Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Отвод, сопротивление

Гидравлические потери. Третьим видом потерь энергии в насосе являются потери на преодоление гидравлического сопротивления подвода, рабочего колеса н отвода, или гидравлические потери. Они оцениваются гидравлическим КПД i]r, который равен отногаению полезной мощности насоса ТУц к мощности N (см. рис. 2.5). Согласно уравнениям (2.2), (2.5) и (2.))  [c.160]


Еще в первых работах Лева с сотрудниками [71] было высказано предположение, что благодаря хорошему перемешиванию частиц ядро слоя имеет пренебрежимо малое по сравнению с газовой прослойкой у поверхности термическое сопротивление, и именно газовая пленка на границе раздела псевдоожиженного слоя со стенкой является основным фактором, лимитирующим интенсивность теплообмена. При этом частицам отводится роль турбулизаторов, разрушающих ламинарный слой, тем самым уменьшая его сопротивление. Коэффициент теплообмена в этом случае определяется по соотношению  [c.58]

Наиболее существенное изменение поля скоростей турбулентного потока (а также соответственно коэффициента сопротивления) с изменением режима течения, т. е. числа Re, имеет место в тех елучаях, когда течение происходит с отрывом потока от твердой поверхности, а изменение Re вызывает соответствующее перемещение точки отрыва вдоль этой поверхности. Такое течение характерно, например, для отрывных диффузоров с углами расширения Tsi 15-i-45°, для колен с небольшими радиусами закругления / , но без направляющих лопаток, для отводов при среднем радиусе закругления Rk < (0>6 2) Ь, а также для обтекания шара, цилиндра и т. п. В перечисленных случаях автомодельная область наступает при Reg.jT 5- Ю Т  [c.15]

При входе потока вниз относительное расстояние Я..//),, от днища (экрана) до среза подводящего отвода оказывает такое же экранирующее влияние на сопротивление участка, как и решетка в случае входа потока вверх. Этого влияния нет при Яд/Яр 1,2. Если Яд/Яр -< 1,2, то добавочный коэффициент сопротивления, обусловленный экранирующим влиянием днища (экрана),  [c.191]

Определить, на какой высоте z от нижнего уровня следует поместить порог водослива, чтобы при расходе Q = 80 л/с вакуумметрическая высота в точке А не превосходила 6 м. Длина участка трубопровода от точки А до затвора L = 12 м, коэффициент сопротивления открытой задвижки Сз = 0,15 и каждого из отводов = Д,2. Коэффициент сопротивления трения в трубе принять  [c.144]

При расчетах принять коэффициенты сопротивления трения трубопроводов ii = 0,025 и 2 = 0,028. Коэффициент сопротивления всасывающей коробки с обратным клапаном = 7 и частично закрытой задвижки 3 = 8. Сопротивление отводов не учитывать.  [c.423]

Понятие напряжение играет очень важную роль в расчетах на прочность. Поэтому значительная часть курса сопротивления материалов отводится изучению способов вычисления напряжений о и т.  [c.84]

Жидкостное трение. При жидкостном трении в кинематических парах элементы трущихся поверхностей разделены слоем смазки и сила трения определяется сопротивлением сдвигу слоев жидкости. Жидкостное трение имеет ряд преимуществ малый износ трущихся поверхностей, лучший отвод тепла от них, а также возможность работы при больших скоростях. Впервые теория жидкостного трения разработана в 1883 г. акад. Н. П. Петровым и развита в работах Н. Е. Жуковского и С. А. Чаплыгина. К основным положениям этой теории относятся условия жидкостного трения.  [c.73]


Коэффициенты сопротивления для отводов с поворотом по радиусу R на угол а = 90  [c.89]

Отводы (рис. 26, б). Значения коэффициентов сопротивления для отводов двух видов шероховатости и ш) помещены в табл. 8. Они справедливы при повороте потока отводом на угол а = 90°. Если отвод поворачивает поток на угол а =j= 90 , то данные табл. 8 следует умножить на коэффициент т  [c.90]

Жидкостные смазки (минеральные масла и др.) применяют для подшипников при окружных скоростях вала свыше 10 м/с. Жидкие смазки обладают значительно меньшим внутренним сопротивлением и потерями на трение, более стабильны и способны работать как при высоких, так и при низких температурах, позволяют применять циркуляционную систему подачи смазки, ее охлаждение, фильтрацию, способны проникать в узкие зазоры, обеспечивают хороший отвод теплоты и удаление продуктов износа, допускают смену смазки без разборки подшипниковых узлов. Однако жидкие смазки требуют более сложных уплотнений и регулярного наблюдения за подачей, менее экономичны. К зависимости от условий работы жидкую смазку можно подавать в подшипник различными способами с помощью масляной ванны в корпусе подшипника (уровень смазки в ванне не должен быть выше центра нижнего тела качения), разбрызгиванием из масляной ванны посредством одного из быстроходных колес или специальных крыльчаток.  [c.535]

Р1з предыдущего параграфа, содержащего теорию теплового сопротивления, следует, что при подводе тепла к газовому потоку полное давление в нем падает, а при отводе тепла — растет. Формулы теплового сопротивления были выведены применительно к случаю движения газа без трения по трубе постоянного сечения, т. е. именно к случаю теплового сопла.  [c.208]

Сопротивление колен и отводов, а также других местных сопротивлений, главным образом в условиях несжимаемой жидкости, изучается в курсах гидравлики.  [c.464]

Инженер, имеющий дело с несущими конструкциями, должен обладать четким представлением об особенностях деформирования под нагрузкой тел различной формы и уметь практически проводить их расчет на прочность и жесткость. Этим вопросам отводится заметное место в обучении инженера-строителя, и изучаются они в таких курсах, как Сопротивление материалов , Строительная механика и Теория упругости и пластичности .  [c.5]

В газодинамике доказывается, что подвод теплоты к газу, движущемуся по каналу постоянного сечения, сопровождается уменьшением давления газа, а отвод теплоты, наоборот, — повышением давления. Уменьшение давления газа, обусловленное его подогревом, представляет собой тепловое сопротивление. При охлаждении газа тепловое сопротивление отрицательно, т. е. оно уменьшает об-ш,ее сопротивление теплообменника. Тепловое сопротивление можно подсчитать как удвоенную разность скоростных напоров в конце и в начале канала  [c.462]

Этот результат означает, что в трубе постоянного сечения с сопротивлением и при отсутствии отвода теплоты непрерывный переход через скорость звука (т. е. от дозвуковой скорости течения к сверхзвуковой) невозможен. В самом деле, допустим, что скорость течения газа в трубе достигла значения щ, большего местной скорости звука с. Так как точка = с является точкой максимума функции з (щ), то з т. е. при переходе через точку  [c.326]

Редукционный клапан несколько иной конструкции приведен на рис. 12.10, б. Гидролинией 10 подводится жидкость высокого давления в полость 3. Гидролиния 2 отводит жидкость с редуцированным давлением р . Если давление в полости 1 понизится, то под действием пружины 6 запорный элемент 4 переместится вниз, уменьшится сопротивление щели между седлом и запорным элементом и давление в полости 1 повысится. При повышении редуцированного давления процесс регулирования будет протекать в обратном порядке.  [c.196]

По первой из послевоенных программ на изучение курса технической механики в машиностроительных техникумах отводилось 360 часов, из них на сопротивление материалов — 100 часов. Хотя эта программа и изобиловала неточными формулировками, но курс сопротивления материалов был представлен относительно полно. Правда, мало внимания было уделено расчетам на прочность при напряжениях, переменных во времени, не было темы Контактные напряжения и деформации , вошедшей в программы лишь в 1967 г. Следует заметить, что в тот период по каждому из разделов технической механики (теоретической механике, сопротивлению материалов и деталям машин) был предусмотрен экзамен.  [c.6]


На изучение темы отводится всего 2 часа больше не позволяет общий бюджет времени на курс сопротивления материалов. За это время предусмотрено изучить следующие вопросы общее понятие о контактных деформациях и напряжениях примеры возникновения контактных напряжений контакт тел, ограниченных сферическими поверхностями (форма и размеры контактной площадки, максимальное контактное давление) контакт цилиндров с параллельными образующими (форма и ши-  [c.185]

Известно, что многие преподаватели, следуя школьной системе обучения, считают необходимым в конце изучения предмета отводить несколько занятий повторению пройденного. Учебным планом и программой это не предусмотрено, и любая попытка затратить время на повторение неизбежно приведет к неполному изучению программного материала. Да и надобности в специальном повторении материала нет. В темах Расчеты на сопротивление усталости и Задачи динамики в сопротивлении материалов приводится достаточно материала для повторения. При этом большие возможности дает вторая из указанных тем, так как в первой много нового теоретического материала.  [c.201]

При плавном повороте трубы (отвод) вихреобразование уменьшается и коэффициент сопротивления меньше, чем для острого колена. Это уменьшение возрастает с увеличением относительного радиуса кривизны отвода г///. Для отводов круглого сечения при а=90° значение коэффициента сопротивления можно найти по формуле  [c.51]

Обозначения единиц кзмерения 9 Объем, единицы 9 Освещение рабочих мест 320 Отбор пара 328 Отвод, сопротивление 103 Отопление, графши 339  [c.357]

Вторая зона слитка — зона столбчатых кристаллов 2. После образования самой 1к0рки условия теплоотвода меняются (из-за теплового сопротивления, из-за повышения температуры стенки изложницы и других причин), градиент температур в прилегающем слое жидкого металла резко уменьшается и, следо1ватель-но, уменьшается степень переохлаждения стали. В результате из небольшого числа центров кристаллизации начинают расти нормально ориентированные iK поверхности корки (т. е. в направлении отвода тепла) столбчатые кристаллы.  [c.52]

Горизонтальный участок присоединяли к воздухопроводу от вент[1лятора, ешгнетав-шего в установку чистый (незапылснпый) воздух. В качестве распределительных устройств использовали г.тавным образом плоские (тонкостенные) решетки 2 - стальные перфорированные листы. Эти решетки размеща,ти а рабочей камере на различном расстоянии //р от бокового входного отверстия (или от выходного сечения отвода 4). Коэффициент сопротивления решеток р меняли в широких пределах, примерно от 2 до 2000, путем изме-  [c.160]

Растекание струи по фронту решетки. По диаграммам распределения скоростей (см. табл. 7.1, 7.2) можно видеть, что первонач.альный профиль скорости иа выходе из подводящего участка также неравномерен (см. первый столбец при ц, 0). В не.м имеется завал слева, соответствующий отрыву потока при повороте па 90 в подводяще.м отводе, и максиму.м скоростей, смещенный относительно оси симметрии вправо. Это смещение максимума скоростей наблюдается при всех значениях решетки. Из табл. 7.1 видно, что при малых коэффициентах сопротивления решетки, примерно до = 4, узкая струя с описанным первоначальным характером профиля скорости, набегая на решетку и растекаясь по ней, расширяется так, что скорости во всех точках падают, при этом монолитность струи в целом еще не нарушается, т. е. струя проходит через решетку одним центральным ядром (не считая распада ядра на отдельные струйки при протекании через отверстия решетки.)  [c.169]

Опыт показывает, что коэффициент сопротивления зависит от относительного расстояния решетки до среза подводящего отвода при центральном входе потока лишь в определенных пределах его изменения (рис. 7.21). Практически влияние относительного расстояния сказывается при ЯрЮо с 1- -1,2. В этих пределах коэффициент сопротивления оуч резко возрастает при уменьшении Яр/Яц.  [c.188]

Подводящий участок аппарата может быть упрощен путем замены колена 90 с направляющими лопатками плавным отводом 90° без направляющих лопаток при этом требуемое удлинение подводящего участка (вследствие увеличения радиуса закругления отвода по сравнению с коленом) может быть компенсировано укорочением диффузора. Последнее приводит к увеличению входного сечению диффузора, что, в свою очередь, уменьшает отношение площадей, и с точки зрения равномерной раздачи потока является более благоприятным. При плавном отводе также получается одностороннее отклонение потока. Однако при этом нет дополнительного сЖатия его на выходе из отвода и, кроме того, это отклонение меньше, чем отклонение при колене без направляющих лопаток. Установка одной распределительной решетки = 29 / = 0,25) не обеспечивает полного растекания струи. Практически равномерное растекание струи по всему сечекию рабочей камеры (Л п 1,15) получается при установке двух решеток с коэффициентами сопротивления, сравнительно близкими к расчетным ( р1 =29 / = 0,25 и = 20 , / = 0,29), как это сделано в варианте П-З. Здесь тенденция к отклонению потока вверх компенсируется влиянием зазора между решетками и нижней стенкой диффузора (б/5к "= 0,02), через который происходит более интенсивное перетекание газа из области перед решеткой в область за ней. Уменьшение коэффициентов сопротивления решеток (вариант И-4 и особенно вариант П-5) существенно ухудшает равномерность поля скоростей в рабочей камере аппарата с подводом через плавный отвод (Мк = 1,8).  [c.225]

Коэффициент сопротивления всего участка установки, ириведенн1лй к скорости w-j, в сечении электрофильтра от сечения I—I раздающего коллектора до сечения IV—IV перед дымососом га 215. По отдельным участкам этот коэффициент распределяется следующим образом = 5,5, участок /—///, включающий раздающий коллектор с боковым ответвлением 1 (в котором установлены направляющие лопатки 2) и пл вный отвод 3 с направляющими лопатками 4 = 85, участок iff—fV, включающий вертикальный короб  [c.243]


Если ось выходного участка наддувающего вентилятора расположена под углом к оси камеры, то вводят переходный участок — колено с направляющими лопатками или плавный отвод (табл. 10.4). Во всех перечисленных случаях также требуется дополнительное выравнивание потока внутри камеры. В качестве воздухораспределительного устройства может быть применена комбинированная решетка, состоящая из одной или нескольких последовательно установленных плоских перфорированных репюток и спрямляющей решетки за ними. Плоские решетки создают необходимое сопротивление для выравнивания скоростей потока по величине, л спрямляющая решетка выравнивает скорости по направлению. Подбор решеток производят на основании рекомендаций, приведенных в гл. 4, 7  [c.311]

Для расчета распределепня температур необходимо найти радиус нейтрального сечения Га. Так как значение га зависит от интенсивности отвода теплоты с поверхностей урана, а известны и 0.2 с поверхностей оболочек, то вначале определяем значения эффективных коэффициентов теплоотдачи а ф i и аэф2 учитывающие термические сопротивления оболочек  [c.34]

При расчете принять коэффициент сопротивления трения трубопроводов X = 0,03, коэффициент сопротивления каждого отвода Со = 0,4, коэффициент сопротивле. ния исасывакэщей коробки с обратным клапаном Ск = 5.  [c.425]

В теплоэнергетике, использующей как ядерное, так и обычное углеводородное топливо, одной из важнейших является проблема отвода огромного количества тепла с теплоотдающих поверхностей. Наиболее распространенным и используемым для этих целей теплоносителей являются парожидкостные смеси. Поэтому исследователями большое внимание уделяется течению парожидкостных смесей при наличии фазовых переходов в каналах с обогреваемыми и необогреваемыми стенками. Видимо на эту тему появляется наибольшее число публикаций в области неоднофазных течений. Здесь особый интерес представляют исследования структуры потока при различных режимах, кризисов теплообмена, обусловленных нарушением контакта жидкой фазы с теплоотдающей поверхностью, гидравлического сопротивления и т. д. Проблемы безопасности реакторного узла или устройств аналогичного типа привели к необходимости изучения истечений наро-жидкостных смесей из сосудов высокого давления, распространения возмущений и ударных волн в двухфазных парожидкостных потоках. Здесь же отметим течение влажного пара (смесь пара с каплями воды) в проточных частях турбомашин.  [c.10]

Этот факт имеет достаточно прозрачное физическое объяснение. При неизменных геометрии трубы и степени расширения в ней увеличение ц достигается прикрьггием дросселя, т. е. уменьшением площади проходного сечения для периферийных масс газа, покидающих камеру энергоразделения в виде подогретого потока. Это равносильно увеличению гидравлического сопротивления у квазипотенциального вихря, сопровождающегося ростом степени его раскрутки, увеличением осевого градиента давления, вызывающего рост скорости приосевых масс газа и увеличение расхода охлажденного потока. Наибольшее значение осевая составляющая скорости имеет в сечениях, примыкающих к диафрагме, что соответствует опытным данным [116, 184, 269] и положениям усовершенствованной модели гипотезы взаимодействия вихрей. На критических режимах работы вихревой трубы при сравнительно больших относительных долях охлажденного потока 0,6 < р < 0,8 течение в узком сечении канала отвода охлажденных в трубе масс имеет критическое значение. Осевая составляющая вектора полной скорости (см. рис. 3.2,а), хотя и меньше окружной, но все же соизмерима с ней, поэтому пренебрегать ею, как это принималось в физических гипотезах на ранних этапах развития теоретического объяснения эффекта Ранка, недопустимо. Сопоставление профилей осевой составляющей скорости в различных сечениях камеры энергоразделения (см. рис. 3.2,6) показывает, что их уровень для классической разделительной противоточной вихревой трубы несколько выше для приосевых масс газа. Максимальное превышение по модулю осевой составляющей скорости составляет примерно четырехкратную величину.  [c.105]

Для этих целей может быть использован вихревой карбюратор (см. рис. 6.13), за основу конструкции которого был принят вихревой энергоразделитель с одним выходом потока через отверстие диафрагмы, установленной в сечении, примыкающем к сопловому вводу. Несмотря на заметно возросшее гидравлическое сопротивление тракта вихревой трубы этой конструкции она имеет преимущество, ифаюшее существенную роль на режиме запуска холодного двигателя. Режим работы, когда весь поступающий массовый расход компонентов отводится через отверстие диафрагмы в виде охлажденного , позволяет внутри камеры энергоразделения создать зоны с существенно повышенной температурой. При этом при отрицательной температуре на вхо-  [c.301]

Электрические методы. Электрические методы определения размеров частиц основаны на измерении таких величин, как заряд, подвижность, емкость и сопротивление. Электрические импульсы, создаваемые каплями, которые касаются проволочки зонда, в некоторых случаях подчиняются эмпирической зависимости, содержащей диаметр частицы в степени 1,6 [256]. Более усовершенствованным методом является использование прибора Коултер каунтер [838], который регистрирует изменение сопротивления. Другой метод основан на анализе вольт-а.мперной характеристики конденсатора из плоских параллельных пластин, между которыми пропускается аэрозоль [142]. Для определения размеров жидких капель используется также и тот факт, что при отводе тепла от проволоки, нагреваемой током, изменяется ее сопротив-.гение, которое оказывается пропорциональным размеру капли [274, 857]. Дальнейшие подробности и приложения этого метода приведены в гл. 10.  [c.28]

Таким образом, в общем случае обобщенные модели могут быть представлены системами взаимодвижущихся катушек (конденсаторов). В качестве обобщенной модели будем рассматривать систему с взаимодвижущимися катушками, так как практическое применение нашли индуктивные ЭМП. Каждую катушку можно представить двухполюсником с последовательным соединением активного и индуктивного сопротивлений. К зажимам катушки можно подводить или отводить электрическую энергию. Катушки могут иметь произвольные электрические соединения друг с другом.  [c.56]

Мы остановимся лишь на влиянии сжимаемости газа на сопротивление при повороте потока. На рис. 8.36 нанесены экспериментальные данные Н. Н. Круминой для зависимости отношения коэффициентов сопротивления от приведенной скорости перед поворотом в колене (3) и отводе 1, 2). В несжимаемой жидкости зо = = 1,05 20 = 0,3 при rold = 0,75 и Iso = 0,2 при ro/d = 1 = 0,1 при го/d = 2,5. Влияние сжимаемости газа на потери в очень плавном отводе не проявляется, а в колене становится наиболее значительным, особенно при > 0,4. Опыты велись при R =- > 2 10 ,т. е. в области, где влияние вязкости несущественно.  [c.464]

При плавном повороте трубы (вакругленное колено, отвод) вихреобразования уменьшаются (pii . XIII.16) и потери напора будут значительно меньше. Коэффициент сопротивления отвода зависит от угла поворота, а также от отношения R/d радиуса закругления к диаметру трубы и от величины коэффициента гидравлического трения Я, т. е.  [c.213]

Из приложения 5 находим значения коэффициентов местных сопротивлений отвода — при R/d = 0,2/0,1 = 2 So= 0,3, задвижки Лудло — при hid = = 0,7 == 1,5. Следовательно,  [c.88]


При возрастании плотности теплового потока или дальнейшем увеличении температурного напора (0 > 0, р) число центров парообразования увеличивается настолько, что наступает момент, когда пузырьки сливаются, образуя у поверхности нагрева сплошной паровой слой, от которого периодически отрываются и всплывают крупные пузыри. Такой режим кнпепия жидкости называется пленочным (область ПЛ). Отвод теплоты от стенки к жидкости в этом режиме кипения осуществляется путем конвективного теплообмена и излучения через паровую пленку. Пленочный режим подразделяется па переходный (ПР), устойчивый пленочный (УПЛ) и теплообмен излучением ТИ). Паровая пленка представляет собой большое термическое сопротивление ввиду своей малой теплопроводности (в 20—40 раз меньше, чем у жидкости), в силу чего теплоотдача от греющей поверхности к жидкости резко ухудш ается, уменьшаясь в десятки раз по сравнению с пузырьковым кипением, а температура стенки при этом значительно возрастает.  [c.2]

Если в процессе дросселирования теплота не подводится к рабочему телу и не отводится от него, то уравнение (13.26). можно упростить. Такой процесс иосит название адиабатного дросселирования (q = 0). При дросселировании работа расширения рабочего тела от давления р до давления р., полностью затрачивается на образование турбулентных завихрений и преодоление сопротивления трению. Совершаемая потоком работа трения превращается в теплоту Q,p, которая полностью воспринимается самим потоком. В соответствии со вторым началом термодинамики это приводит к возрастанию энтропии потока, поэтому процесс дросселирования внутренне иеобра-т и м, так как теплоту трения нельзя преобразовать в работу. В случае адиабатного течения 0) без совершения техниче-  [c.20]

Статическое давление // pg столба жидкости значительно уменьшает образование пузырьков пара, но полностью не исключает его. Поэтому основной задачей является отвод образовавшихся паров из всасывающего трубопровода. С этой целью на всасывающем фланце насоса монтируют сетчатый фильтр Ф. Пары сепарируются в нем и удаляются в циркуляционный ресивер. Кроме того, устойчивая работа насоса во многом определяется рациональным проектированием, монтажом и эксплуатацией узла напорная емкость — всасывающией трубопровод — насос. Под этим подразумевается уменьшение скорости потока (ие более 0,5 м/с) во всасывающей трубе и понижение ее сопротивления за счет увеличения диаметра трубы, уменьшения ее длины н количества поворотов н вентилей размещение устройств, пре-  [c.311]


Смотреть страницы где упоминается термин Отвод, сопротивление : [c.68]    [c.102]    [c.190]    [c.191]    [c.73]    [c.233]    [c.243]    [c.342]   
Справочник для теплотехников электростанций Изд.2 (1949) -- [ c.103 ]



ПОИСК



КОЭФФИЦИЕН сопротивления отводов

Отвод

Отводы — Коэффициент сопротивлени

Отводы — Коэффициент сопротивлени трубопроводов

Расчет гидравлических сопротивлений Хдн и rLщ- спирального отвода

Сопротивление при течении с изменением направления потока (коэффициенты сопротивления изогнутых участков—колен, отводов н да



© 2025 Mash-xxl.info Реклама на сайте