механизму катодной защиты (см. работу № 30) и сводится к ослаблению работы локальных анодов на поверхности защищаемого металла или к их превращению в катоды под влиянием катодной поляризации при присоединении протектора. Однако если при электрозащите защитная плотность тока (а следовательно, и степень защиты) зависит от разности потенциалов, налагаемой от внешнего источника постоянного тока, которая может регулироваться в широких пределах, то при защите с помощью протектора степень зашиты зависит от его электрохимических характеристик начального электродного потенциала, поляризуемости, величины поверхности, стабильности работы во времени и др.  [c.203]

Протекторная защита состоит в том, что к защищаемой конструкции присоединяют металл или сплав, электродный потенциал которого электроотрицательнее потенциала защищаемой конст- рукции в данной коррозионной среде. В морской воде или грунте материалом протекторов является чистый цинк или сплавы цинка с алюминием. Иногда применяют также сплавы на основе магния. В таком гальваническом макроэлементе протектор служит анодом и в процессе защиты постепенно электрохимически растворяется. Коррозия защищаемой конструкции — катода полностью прекращается или значительно уменьшается. Несмотря на увеличение общего тока элемента, локальный коррозионный ток защищаемой конструкции (ток микропар) после присоединения к ней протектора значительно уменьшается. Эффективность катодной защиты характеризуют величиной защитного эффекта  [c.83]

На основе локальной катодной защиты (защиты опасных мест ) в последние 10 лет была разработана технология совместной катодной защиты подземного оборудования и коммуникаций всего комплекса электростанций и промышленных агрегатов [51]. Эта технология целесообразна в том случае, когда системы трубопроводов уже нельзя надежно или экономично изолировать от железобетонных фундаментов или заземляющих устройств [52]. При наложении защитных токов в несколько сот ампер и применении глубинных анодных заэемлителей в этом случае можно было предотвратить образование протяженных макроэлементов путем снижения потенциала катодно защищаемых поверхностей [53]. В ФРГ с 1974 г. катодная защита магистральных газопроводов с давлением свыше 0,4 или 1,6 МПа считается обязательной и регламентируется рабочими нормалями Западногерманского объединения специалистов газового и водопроводного дела (DVQW Q-462 и Q-463) это относится и к нефтепроводам, защита которых регламентируется нормалью па магистральные трубопроводы для транспортирования опасных (горючих) жидкостей (TRbF301). В настоящее время общая длина трубопроводов, имеющих катодную защиту, превыщает в ФРГ 40 тыс. км.  [c.39]

Зависимость (4.8) для Д[/=0,5 В, х=200 мкСм см , Р+ = 26 мВ и /а = = 10 А см-2 (скорость коррозии по уменьшению толщины при стационарном потенциале 0,01 мм в год) показан на рис. 4.1. Сплошные кривые относятся к значению параметра fe=0, а штриховые к значению k, рассчитанному по выражению (4.9). При формировании защитного слоя постоянные значения k по формуле (2.44) могут быть учтены путем прибавления к величине параметра I. Обычно плотность тока возрастает по мере повышения напряжения элемента, увеличения электропроводности и уменьшения размеров дефекта I ll- Скорость коррозии превышает 1 мм в год. Таким образом, возникновение элемента с деталями других объектов, имеющими более положительный потенциал, представляет собой значительную опасность коррозии, которая практически не может быть предотвращена пассивными мерами защиты. Эффективными мероприятиями по защите могут быть гальваническое разделение, предусматриваемое, например, для газовых вводов в дома [13], и локальная катодная защита (см, раздел 13),  [c.136]


Ддя контроля локальной катодной защиты от коррозии измеряют потенциалы включения Uetn. причем электрод сравнения следует располагать по возможности ближе к защищаемому сооружению. Результаты измерения должны быть возможно более отрицательными, чем f/ u/ uS04 —Поблизости от железобетонных соорулсений этого в большинстве случаев не достигается. Однако здесь при более отрицательной величине потенциала, чем —0,8 В, действие коррозионного элемента практически исключается. Измерительные пункты для контроля потенциалов (см, раздел 11.2) следует располагать предпочтительно в местах ввода трубопроводов в здания или в местах их приближения к зданиям.  [c.289]

Для увеличения срока службы электрических заземлителей их начали выполнять в первую очередь на электростанциях, из коррозионно-стойких материалов, имеющих весьма высокий положительный стационарный потенциал (например из меди, для которой си/СиЗО. инус 0,1—0,2 В). Как и арматурная сталь в бетоне, такие заземлители приводят к образованию коррозионного элемента. Поскольку однако медь поддается поляризации гораздо хуже, чем сталь в бетоне, локальная катодная защита здесь может быть иногда связана с определенными  [c.289]

Рис. 13.4. Локальная катодная защита от коррозии на нефтеперерабатыпаю-щем заводе точки — глубинные анодные заземлители. Значения потенциалов (Л — стационарный потенциал перед иуском системы катод С<и / jU S Ji Рис. 13.4. Локальная катодная защита от коррозии на нефтеперерабатыпаю-щем заводе точки — <a href="/info/495022">глубинные анодные заземлители</a>. Значения потенциалов (Л — <a href="/info/39792">стационарный потенциал</a> перед иуском системы катод С<и / jU S Ji
Рис. 13.6. Схема локальной катодной защиты от коррозии топливного склада, расположенного в грунте с высоким удельным электросопротивлением, при помощи анодных воронок напряжения вокруг рассредоточенных анодных за-землителей 1—16. (точки) жирными линиями показаны эквипотенциальные кривые, потенциал которых превышает на 0,5 В потенциал далекой земли двойные числа через косую черту означают потенциалы включения и выклю- Рис. 13.6. Схема локальной катодной защиты от коррозии <a href="/info/94736">топливного склада</a>, расположенного в грунте с высоким <a href="/info/166961">удельным электросопротивлением</a>, при помощи <a href="/info/39578">анодных воронок напряжения</a> вокруг рассредоточенных анодных за-землителей 1—16. (точки) жирными линиями показаны <a href="/info/202439">эквипотенциальные кривые</a>, потенциал которых превышает на 0,5 В <a href="/info/39736">потенциал далекой земли</a> двойные числа через косую черту означают потенциалы включения и выклю-
Строительные сооружения или колодцы для водопроводных линий тоже часто выполняются из железобетона. В месте ввода трубопровода в стенку колодца может легко получиться контакт между трубой и стальной арматурой. В таком случае при сооружении станции катодной защиты для трубопровода достаточное снижение потенциала поблизости от колодцев не будет обеспечено [17]. На рис. 13.7 показано, что под действием коррозионного элемента воронка напряжений отодвигается от колодца на расстояние до нескольких метров. При плотности защитного тока около 5 мАх Хм для бетонной поверхности даже небольшого колодца, имеющего площадь бетона 150 м, требуется защитный ток порядка 0,75 А. Для большого распределительного колодца с площадью поверхности бетона 500 м нужен защитный ток в 2,5 А. Такие большие защитные токи могут быть локально подведены только при помощп дополнительных анодных заземлителей. Эти заземлители в таком случае размещают в непосредственной близости от ввода трубопровода в бетонную стенку колодца. Такая локальная катодная защита становится необходимым дополнением к обычной системе катодной защиты трубопровода, которая в районе железобетонного колодца в ином случае будет неэффективной.  [c.296]

Цинк. Системы катодной защиты с цинковыми протекторами очень эффективны. К достоинствам таких систем относятся простота, доступность анодов с высоким коэффициентом полезного использования сплава и, что особенно важно, способность к саморегуляции. Контур, в котором используется цинковый протектор, должен обладать малым сопротивлением, с тем чтобы через анод мог протекать достаточно сильный ток, необходимый для поляризации. Для цинковых протекторов характерна высокая токоотдача (А-ч на единицу объема). Лакокрасочные и другие защитные покрытия не испытывают воздействия высоких локальных потенциалов в отличие от систем, использующих магниевые протекторы.  [c.171]

II никелевого сплава Ni—22Сг—9Мо—2Fe—3,75МЬ-ЬТа могут нспользо ваться в течение 2 лет без катодной защиты. Фосфористая бронза, оцинкованная сталь и нержавеющая сталь 304L, плакированная сплавом 90—10 Си—Ni, требуют применения катодной защиты. Сталь 304 без покрытия и нержавеющая сталь 205, плакированная сплавом 90—10 Си—Ni, подвергались локальной коррозии даже в условиях катодной защиты.  [c.204]

Обесцинкование может происходить либо локально, либо по большому участку поверхностного слоя. В любом случае обесцин-кованный участок становится пористым, хрупким и менее прочным. Обесцинкование можно минимизировать, добавляя в сплав такие ингибиторы, как мышьяк, сурьму или фосфор, понижая содержание кислорода в окружающей среде или применяя катодную защиту.  [c.598]

Разработка защитных мероприятий требует творческого мышления. Так, следует учитывать достаточно плохую рассеивающук> способность при катодной защите, в особенности в длинных трубах. Поэтому катодную защиту можно сочетать, например [97], с введением в рабочий раствор частиц магния такого размера, чтобы они могли находиться во взвешенном состояни1 > В момент прикосновения частицы к окисленной поверхности трубы достигалась локальная защита и так как это происходило многократно, то вся внутренняя поверхность трубы оказывалась завдищшной. С другой стороны, защита стальных труб от проточной воды с помощьк> ингибиторов может быть связана с затруднениями, так как турбулентность, по-видимому, увеличивает скорость коррозии, а эффективность ингибирования, которая была достаточной в статических условиях, может оказаться недостаточной.  [c.164]

Мы исходим из того, что в наиболее общем случае при pa v витии структурной коррозии необходимо учитывать как локальные токи, так и токи саморастворения, так как даже при эквипо-генциальной поверхности гетерогенного сплава существуют дифференциальные токи, которые могут определять структуру коррозии . Успешная борьба со структурной коррозией, как это следует из теории, может быть обеспечена путем изменения стационарного потенциала, увеличения анодной поляризуемости структурных составляющих и катодной защиты.  [c.53]

Возникновение трещин отмечалось как на трубах без специальной защиты от коррозии, так и на трубах с хорошим покрытием и под действием катодной защиты. Исследование состояния покрытия позволило предположить проникновение коррозионно-агрессивной влаги к поверхности металла вследствие диффузии как через пленку покрытия, так и через дефекты. Присутствие влаги подтверждается наличием ржавчины на поверхности трещин (заполненных внутри Рез04 и РеСОз). В большинстве растресканных труб отмечено отсутствие существенной локальной или общей коррозии.  [c.76]

Катодная защита внешним током — защита металла от коррозии с помощью постоянного электрического тока от внешнего источника, при которой защищаемый металл присоединяют к отрицательному полюсу внещнего источника постоянного тока (т. е. в качестве катода), а к положительному полюсу присоединяют дополнительный электрод, поляризуемый анодно. При таком пропускании тока поверхность защищаемого металла поляризуется катодно ее потенциал при этом смещается в отрицательную сторону, что приводит к ослаблению работы локальных анодов или к их превращению в катоды, т. е. к уменьшению или полному прекращению коррозионного разрушения. Анодный процесс при этом протекает на дополнительном электроде—аноде. Для полного прекращения электрохимической коррозии металла его нужно катодно заполяризо-вать до значения обратимого потенциала ( Vме)обр, а сплав — до значения обратимого потенциала его наиболее отрицательной анодной составляющей. Катодную защиту внешним током щироко применяют как дополнительное (к изолирующему покрытию), а иногда и как самостоятельное средство защиты от коррозии подземных металлических сооружений — трубопрово-  [c.241]


Механизм катодной защиты металлов от коррозии с помощью анодного протектора аналогичен механизму катодной защиты внещним током. Между защищаемым металлом и анодным протектором протекает электрический ток. При этом поверхность защищаемого металла поляризуется катодно, ее потенциал смещается в отрицательную сторону, что приводит к ослаблению работы локальных анодов или к их превращению в катоды, т. е. к уменьшению или полному прекращению коррозионного разрушения. Анодный процесс при этом протекает на анодном протекторе, который постепенно растворяется. После полного растворения анодного протектора или потери его контакта с защищенным металлом протектор необходимо возобновлять.  [c.248]

Мехаинэм защиты металлов от коррозии с помощью протектора аналогичен механиз1му катодной защиты, т. е. сводится к переводу в катоды локальных анодов на поверхности металла канстр укции или к ослаблению их деятельности. Расчет защитного эффекта при протекторной защите дается на основании коррозионной поляризационной диаграммы. Коррозия металла полностью прекращается, если при присоединении к нему протектора потенциал конструкции достигает значения обратимого потенциала наиболее отрицательной анодной составляющей ее поверхности.  [c.84]


Смотреть страницы где упоминается термин Локальная катодная защита : [c.293]    [c.296]    [c.308]    [c.493]    [c.19]    [c.49]    [c.262]    [c.274]    [c.85]   
Катодная защита от коррозии (1984) -- [ c.39 , c.286 , c.288 , c.290 , c.291 , c.295 , c.307 ]



ПОИСК



V катодная

Г локальный

Защита локальная

К локальности

Катодная защита

Локальная катодная защита промышленных объектов от коррозии (Й. Поль, В. Принц)

Особенности локальной катодной защиты от коррозии

Осуществление локальной катодной защиты от коррозии



© 2025 Mash-xxl.info Реклама на сайте