Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Усталостная пластичность

Рис. 5.6. Обобщенный график зависимости степени пластической деформации от числа циклов до разрушения для некоторых металлов на воздухе при комнатной температуре (1), или при высокой температуре в вакууме или аргоне (2) степень пластической деформации приведена к усталостной пластичности Рис. 5.6. <a href="/info/774370">Обобщенный график</a> <a href="/info/147289">зависимости степени</a> <a href="/info/1487">пластической деформации</a> от числа циклов до разрушения для некоторых металлов на воздухе при комнатной температуре (1), или при <a href="/info/46750">высокой температуре</a> в вакууме или аргоне (2) степень <a href="/info/1487">пластической деформации</a> приведена к усталостной пластичности

Усталостная пластичность 382, 384. 388 прочность 187 Усталостной пластичности коэффициент 382  [c.619]

На рис. 58, б приведены значения коэффициента поперечного сужения г , величина которого характеризует пластичность материала в момент разрушения. При переходе от квазистатического разрушения к усталостному пластичность материала падает. На этом же рисунке показаны кривые накопленной пластической деформации При переходе к усталостному разрушению уменьшается.  [c.100]

При такой структуре и прочности сталь обладает высокой пластичностью и вязкостью и ее можно применять для деталей сложной формы, подвергающихся динамическим и усталостным нагрузкам.  [c.390]

Настоящая монография является одной из попыток среди такого рода работ подойти к проблеме разрушения, базируясь на системном подходе, лежащем на стыке механики деформируемого твердого тела, механики разрушения и физики прочности и пластичности. В книге изложены разработанные авторами физико-механические модели хрупкого, вязкого и усталостного разрушений, позволяющие анализировать повреждение материала при сложном нагружении в условиях объемного напряженного состояния. Приведены подходы к описанию кинетики трещин при статическом, циклическом и динамическом нагружениях элементов конструкций. Кроме того, в работе рассмотрены методы и алгоритмы численного решения упруговязкопластических задач при квазистатическом (длительном и циклическом) и динамическом нагружениях.  [c.3]

Накопленный опыт эксплуатации конструкций различного назначения показывает, что, как правило, их преждевременные повреждения, связанные с запуском тех или иных механизмов разрушения материала, происходят при совокупном действии нескольких конструктивных, технологических и(или) эксплуатационных факторов. Каждый фактор в отдельности в большинстве случаев может не приводить к провоцированию какого-либо механизма разрушения. Например, мы можем защитить конструкцию в отдельности от усталостного разрушения, учитывая факторы, провоцирующие этот механизм, и обеспечить ее длительную прочность, используя пластичный материал с большим сопротивлением ползучести, но в то же время нет гарантии, что рассматриваемая конструкция не разрушится по механизму, именуемому в литературе взаимодействием ползучести и усталости .  [c.4]

Таким образом, проведенные исследования позволили отклонить предположения о разрушении металла коллектора в результате снижения малоцикловой прочности или коррозионного растрескивания. Необходимо подчеркнуть, что и по другим характеристикам, таким, как хрупкая прочность, сопротивление усталостным разрушениям на стадии зарождения и развития трещин на воздухе и в коррозионной среде, были подтверждены высокие показатели, при которых преждевременное разрушение коллектора не должно было бы произойти. Вместе с тем, эксперименты по замедленному деформированию (растяжение гладких образцов с малой скоростью деформирования) в коррозионной среде показали, что при составе среды, соответствующей отклонениям, имевшим место в процессе эксплуатации разрушившихся коллекторов (низкий водородный показатель pH, присутствие кислорода), может происходить значительное снижение пластичности стали, причем тем большее, чем ниже скорость деформирования. Такая закономерность соответствует зависимости критической деформации от скорости деформирования в условиях ползучести материала (см. гл. 3). Данное обстоятельство привело к необходимости изучения возможных временных процессов деформирования материала коллектора при стационарном нагружении. Выполненные эксперименты, ре-з льтаты которых будут представлены ниже, показали, что  [c.328]


Отрицательно действуют на циклическую прочность гальванические покрытия твердыми и прочными металлами (Сг, N1). Покрытия пластичными металлами (Си, Zn, Сё, 8п, РЬ) на усталостную прочность влияют мало.  [c.306]

Так как напряжение на поверхности концентрируется в вершине надреза или в области дефекта, там и происходит быстрый рост трещин. Поверхностные дефекты (например, питтинги или усталостные трещины) действуют как эффективные концентраторы напряжений. К тому же в достаточно глубоких поверхностных дефектах электрохимический потенциал, как отмечалось ранее, отличается от потенциала поверхности состав и pH раствора в местах поражений также изменяются вследствие работы элементов дифференциальной аэрации. Эти изменения в сочетании с повышенным локальным напряжением способны инициировать КРН или ускорить рост трещины. Именно поэтому титановые сплавы с гладкими поверхностями устойчивы к КРН в морской воде, но разрушаются, если на поверхности образовались коррозионноусталостные трещины [44]. Действительное напряжение в вершине трещины глубиной а в напряженном пластичном твердом теле может быть рассчитано как коэффициент интенсивности напряжения Ki- Для образца, изображенного на рис. 7.9, Ki вычисляется по формуле [45, 46]  [c.146]

Для пластичных малоуглеродистых сталей (с относительным поперечным сужением Ук больше 0,3) допускается не выращивать усталостную трещину. При этом глубина надреза должна быть 0,5h, радиус скругления в вершине надреза должен быть не более 0,1 мм. Для этого вершину надреза обрабатывают специальным остро заточенным резцом-ножом.  [c.290]

Степень влияния местных напряжений на прочность детали существенно зависит от характера нагружения и материала. При расчете конструкции из пластичных материалов, работающей в условиях статического нагружения, местными напряжениями пренебрегают. Это объясняется тем, что при росте нагрузки напряжения в зоне концентрации, достигнув предела текучести, не возрастают до тех пор, пока во всех соседних точках они не достигнут того же значения, т. е. пока распределение напряжений в рассматриваемом сечении не станет равномерным. Иначе обстоит дело при циклически изменяющихся напряжениях. Многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Для оценки снижения прочности вводят эффективный коэффициент концентрации, равный отношению предела выносливости о 1 гладкого полированного образца к пределу выносливости образца с концентратором напряжений, абсолютные размеры которого такие же, как и у гладкого образца  [c.248]

При напряжениях меньше предела выносливости в области IV (между напряжениями 0я и 0 на рис. 7) у пластичных материалов в поверхностных слоях наблюдаются локальные полосы скольжения и могут зарождаться микротрещины (нераспространяющиеся усталостные микро трещины), которые, однако, не достигают критической длины и с ростом числа циклов прекращают свое развитие, достигая линии БЕ. Ниже будут рассмотрены более детально процессы накопления усталостных повреждений в каждом из периодов и стадий в условиях циклического деформирования.  [c.20]

Развитие усталостной трещины, несомненно, может ускоряться при наличии растягивающих напряжений как у пластичных, так и, в особенности, у малопластичных и хрупких материалов типа чугуна, в которых появление трещины отрыва значительно повышает чувствительность к растягивающим напряжениям.  [c.655]

Усталостное разрушение детали происходит всегда внезапно (как разрушается хрупкий материал при статическом действии нагрузки) независимо от того, является металл хрупким или пластичным.  [c.547]

Для металлов менее пластичных, а также более прочных заметное влияние на условия усталостного разрушения оказывают переменные нормальные напряжения, действующие по площадкам наибольших касательных или октаэдрических напряжений. Условия усталостного разрушения в наибольших касательных напряжениях выразятся следующим образом  [c.121]


Высокопрочный чугун с шаровидным фафитом и перлитной металлической основой отличается высокой прочностью при меньшем значении пластичности по сравнению с ферритными чугунами (см. табл. 1.4). Высокопрочные чугуны обладают высоким пределом текучести (300-420 МПа, что выше предела текучести стали), достаточно высокой ударной вязкостью и усталостной прочностью.  [c.19]

Благодаря эффекту снижения абразивной активности свободных абразивных частиц за счет их утапливания в мягком поверхностном слое подшипники из цинковых сплавов меньше изнашивают сопряженные детали даже при попадании абразивных частиц в зону трения. Цинковые сплавы технологичны при изготовлении монометаллических и биметаллических деталей опор скольжения. Легко достигается соединение цинкового сплава со сталью, как литьем, так и прокаткой. Цинковые сплавы имеют высокую пластичность и усталостную прочность. Из цинковых сплавов изготавливают цельные и штампованные из ленты втулки, которые применяют, например, в железнодорожных и других транспортных машинах.  [c.26]

При переменных напряжениях концентрация напряжений снижает предел выносливости деталей как из пластичных, так и из хрупких материалов. Это объясняется тем, что многократное изменение напряжений в зоне концентратора напряжений приводит к образованию и дальнейшему развитию трещины с последующим усталостным разрушением детали. Снижение предела выносливости при симметричном цикле напряжений оценивают эффективным (т. е. действительным) коэффициентом к о н ц е н г ра-ции напряжений, который кроме геометрической формы деталей отражает свойства материала, или, как говорят, его чувствительность к местным напряжениям.  [c.21]

Серебряные покрытия отличаются пластичностью, мягкостью (в отожженном состслнпп НВ 25 — 35), хорошими антифрикционными качествами и высокой усталостной долговечностью.  [c.378]

Разрушение при действии переменных напряжений ст на участке АВ имеет статический характер, т.е. такой же, как и при однократном разрушении с образованием шейки и исчерпанием всей пластичности материала (для г ладких образцов участок АВ простирается до 10 - Ю циклов, а остро надрезанных - до 10 - Ю циклов). На участке ВС характер разрушения меняется с увеличением числа цр клов и понижением амплитудного напряжения Аа, макропластиче-ская деформация постепенно уменьшается и исчезает, а разрушение становится типично усталостным, т.е. происходящим в результате образования и распространения усталостной трещины. От приложения переменных напряжений в металле постепенно накапливаются повреждения, перехо-  [c.386]

Тогда ограничение по текучести для максимальпы.ч напряжений цикла будет на диаграмме изображаться прямой расположенной иод углом 45 к осям. Область АКОО является областью, соответствующей безопасным циклам, при которых нет как усталостного разрушения, так и недопустпмы.х остаточных деформаций. Следовательно, для обеспечения работоспособности конструкции из пластичных материалов точка, соответствующая рабочему циклу, должна лежать внутри области АКОО.  [c.250]

Прочность — главный критерий работоспособности для большинства деталей. Деталь не должна разрушаться или получать пластические деформации при действии на нее нагрузок. Различают статическую потерю прочности и усталостные поломки деталей. Потеря прочности происходит тогда, когда значение рабочих напряжений превышает предел текучести а,, для пластичных материалов или предел прочности ст для хрупких материалов. Это связано обычно со случайными перегрузками, не учтенными при расчетах, или со скрытыми дефектами деталей (раковины, трещины и т. п.). Усталостные поло.мки вызыва -отся длительным действием переменных напряжений, значение которых превышает характеристики выносливости материалов (например, о ,). Основы расчета на прочность и усталость были рассмотрены в разделе Сопротивление материалов . Здесь же общие законы расчетов на прочность т усталость рассматривают в применении к конкретным деталяму  [c.260]

Исследования отклика системы на скорость движения усталостной трещины открыли возможность резкого повышения информативности опытов по механическим испытаниям при учете критических точек [3]. Процессу разрушения, как и другим неравновесным процессам, свойственны стадийность и многомасштабность. При циклическом нагружении легче всего изучать особенности разрушения на различных масштабных уровнях [32-35]. Путь к этому открыла линейная механика разрушения, так как позволила описать локальное (у края трещины) напряженное деформированное состояние. При матическом на1ружении образца с предварительно созданной трещиной трудно обеспечить ус]ювия плоской деформации на фронте трепщны. Напомним, что условия плоской деформации предполагают образование у края трещины зоны пластической деформации, пренебрежительно малой по сравнению с длиной трещины. Для этого требуется испытать крупно1абаритные образцы при пониженной температуре (в случае пластичных материалов).  [c.300]

Прежде чем перейти к более детальному рассмотрению основных стадий и закономерностей распространения усталостных трещин, следует остановиться на эффекте закрытия усталостной трещины (fatigue ra k losure), впервые обнаруженном В. Элбером. Сущность этого эффекта состоит в том, что усталостная трещина может остаться закрытой из-за смыкания ее берегов позади вершины на протяжении определенной части цикла нагружения. На рис. 33 представлены схемы раскрытия бере) ов усталостной трещины. По В. Элберу смыкание берегов трещины происходит в результате наличия на них остаточной пластической деформации, поскольку при разгрузке берега усталостной трещины могут сомкнуться раньше, чем наступит полное снятие нагрузки. Этот механизм закрытия трещин характерен для пластичных металлов и сплавов, испытываемых в условиях плоского напряженного состояния (рис. 33, а, б).  [c.53]


При изготовлении тонкостенных оболочковых конструкций для химического аппаратостроения в целях защиты их поверхности от воздействия агрессивной среды и сохранения прочности и пластичности металла при низкой температуре используют самые разнообразные материалы (биметаллы, цветные металлы и сплавы, среднелегированные стали и др ) В связи с этим технология сварки таких конструкции достаточно сложна, нередко требует сочетания различных способов, специальных присадков, дополнительных мероприятий по предотвращению трещинообразования, защите сварочной ванны от окисления и т.д Для операций сборки и сварки цилиндрической части сосудов обычно применяют роликовые стенды, оборуд>я их paзличны и приспособлениями флюсовыми подушками, стяжными скобами, автоматическими головками для сварки, распорками, центраторами и др Сварку обечайки с днищем производят стыковыми швами за один или несколько проходов В стенки сосудов и аппаратов приходится вваривать патрубки, лючки, штуцера и другие элементы, сварные соединения которых часто являются инициаторами разрушения конструкции На рис 19 приведены в качестве примера некоторые варианты конструктивного оформления шт церов в аппаратах химического производства. Варианты с дополнительно усиливающими кольцами (см. рис 1 9,й) и утолщенными патрубками (см рис 19,6) выполняются угловыми швами, в зонах которых возникает значительная концентрация напряжений В данном месте часто появляются усталостные трещины Более предпочтительными с точки зрения повышения работоспособности являются варианты соединений с вытяжкой горловины (см рис.  [c.18]

Известны многие попытки создания гипотез усталостного разрушения в сложном напряженном состоянии. Все они сводятся в основном к обобщению известных гипотез прочности и пластичности на случай циклических напряжений. Для наиболее часто встречающегося на практике расчета при двухосном напряженном состоянии (бг, г) общепринятой в настоящее время является эмпирическая формула Гафа и Полларда  [c.500]

Для деталей из пластичных материалов опасно не только усталостное разрушение, но и возникновение заметных остаточных деформаций, т. е. наступление текучести. Поэтому из области, ограниченной линией АВ (рис. 15.7), все точки которой соответствуют циклам, безопасным в отношении усталостного разрушения, надо выделить зону, соответствующую циклам с максимальными напряжениями, меньшими предела текучести. Для этого из точки Ь, абсцисса которой равна пределу текучести а.,, проводят прямую, наклоненную к оси абсцисс под углом 45°. Эта прямая отсечет на оси ординат отрезок ОМ, равный (в масштабе диаграммы) пределу текучести. Для любого цикла, изображаемого точками линии ЬМ, максимальное напряжение равно пределу текучести. Точки, лежащие выше линии ЬМ, соответствуют циклам с максимальными напряжениями, большими предела текучести (<т , >а ). Таким образом, циклы, безопасные как в отношении усталостного разрушения, так и в отношении возникновения текучести, изображаются точками области ОАОЬ.  [c.554]

Г. В. Ужиком и другими исследователями экеперимен-тально установлено, что зависимость между предельными амплитудами симметричных циклов нормальных и касательных напряжений в напряженном состоянии (рис. XI.18, б) (зависимость tRa = Ra Ra)) при ИХ синфазном изменении можно считать эллиптической. На основании этого утверждения и результатов опытов Л. И. Савельева, условие усталостного разрушения в опасной точке детали из пластичного материала запишется в виде  [c.347]

Для деталей из пластичных материалов является опасным не только усталостное разруленне, но и переход за предел текучести, что приводит  [c.587]

Из представлений, развиваемых Н. Н. Давиденко-вым, И. А. Одингом и В. С. Ивановой, об усталостных процессах, как связанных с неравномерной упругопластической деформацией поликристаллических структур, вытекает объяснение ряда явлений, им сопутствующих. К ним относятся проявление наклепа в виде постепенного повышения твердости (которое перед возникновением трещины сменяется уменьшением твердости), понижение пластичности и вязкости в сочетании с повышением предела упругости и текучести, изменение характеристик поглощения энергии, магнитного и элек-  [c.111]

Из приведенных в табл. 1.6 баббитов оловянные баббиты Б83 и Б89 являются лучшими, так как их оловянная основа вязкая и пластичная, она менее других склонна к усталостному разрушению. На втором месте стоят свинцовые баббиты (516, Б6), в которых мягкой основой является свинец. Эти баббиты значительно дешевле оловянных, а по качеству уступают им ненамного. Цинковые баббиты ЦАМ10-5 и ЦАМ5-10 уступают баббитам на оловянной основе по пластичности, коэффициенту трения и примерно равноценны баббитам на свинцовой основе.  [c.23]

Основным свойством сплава Сатко, как и баббита БК2, является его высокая пластичность и хорошая сопротивляемость переменным (изгибающим) напряжениям, способным образовывать усталостные трещины. Баббит Сатко применяют для заливки подшипников дизелей при толщине слоя заливки 0,5— 0,7 мм.  [c.337]


Смотреть страницы где упоминается термин Усталостная пластичность : [c.11]    [c.11]    [c.382]    [c.384]    [c.388]    [c.13]    [c.622]    [c.73]    [c.11]    [c.59]    [c.328]    [c.348]    [c.11]    [c.15]    [c.112]    [c.463]    [c.571]   
Повреждение материалов в конструкциях (1984) -- [ c.382 , c.384 , c.388 ]



ПОИСК



Пластичные материалы — Сопротивление усталостному разрушению

Усталостная

Усталостной пластичности коэффициент

Усталостной пластичности показатель



© 2025 Mash-xxl.info Реклама на сайте