Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Метод анодного заряжения поверхности

МЕТОД АНОДНОГО ЗАРЯЖЕНИЯ ПОВЕРХНОСТИ  [c.185]

Вместе с тем задача контроля локальных коррозионных разрушений металла котлов является весьма актуальной. Одним из методов надежного контроля локальных видов коррозии, а также оценки эффективности противокоррозионного действия пленок и поверхностных слоев на поверхности стали является метод анодного заряжения поверхности. Метод основан на том, что металл в данной коррозионной среде заряжается анодно током постоянной плотности. По характеру изменения потенциала во времени можно однозначно определить, подвергается ли металл локальной корро-  [c.185]


Методом анодного заряжения поверхности можно оценить также толщину поверхностных пленок, но, как правило, для этой цели используют другие электрохимические методы. Ниже рассмотрены некоторые из них.  [c.190]

В наших работах для определения склонности нержавеющих сталей к питтинговой коррозии, а также исследования явлений пассивности был предложен и развит метод анодного заряжения поверхности [16]. Метод дает возможность определять минимальное положительное значение потенциала, при котором начинается активирование поверхности стали (потенциал питтингообразования), а также получать другие количественные данные, позволяющие, с одной стороны, охарактеризовать способность стали сопротивляться активирующему влиянию галоидных ионов, а с другой,— пассивирующие свойства различных анионов. По этому методу образец нержавеющей стали заряжается анодно при постоянном значении тока (2—5 мка/см ) и на автоматическом потенциометре записывается потенциал электрода. Если сталь подвергается питтинговой коррозии, на кривой заряжения появляются характерные колебания потенциала.  [c.283]

Эффективным методом исследования коррозии металла котлов, в частности локальных коррозионных повреждений, является изучение кривых анодного заряжения поверхности. Для их получения электрод заряжается анодно током постоянной плотности. По характеру изменения потенциала во времени можно однозначно определить, подвергается ли металл локальной коррозии или нет. Метод анодного заряжения дает возможность по кривым потенциал -время определять минимальное положительное значение потенциала, при котором начинается активирование поверхности, и выявлять некоторые специфические особенности локальной коррозии. Подробнее об этом методе см. в 6.1.  [c.143]

В работе описываются новые методы исследования локальной коррозии, основанные на измерении напряженности электрического поля в электролите и анодного заряжения поверхности электрода. Метод исследования напряженности поля в электролите над точечным анодом позволяет непрерывно без извлечения образца из раствора наблюдать за ходом коррозионного процесса в действующем питтинге, определять истинную скорость растворения металла в данной точке, непосредственно получать истинную кривую распределения тока и потенциала по поверхности электрода и т. д. В другом методе исследования локальной коррозии, в котором электрод заряжается анодно током постоянной плотности, по характеру изменения потенциала во времени можно однозначно определить, подвергается металл локальной коррозии или нет.  [c.193]


Метод анодною заряжения дает возможность по кривым потенциал — время определять минимальное положительное значение потенциала, при котором начинается активирование поверхности сплава (потенциал питтингообразования), и выявлять некоторые специфические особенности локальной коррозии.  [c.198]

Пассивация указанных выше металлов была изучена методами кривых заряжения и анодной поляризации в гальвано-и потенциостатическом режиме. Наиболее полно пассивируется иодидный титан (рис. 4) [21]. Для него в интервале 500—800 отсутствует область активного растворения. Металл в карбонатных расплавах самопроизвольно пассивируется за счет образования на его поверхности слоя титанатов щелочных металлов, из которых наибольшее пассивирующее действие оказывают титанаты лития [22]. Ток полной пассивации при 600° равен  [c.80]

Нами был разработан электрохимический метод определения количества Ке, Си, Р<1, накапливающихся на поверхности корродирующего сплава. Для определения количества легирующих добавок снимают анодные гальваностатические кривые заряжения, регистрируемые на электронном осциллографе (анодные осциллограммы), в растворах соответствующего состава. При этом на осциллограмме фиксируется площадка, отвечающая процессу анодного растворения легирующего компонента (Р(1, Ке, Си и др.). По количеству электричества, соответствующего этой площадке, на основании известной реакции анодного растворения данного компонента определяют количество растворившегося металла. Использование этого метода возможно в том случае, если при потенциалах, соответствующих анодному растворению присадки, сплав находится в пассивном состоянии и его основа практически не растворяется и анодно не окисляется.  [c.57]

Разработаны новые методы исследования локальной коррозии, основанные на измерении напряженности электрического поля в электролите и анодном заряжении поверхности электрода. Метод исследования напряженности поля над точечным анодом позволяет с помощью сдвоенного зонда и двух неполяри-зующихся электродов сравнения измерять разность потенциалов между двумя точками в электролите в любом направлении, непрерывно наблюдать за ходом коррозионного процесса в питтинге. Этот метод позволяет определять ток, стекающий с питтинга, и в любой момент времени устанавливающиеся в нем плотности тока, а также распределение токов по поверхности электрода. Метод анодного заряжения, в котором электрод заряжается постоянной плотностью тока, позволяет по кривым заряжения определить, что происходит на поверхности электрода, т. е. подвергается металл питтинговой коррозии или нет, и тем самым судить о пассивномсостоянии сплава, его склонности к питтинговой коррозии, об агрессивности среды и т. д. Приводятся экспериментальные результаты, полученные описанными методами.  [c.220]

После первого цикла на поверхности сплава возникало определенное число устойчиво работающих питтингов (Л 1 = 40). Казалось, что во втором цикле при включении анодного тока должны в первую очередь развиваться уже имеющиеся питтинги. Но это не так. Сразу же после выключения тока они запассивировались и перестали функционировать. Во втором цикле возникли совершенно новые питтинги (Л 2 = 84), а в третьем их стало уже 130. Активировать вновь ранее работавшие питтинги оказалось гораздо труднее, чем создать новые. Потенциал питтин-гообразования выявляется по первому скачку потенциала в отрицательную сторону на кривой заряжения. Эти потенциалы довольно хорошо совпадают с потенциалами питтингообразования, определенными потен-циостатическим методом (табл. 49). По мере перехода к более легированным сплавам, в особенности молибденом и кремнием, потенциалы  [c.289]

Как видно, при поляризации электрода плотностью тока г = = I 10 а/сж" (см. рис. 7, а) потенциал сначала плавно облагораживается, что указывает на пассивирование поверхности электрода По достижении определенного потенциала на кривой потенциал — время появляются периодические колебания, увеличивающиеся со временем по частоте и амплитуде. При этом нижняя граница колебаний потейциала сдвигается в положительном направлении, а максимальные положительные отклонения его достигают значений порядка +0,7ч- -0,8 е, что значительно превышает критический потенциал питтингообразования, определяемый потенциостатическим методом (фп = +0,55 б). Каждый нижний пик на кривой заряжения связан с началом возникновения на поверхности электрода активного центра, а верхний пик соответствует началу его пассивации. Поскольку частота колебаний потенциала относительно велика, время, в течение которого протекает анодное растворение металла в возникшем центре, очень мало (примерно десятые доли секунды). В данном случае, как показали металлографические исследования, на поверхности электрода питтинги обнаруживаются только при достаточно высоком увеличении (х 400—500).  [c.198]



Смотреть страницы где упоминается термин Метод анодного заряжения поверхности : [c.86]    [c.38]    [c.176]   
Смотреть главы в:

Контроль коррозии металла котлов  -> Метод анодного заряжения поверхности



ПОИСК



Анодный

Методы поверхностей



© 2025 Mash-xxl.info Реклама на сайте