Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Амплитуда деформации циклической

К разрушениям второго типа, которые могут происходить также при различных схемах нагружения, следует отнести разрушения, для которых критические параметры существенно зависят от времени нагружения в том или ином виде. Типичным примером является разрушение, получившее в литературе название разрушение при взаимодействии ползучести и усталости [240, 341] при циклическом нагружении в определенном температурном интервале долговечность при одной и той же амплитуде деформации зависит от скорости деформирования, значительно уменьшаясь при малых эффективных скоростях деформирования, в частности при циклировании с выдержками. На стадии развития усталостного повреждения также известны многочисленные экспериментальные данные о влиянии частоты нагружения в определенных условиях, особенно в коррозионной среде, на скорость роста усталостных трещин [199, 240, 310,  [c.150]


На рис. 81 приведены величины коэффициента гистерезиса для чугунов и сталей в функции амплитуды X колебания напряжении за цикл деформации. Циклическая вязкость серых чугунов в 5-6 раз больше, чем углеродистых сталей и в 10-20 раз. чем легированных  [c.170]

Сопротивление материалов циклическому упруго-пласти-ческому деформированию обычно изучают при однородном напряженном состоянии, используя два основных вида нагружения. При первом в процессе циклического деформирования постоянной сохраняется амплитуда напряжений, при втором — амплитуда деформации. Эти виды соответственно называют мягким и жестким нагружением.  [c.618]

При жестком нагружении циклическое накопление деформации приведет к разрушению (следуя линии с) в точке К на кривой усталости в амплитудах деформации и в точке К на кривой, выраженной в напряжениях. При меньшем нагружении и деформации, а следовательно, при большом числе циклов при мягком нагружении смешанное разрушение воз-6—214 81  [c.81]

Технологические режимы включают обычно холодную обработку, с возвратом, циклическую обработку, крип или горячую обработку с динамическим и статическим возвратом [262, 275]. С увеличением сте-. пени деформации в каждом из них, исключая возврат, наблюдаются. повышение плотности дислокаций и перестройка дислокационной структуры, приводящая, в конечном итоге, к образованию ячеистой структуры, изменение размеров которой имеет тенденцию к насыщению [9].. Напряжение течения обычно пропорционально р независимо от степени развития ячеистой структуры Более того, дислокационные ячейки (субзерна) увеличиваются, плотность дислокаций в них уменьшается,, границы ячеек (субзерен) становятся более узкими и упорядоченными,, когда изменяется любой из следующих факторов — температура и время деформации увеличиваются, а напряжение, скорость и амплитуда деформации уменьшаются [9, 275].  [c.127]

При циклических испытаниях вид нагружения может быть жестким и мягким. Под жестким понимают такое нагружение, при котором в процессе испытаний амплитуда полной деформации сохраняется постоянной, а уровень напряжений — величина переменная, которая может изменяться от цикла к циклу. Под мягким нагружением понимают такой режим испытаний, при котором постоянной является амплитуда напряжений, а амплитуда деформаций может изменяться.  [c.87]


Накопление деформаций при том или ином виде нагружения зависит от степени жесткости нагружения. При жестком цикле нагружения накопление регистрируемых пластических деформаций ограничено самими условиями проведения испытаний. Различные виды нагружения определяют и отличающиеся типы разрушений, возникающие при знакопеременном упругопластическом деформировании. При мягком нагружении с высоким уровнем напряжений возникает квазистатическое разрушение, близкое по характеру к статическому. При жестком нагружении независимо от уровня амплитуды, деформаций разрушение начинается с образования поверхностных трещин при последующем их подрастании до критической длины. В реальных условиях накопление деформаций и изменение напряжений могут занимать промежуточное положение между мягким и жестким видами нагружений, а разрушение может носить смешанный характер. Анализ условий эксплуатации и случаев разрушения различных конструкций показывает, что основной причиной, вызывающей возникновение трещины, является циклическое изменение напряже-  [c.88]

Наиболее распространены и более соответствуют массовым условиям службы деталей конструкций в эксплуатации испытания с заданным размахом нагрузки. Однако имеются практически важные случаи, когда процесс усталостного разрушения определяется условиями постоянства амплитуды деформаций (шатунно-кривошипные механизмы, подкладки рельсовых скреплений, деформация которых ограничена высотой пазухи в железобетонной шпале, термические напряжения в защемленных деталях тепловых агрегатов и др.). Также возможен промежуточный тип нагружения, когда ограничение деформации наступает после более или менее длительной работы при заданном размахе нагрузки, например после появления трещины, или же при непостоянном циклическом режиме, когда имеются ограничители деформаций (например, ограничители деформаций в автомобильных рессорах и др.).  [c.18]

В зависимости от типа материала, вида напряженного состояния, характера нагружения и уровня деформаций разрушение может быть обусловлено накопленным усталостным повреждением, накопленной деформацией или их совокупностью. В связи с этим необходимо измерять как величину суммарной односторонней накопленной деформации, так и изменение амплитуды деформации при каждом цикле нагружения [83]. Для исследования циклически упрочняющихся материалов наиболее эффективен метод оптически чувствительных покрытий, а также метод тензометрии (при величине деформации в первом полуцикле Г%). Для измерения перемещений в зоне вершины трегцины рекомендуется метод оптической интерференции, причем величина исходной деформации должна быть 1%.  [c.239]

Подробное исследование усталостного поведения Си после РКУ-прессования было выполнено в работе [367]. Циклические испытания на растяжение-сжатие были проведены при амплитудах деформации в интервале 10 -10 при комнатной температуре.  [c.213]

Известно, что усталостные свойства коррелируют с формой петли гистерезиса при циклических испытаниях [373, 378]. Это утверждение становится более очевидным, если учесть, что параметр энергии Баушингера связан с упругой энергией, запасаемой в образце во время циклической деформации. Более наглядным является анализ формы петли гистерезиса за цикл испытаний при сравнимых амплитудах деформации. При этом чем выше среднее значение энергетического параметра, тем лучше усталостные свойства.  [c.219]

Характер высокотемпературного разрушения зависит также от уровня циклической нагрузки, при малой амплитуде нагрузки (деформации) решающим для разрушения может оказаться процесс ползучести. Так, в а-латуни 70—30 при циклическом кручении при температуре около 400°С с амплитудой деформации 3° наблюдалось межзеренное разрушение, при амплитуде деформации 15° смешанное (по границам и телу зерен [140].  [c.143]


В работе [108] сообщается о результатах испытаний цилиндрических сосудов из низколегированных сталей марок А-201, А-302 и Т-1. Диаметр сосудов 900 мм, толщина стенки 50 мм. В процессе повторных нагружений внутренним давлением на внутренней поверхности цилиндрической оболочки и около патрубков измерялись деформации. Было обнаружено перераспределение амплитуды деформаций в зонах концентрации напряжений, которое происходило в течение только первых десяти циклов нагружения, что связано с изменением циклических упругопластических свойств материалов. В дальнейшем деформирование в зоне концентрации соответствовало жесткому типу нагружения. Разрушение происходило, как правило, в местах наибольшей концентрации напряжений в диапазоне от 3000 до 90 000 циклов нагружения с образованием трещин, через которые возникла течь, давление в сосуде при этом падало.  [c.147]

Даже хорошо отожженные металлы содержат большую плотность дислокаций, оцениваемую приблизительно 10 —10 см 2. При пластических деформациях металлов плотность дислокаций значительно возрастает и может достигать 10 —10 см- и выше. Однако плотность дислокаций увеличивается не только при пластических деформациях статического нагружения. Большинство экспериментальных работ, посвященных исследованию дислокационной структуры при усталости и ультразвуковых колебаниях, показывает, что, несмотря на относительно малые амплитуды напряжений (деформаций), плотность дислокаций возрастает в процессе циклического нагружения. После некоторого числа циклов нагружения она достигает определенной величины насыщения и в дальнейшем остается практически постоянной. Большей амплитуде напряжения (деформации) циклического нагружения соответствует и большая величина насыщения плотности дислокаций. Полученная при этом дислокационная структура зависит не только от величины амплитуды напряжения (деформации) циклического нагружения, но и от кристаллического строения материала и температуры, при которой проводится эксперимент.  [c.176]

Таким образом, машина УМ-9 позволяет изучать процесс распространения усталостных трещин несколькими способами микроскопическим, путем измерения электрического сопротивления и по изменению несущей способности образца (осуществляется измерением механических напряжений, действующих в образце при его циклическом нагружении с постоянной амплитудой деформации). Измерение в этом случае может осуществляться как периодически с помощью упругого динамометра и отсчетного микроскопа, так и непрерывно путем тензометрирования. При разработке блока стробоскопического освещения микроскопа МВТ и блока измерения электросопротивления образца были использованы с небольшими изменениями соответствующие схемы, примененные в установке ИМАШ-10-68 [3].  [c.42]

Начальные участки диаграмм циклического деформирования строились в координатах Ста — Ба, величина амплитуды деформации подсчитывалась по формуле (1) с использованием значений неупругой деформации за цикл для числа циклов нагружения, при котором наблюдалась стабилизация процесса неупругого деформирования, а при отсутствии стабилизации — при 0,5Ар.  [c.6]

Влияние так называемых упругих несовершенств деформируемых звеньев выражается в различии кривых нагрузки—разгрузки в координатных осях суммарная реактивная сила (момент) — перемещение при циклическом деформировании (рис. 39, а). При циклическом деформировании с различными от цикла к циклу амплитудами деформации (что характерно для нестационарных режимов) в указанной системе осей образуется так называемая гистерезисная спираль [90]. При стационарном режиме, для которого характерна система периодически повторяющихся амплитуд деформации, гистерезисная спираль замыкается в гистерезисную петлю, площадь которой Aw характеризует энергию, рассеиваемую за цикл (рис. 39, б).  [c.160]

Уравнение (8) применительно к режиму нагружения с заданными деформациями имеет вид степенных функций с параметрами, связанными, как правило, с характеристиками пластичности и прочности а . При циклическом нагружении с заданными амплитудами напряжений 0 число циклов N( определяется не только амплитудами деформаций и йае. но и односторонне накапливаемыми деформациями вр.  [c.24]

Для проведения циклических испытаний на больших временных базах в широком диапазоне чисел циклов и температур требуется применение надежных нагружающих систем, обеспечивающих заданные амплитуды деформаций и напряжений. Наибольшее суммарное время (до 10 ч) достигнуто при температурном нагружении (термическая усталость с варьируемой выдержкой в цикле). Активное циклическое деформирование с помощью электромеханических нагружающих устройств осуществлено на базах до 10 ч.  [c.26]

При циклическом деформировании металла с малыми амплитудами в поверхностно-активной среде также возникает более высокая плотность дефектов, расположенных равномерно по объему образца, чем при испытании в воздухе. При высоких амплитудах деформации, вследствие высокой скорости накопления дислокаций, поверхностно-активная среда способствует более быстрому упрочнению поверхностных слоев металла.  [c.16]

Как правило, в основу принципа действия испытательных машин длн изучения малоцикловой усталости положен жесткий вид нагружения, т.е. когда контролируемым параметром циклического нагружения является амплитуда деформаций.  [c.32]


При амплитуде напряжения цикла, соответствующей примерно пределу текучести данных образцов (а =245 МПа), сплошность покрытия нарушается уже через 100—200 цикл от начала испытаний. При снижении амплитуды напряжения до о = 0,95 нарушение сплошности покрытия не происходит и после 10 цикл. Критическая деформация образцов, снятых с испытания через 2 10 — 10 цикл, составила 1,8—1,9 %, что совпадает с первоначальной критической деформацией данного покрытия. Испытания, проведенные на образцах стали СтЗ, окрашенных по второй схеме и выдержанных в морской воде в течение 12 мес, также не выявили влияния предварительного циклического деформирования при амплитудах деформации, меньшей критической (1,0-1,1 %).  [c.188]

Усталость при циклическом сжатии ячеистых эластичных пластмасс. Метод испытания (ГОСТ 20990—75) заключается в определении остаточной деформации материала после его многократного сжатия с частотой 55+5 цикл/мин и амплитудой деформации 50%. После 25 тыс. циклов по истечении 30 мин замеряют высоту А] образца и вычисляют остаточную деформацию (%)  [c.242]

Ниже рассматриваются крутильные системы, представленные в виде механических ценен с сосредоточенными постоянными массами и деформируемыми звеньями, упруго-диссипативные свойства которых заданы гистерезисной петлей произвольного вида, полученной при моногармонических колебаниях (рис. 1,а,б). Основываясь на результатах ряда исследований и современных представлениях о природе внутреннего сопротивления, можно принять, что гистерезисные потери в значительной степени зависят от амплитуды деформации и незначительно — от частоты циклического деформирования [1], [2].  [c.70]

Другое направление учитывает роль пластических деформаций в механизме демпфирования энергии при колебаниях. Отметим здесь две гипотезы. Это прежде всего гипотеза упругого гистерезиса, предложенная Н. Н. Давиденковым зависимость напряжения от деформации при повторном нагружении является степенной функцией, определяемой амплитудой деформации, а не скоростью. Гипотеза Н, Н. Давиденкова нашла многих сторонников, она получила подтверждение опытными данными для многих конструкционных материалов. Упомянем также комплексное представление Е. С. Сорокина для связи между напряжением и деформацией при циклическом нагружении, когда неупругая циклическая деформация отстает по фазе от упругой на 90°. Для петли гистерезиса гипотеза Е. С. Сорокина дает эллиптическую зависимость, что удобно при расчетах.  [c.6]

Циклическая работа материала в указанных пределах исключает возможность явлений пластического гистерезиса, который приводит к трещинам и разрушениям. Однако рекомендуется для получения симметричной амплитуды деформаций плавника принимать в качестве перепада напряжений сумму пределов текучести материала при комнатной и рабочей  [c.164]

Проведенное исследование напряжений показало, что узел сопряжения имеет высокую концентрацию напряжений и в связи с этим может рассматриваться как работающий в условиях жесткого циклического нагружения (с постоянными амплитудами деформаций).  [c.129]

Жесткое нагружение — циклическое нагружение с заданными амплитудами деформаций.  [c.219]

Аттестационные данные должны обеспечивать возможность расчета конструкций из соответствующего материала на циклическую прочность. Применительно к условиям эксплуатации, исключающим ползучесть, должны быть представлены гарантированные (для регламентированных техническими условиями характеристик прочности и пластичности металла и сварных соединений и ресурса эксплуатации) кривые усталости по образованию макротрещин в диапазоне предельных температур от 20° С до наибольшей рабочей, допускаемой для материала, в интервале от 10 до 10 циклов. Кривые усталости определяют при постоянной температуре через интервалы 50—100° С в зависимости от интенсивности изменения сопротивления усталостному разрушению по мере увеличения температуры испытаний. Кривые для промежуточных температур могут быть получены интерполяцией амплитуд деформаций (напряжений) для заданных чисел циклов по температуре.  [c.243]

Использование уравнений состояния для оценки прочности и ресурса циклически нагруженных элементов конструкций и деталей машин позволяет проанализировать кинетику деформаций в наиболее напряженных зонах и рассмотреть процесс накопления циклических повреждений по мере Приближения к преде.льным состояниям. К числу наиболее исследованных в теоретическом и экспери.ментальном плане относятся особенности протекания циклических упругопластических деформаций и параметры соответствующих уравнений состояния при изотермическом нагружении для двух основных режимов нагружения — с заданными амплитудами напряжений и с заданными амплитудами деформаций. В результате этих исследований сформулированы свойства и виды уравнений обобщенных диаграмм циклического деформирования, получившие применение в расчетах прочности.  [c.3]

Как уже указывалось, весьма распространенным методом изучения сопротивления материалов циклическому упруго-пластическому деформированию являются испытания при постоянных амплитудах деформации — жесткое нагружение (рис. 601 а — сплав В96, б — сталь 1Х18Н9Т). При таких испытаниях за счет перераспределения упругой и пластической составляющих деформации максимальные напряжения от цикла к циклу могут изменяться.  [c.687]

Циклическое упругопластическое деформирование приводит к накоплению пластических деформаций, зависящему от количества циклов нагружения и амплитуды деформации в каждом цикле. Это накопление может быть односторонним, монотонно нарастающим по мере увеличения количества циклов или не приводящим к однонаправленному росту деформаций. Характер протекания пластических деформаций зависит от условий передачи нагрузки на деформируемый элемент, жесткости сопрягаемых деталей, а также от свойств материала. Накопление деформации при упругопластиЧеском деформировании металлов с низкой частотой приводит к появлению трещин и, в конечном счете, к разрушению конструкций при малоцикловом (несколько сотен или тысяч циклов] и при многоцикловом (10 — 10 циклов) нагружении. Закономерности деформирования и разрушения металлов при малоцикловых и многоцикловых испытаниях имеют ряд различий.  [c.86]

Изменение амплитуды напряжений при жестком нагружении, как и изменение амплитуды деформаций при мягком нагружении, в процессе циклических испытаний определяется свойствами материала. Для одних материалов (алюминиевые сплавы, титан и низкопрочные а-сплавы на его основе, некоторые конструкционные стали) ширина петли гистерезиса при мягком деформировании по мере нара--стания количества циклов уменьшается, а амплитуда напряжений при жестком нагружении увеличивается. Для этой группы материалов характерно повышение предела пропорциональности с увеличением количества циклов нагружения, в связи с чем такие материалы относят к группе циклически упрочняющихся. Для других материалов (например, теплостойкие стали, чугуны, высокопрочные титановые а и (а+ 0)-сплавы) наблюдается обратная картина при мягком нагружении ширина петли гистерезиса увеличивается, а при жестком нагружении амплитуда напряжения снижается. Сопротивление деформированию для этой группы материа-пов с увеличением количества циклов уменьшается, а вся группа материалов относится к типу циклически разупрочняющихся. И, наконец, ряд материалов (аустенитные стали, конструкционные стали средней прочности, некоторые титановые сплавы) не изменяют сопротивления деформированию при цикпическом нагружении, форма диаграмм деформирования остается практически неизменной, а сами материалы относятся к циклически стабильным. На рис. 47 приведен характер изменения диаграмм при жестком и мягком нагружении описанных групп материалов.  [c.87]


При нагружении циклически упрочняющихся материалов с заданными амплитудами напряжений, а также циклически упрочняющихся, разупрочняющихся и стабильных материалов с заданными амплитудами деформаций (жесткое нагружение) происходят мапоцикловые усталостные разрушения с образованием макротрещин без одностороннего накопления деформаций.  [c.6]

Предложена дислокационно-статистическая модель, в основу которой положено размножение дислокаций источниками Франка—Рида, первоначально дезактивированными точечными дефектами. С помощью указанной модели получены аналитические зависимости и.чменения плотности дислокаций от числа циклов (времени) и амплитуды напряжения (деформации) циклического нагружения, которые согласуются с литературными экспериментальными данными.  [c.238]

Одной из основных характеристик материала при циклическом нагружении является петля гистерезиса. При нагружении поликри-сталлнческих металлов с постоянной амплитудой деформации или напряжения обычно после короткой стадии начального упрочнения или разупрочнения наступает область стабилизации. В этой области размеры и форма петли гистерезиса с числом циклом почти не изменяются. Одновременно стабилизируется внутренняя дислокационная структура и возникает характеристическое неоднородное распределение дислокаций [1].  [c.68]

Циклическое деформирование и опыты по релаксации производились на гидравлической машине типа S HEN K. Испытывались плоские образцы с размерами рабочей части 5 X 10 X 20 м.м. Величина деформации определялась прямо на образце с помощью датчика и контролировалась электронной системой машины. Скорость деформации при усталости е = 8 10 сГ и уменьшалась в опытах по релаксации на стадии насыщения напряжения до ед = 1 10 с -Амплитуды деформации 6 выбирались так, что на стадии стабилизации получались величины амплитуд пластической деформации Ера ОТ 10 до 1,5 10 .  [c.130]

Устойчивые полосы скольжения (УПС) являются характерным признаком циклической деформации большинства металлов и сплавов. Дислокационная структура УПС отличается от структуры окружающей матрицы [1—3]. Пересечение УПС с поверхностью кристалла образует грубый рельеф [4]. Известно, что группы УПС (макрополосы) в монокристаллах с ГЦК решеткой средней ориентации распространяются по целому сечению образца параллельно первичной плоскости скольжения [4—7] (рис. 1) Это значит, что для доли объема УПС и матрицы пластической амплитуды деформации e p или е р можно записать в виде  [c.158]

Другим важным вопросом обеспечения прочности и ресурса атомных реакторов, не получавшим отражения в традиционных расчетах энергетических установок по уравнениям (2.1) —(2.3), являлся анализ сопротивления деформациям и разрушению при циклическом нагружении [2,5-7,16]. Как следует из данных гл. 1, в процессе эксплуатации атомных реакторов число циклов нагружения на основных режимах изменяется в достаточно широких пределах - от (2- 5) 10 при гидроиспытаниях до (1 2) Ю при программных изменениях мощности и до 10 —10 с учетом вибро-нагруженности. Систематические исследования прочности в этом диапазоне числа циклов были начаты применительно к энергетическим установкам в середине 50-х годов, а в середине 60-х годов были сформулированы основные (преимущественно деформационные) критерии разрушения и свойства диаграмм циклического деформирования [17,18 и др.]. По опытным данным, полученным на лабораторных образцах, было показано, что при числе циклов до 10 циклические пластические деформации оказываются сопоставимыми (в диапазоне числа циклов 10 —10 ) или существенно большими (в диапазоне числа циклов 10 -5 10 ), чем циклические упругие деформации. При этом в зависимости от типа металлов и условий нагружения (с заданными амплитудами деформаций или напряжений) пластические деформации по мере увеличения числа циклов могут возрастать (циклически разупрочняющиеся металлы), уменьшаться (циклически упрочняющиеся металлы) или оставаться постоянными (циклически стабильные металлы). Указанные особенности поведения металлов при циклическом упругопластическом деформировании обусловливают нестационар-ность местных напряжений и деформащ1Й в зонах концентрации при стационарных режимах внешних нагрузок. Для малоцикловой области уравнения кривых усталости и сами кривые усталости при числах циклов 10 —Ю представлялись не в амплитудах напряжений (как для обычной многоцикловой усталости при числах циклов 10 —10 ), а в амплитудах упругопластических деформаций.  [c.40]

Характер разрушения образцов существенно зависит от природы контактирующей детали (рис. 77). Ширина зоны фреттинг-пораженин L определяется жесткостью системы вал - втулка, амплитудой деформации и примерно соответствует зоне распространения максимальных переменных контактных напряжений. С понижением жесткости системы, уменьшением натяга и увеличением амплитуды циклических напряжений ширина зоны, подвергнутой фреттинг-коррозии, увеличивается. При испытании образцов с жесткими металлическими накладками под ними у торца, вследствие взаимного микроперемещения и высоких контактных давлений, протекают процессы микропластических деформаций, поверхность контактирующих металлов активируется и взаимодействует с окружающей средой, в частности, с кислородом. При этом образуются продукты фреттинг-коррозии, представляющие собой оксиды металла, а в отдельных случаях — тонкодисперсный металлический порошок.  [c.146]

При повторных нагружениях постоянным пульсирующим циклом (ог0 =0,7 0т) амплитуда деформаций в процессе 4—6 циклов уменьшается на 5—7%, после чего наступает практически полная стабилизация деформированного состояния. Уровень напряжений к 5—6-му циклу нагружения возрастает примерно на 10—12% (пунктирные кривые на рис. 7.6), а затем стабилизируется. Обусловлено это тем, что материал оболочки — циклически стабилизирующаяся сталь МСт. Зсп кроме того, пластическая зона весьма локализована и подвержена сдерживающему влиянию упругодеформированной оболочки и патрубка.  [c.141]

Испытания при нагружении с заданными амплитудами деформаций (жесткое нагружение) с выдержками (при высоких температурах) и без них (при нормальных и повышенных температурах) позволяют также осуществитьпроверку справедливости уравнений состояния и получить кривые сопротивления малоцикловому и длительному циклическому разрушению.  [c.12]


Смотреть страницы где упоминается термин Амплитуда деформации циклической : [c.19]    [c.221]    [c.184]    [c.130]    [c.114]    [c.141]    [c.41]    [c.14]   
Повреждение материалов в конструкциях (1984) -- [ c.378 ]



ПОИСК



Амплитуда

Амплитуда деформаций

Деформация циклическая

Особенности теплового состояния образца при термоциклироваМетоды определения амплитуды циклической упругопластической деформации

Шаг циклический



© 2025 Mash-xxl.info Реклама на сайте