Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Оптический Коэффициент покрытия

О Коэффициент отражения иа границе слоя диэлектрика с л 1.5 невелик (/ <0,04), поэтому в первом приближении можно не учитывать многократные отражения. При оптической толщине покрытия л/= /4 отраженные от передней и задней границ слоя волны будут в противофазе. Чтобы они полностью погасили друг друга в результате интерференции, их амплитуды должны быть одинаковы (по модулю). Используя формулы (5.66) для амплитудных коэффициентов отражения, получаем  [c.266]


Для этой оптической толщины покрытия поверхности коэффициент пропускания будет  [c.73]

Продолжительность работы СБ зависит от метеорной эрозии, ухудшающей оптический коэффициент ее поверхности, воздействия радиационного излучения, понижающего фотоэдс ФЭП (главным образом при полете в радиационном поясе Земли и в результате солнечных вспышек), и воздействия термических ударов, являющихся следствием глубокого охлаждения СБ на затененных и нагрева на освещенных участках полета и разрушающих электрическую коммутацию и узлы крепления ФЭП. Используются эффективные меры защиты СБ от радиационного воздействия и воздействия солнечных вспышек -прозрачные защитные покрытия, легирующие добавки в материал ФЭП  [c.223]

Из сказанного выше следует, что для поддержания теплового режима космического аппарата большое значение имеет правильный выбор оптических коэффициентов наружных поверхностей е и Ад. Для этой цели наружные поверхности аппарата — радиационные поверхности, поверхности теплоизоляции, не защищенные элементы конструкции и приборы — покрываются специальными красками. Основной характеристикой покрытия поверхности является равновесная температура Гр, которую принимает теплоизолированная поверхность при прямом воздействии на нее солнечного излучения в стационарных условиях.  [c.491]

Полость сделана большой, чтобы при визировании нижней части цилиндра и обращенного конуса ее излучательная способность для теплового излучения при 273 К превышала 0,9999. Область длин волн, на которую приходится основная часть излучения при этой температуре, простирается от 2 до 200 мкм. На излучение за пределами этой области приходится лишь 0,1 % от полной энергии излучения. Температура полости измерялась восемью прецизионными платиновыми термометрами сопротивления, прикрепленными к различным частям полости. Однородность температуры в цилиндрической и конической частях была лучше, чем 1 мК. Внутренняя поверхность полости покрыта черной краской ЗМ-С-401, оптические свойства которой известны до длины волны 300 мкм. Вплоть до длины волны 30 мкм коэффициент отражения краски меньше 0,06. Таким образом, излучательная способность полости с достаточной степенью точности определяется только членом с р в уравнении (7.56) для углов падения больше 80° при всех длинах волн чернение приводит к преимущественно зеркальному отражению.  [c.347]


Исследования по влиянию солнечной радиации на покрытия I и II показали, что они не меняют своих оптических характеристик (а и ё) по крайней мере в течение 2000 солнечных часов. У покрытия Z-93 за это же время на 20% увеличивается коэффициент а,, а степень черноты не изменяется.  [c.92]

Интерферометр Фабри—Перо. Интерферометр, или эталон Фабри—Перо, является в настоящее время основным прибором в спектроскопии высокой разрешающей силы. Его действие основано на интерференции большого числа лучей, получаемых при многократном отражении световой волны между двумя параллельно расположенными плоскими зеркалами, обладающими частичным пропусканием (рис. 26). В современных интерферометрах, как правило, используют многослойные диэлектрические зеркальные покрытия, которые наносят на подложки из оптического стекла или кварца в вакууме. Они позволяют получать высокие коэффициенты отражения света при малой величине потерь на поглощение. Худшие характеристики имеют покрытия из тонких пленок серебра и алюминия.  [c.76]

Коэффициенты концентрации определяются методами теории упругости в предположении однородности, изотропности и совершенной упругости материала или экспериментальным путем с помощью поляризационно-оптического метода, метода лаковых покрытий, тензометрии, метода аналогий.  [c.50]

Оптический метод основан на измерении уступа, образованного краем покрытия с основным металлом, способом светового сечения или растровым способом с помощью оптического микроскопа. Метод применим для измерения толщины покрытия от 1 до 40 мкм с коэффициентом отражения не менее 0,3. Уступ получают растворением небольшого участка покрытия с предварительной изоляцией остальной части поверхности.  [c.55]

Допускается также производить оценку по изменению массы металлического образца после удаления покрытия и оптическим методом — по изменению блеска металлической поверхности образцов после удаления покрытия. Блеск и его изменения определяют по коэффициенту отражения или визуально — путем сравнения с поверхностью стандартных образцов.  [c.99]

Как, однако, говорилось в начале главы, особенности и условия нагружения во многих случаях таковы, что концентрация напряжений не поддается математическому исследованию. В подобных случаях для определения коэффициентов концентрации напряжений используются экспериментальные методы и расчеты по методу конечных элементов. Ранее уже упоминалось, что метод конечных элементов является самым распространенным методом вычисления коэффициентов концентрации напряжений. Среди других иногда используемых методов можно назвать применение механических, оптических или электрических экстензометров с малой базой, метод хрупких лаковых покрытий, метод дифракции рентгеновских лучей и метод фотоупругости.  [c.410]

Благодаря узкой диаграмме направленности излучения передатчика, лазерное пятно полностью умещалось на цели. Это обстоятельство позволяло работать без уголкового оптического отражателя, так как мощность отраженного излучения, принятого локатором, уменьшалась пропорционально второй, а не четвертой степени дальности до цели. Коэффициент отражения покрытия головного обтекателя ракеты-носителя равнялся 0,6 на длине волны 0,514 мкм.  [c.215]

Необходимо также указать на то, что при непрерывном удвоении частоты излучения лазера для повышения коэффициента преобразования (в принципе достигающего 100%) используется преимущественно режим внутрирезонаторной генерации второй гармоники. Это, в свою очередь, ограничивает величину потерь, вносимых в резонатор помещенным внутрь него преобразователем частоты, верхним значением 0,01, что требует обеспечения весьма высокого оптического совершенства кристаллического элемента и просветляющих покрытий в сочетании с достаточной лучевой прочностью.  [c.246]

Камера с ЭОП использовалась в режиме покадровой съемки для изучения картин в ближней зоне рубинового лазера длиной 3,81 см и диаметром 4,74 мм. Ось с была ориентирована под углом 57°, а боковая поверхность полирована. Торцы были покрыты свежим слоем серебра, чтобы обеспечить высокий коэффициент отражения зеркал. Время экспозиции каждого кадра обычно выбиралось равным lO"" сек, а расстояние между кадрами — равным 0,5 10" сек. Изображение лазерного кристалла фокусировалось на фотокатод соответствующей оптической системой, а вместо затвора в нужное время включался и выключался электронный луч внутри трубки. Полученные картины были проанализированы и оказались в соответствии с рассчитанными картинами ближнего поля.  [c.65]


Bi,. . B/f — число поверхностей с зеркальным и светоделительным покрытием одинакового коэффициента отражения. В это число входят поверхности со светоделительным покрытием, работающие в проходящем ходе лучей оптической системы.  [c.77]

Коэффициенты отражения или пропускания покрытий оптических деталей устанавливаются в ЧТУ.  [c.694]

Формулой (1.31) не учитываются потери при отражении на поверхностях склейки деталей, если иа них нет светоделительных покрытий, и на поверхностях призм при полном внутреннем отражений, так как потери на этих поверхностях незначительны. При расчете коэффициента пропускания оптических систем удобнее пользоваться формулой (1.32), по которой сначала вычисляют оптическую плотность системы ) = = — ят, а затем по вычисленному значению > находят коэффициент пропускания т.  [c.48]

Электролитические осадки платины характеризуются высокой устойчивостью к большинству агрессивных сред и истиранию. Микротвердость платиновых покрытий составляет 4500—6000 МПа. Коэффициент отражения платины достигает 70%. В связи с этим платинирование находит применение для повышения надежности работы электроконтактов в тяжелых условиях эксплуатации (толщина 3—10 мкм) в оптическом приборостроении (толщина 0,1—0,5 мкм) и т. д.  [c.102]

Таким образом, оптические свойства покрытий на органических связках зависят от объемной концентрации пигмента, укрывнстости и от отношения коэффициентов преломления компонентов. Соответствующий подбор их обеспечивает необходимую излучательную способность при минимальной толш.ине покрытия  [c.90]

Оптические свойства покрытий на неорганических связках также зависят от концентрации пигмента п от отношения коэффициентов преломления компонентов. Наилучшие свойства покрытие приобретает при достижении макримально возможной величины весового отношения количества пигмента к количеству сухого щелочного силиката. Практика показывает, что этот максимум заключен в пределах от 4,5 до 7 и превышение его приводит к ослаблению клеющего воздействия жидкого стркла на частицы пигмента, так как в этом случае, очевидно, не пррисходит всестороннего смачивания частиц.  [c.91]

Как указано в 1, решение задач по оценке предельных состояний, возникающих в зонах концентрации, реализуют экспериментально [12, 13, 22] методами муара, сеток или оптически активных покрытий, с помощью численных методов (МКЭ)или с использованием алгоритмов определения кинетики полей неоднородных деформацигг на основе зависимостей между коэффициентами концентрации в упругой (ссц) и пластической (Ац, / ) стадиях статического пагруяшиия, предлолсеиных в [12].  [c.20]

В начале 1970-х годов в связи с нуждами программ внеатмосферной астрономии были рассмотрены оптические свойства тонких пленок и многослойных покрытий в области длин волн X л 5-ь150 нм [35, 85]. Были отмечены технологические трудности, а также роль поглощения как принципиального фактора, ограничивающего оптические свойства покрытий в этой области спектра. Авторами работы [581 с помощью современной технологии впервые была успешно синтезирована и испытана МИС, содержащая 5 пар слоев углерода и золота и имеющая период 10,6 нм. Коэффициент отражения в брэгговском максимуме на длине волны 9,6 нм и при угле падения 60° составил 4,5 %. Экспериментально полученные в настоящее время коэффициенты отражения от МИС, предназначенных для различных областей МР-диа-пазона, показаны на рис. 3.16. Проблемы и развитие технологии синтеза МИС подробно освещены в статье Т. Барби (см. приложение III). Приведем лишь краткий обзор работ, иллюстрирующий основные области их применения.  [c.117]

Благодаря высокой отражательной способности (коэффициент отражения свежеполированного серебра около 99%) покрытие серебром используется в светотехнических и оптических изделиях (покрытие фар, зеркал, рефлекторов).  [c.95]

Для оценки оптических свойств покрытий, которые характеризуются спектральными коэффициентами рассеяния 5 , и поглощения были использованы методй раздельного определения оптических характеристик, применяемые для исследования капиллярно-пористых коллоидных материалов [50, с. 186—212 59 60, с. 28—90].  [c.65]

Как пам уже известно, в оптическом диапазоне коэффициент отражения при нормальном падении луча для границы воздух — стекло равен примерно 0,04. Увеличение R при наклонном падении луча не является достаточным для получения резкой многолучевой иитерс )еренционной картины в проходящем свете. Коэффициент отражения, близкий к единице, можно получить и при почти нормальном падении света — путем нанесения соответствующих многослойных диэлектрических покрытий или частично прозрачного слоя металла.  [c.103]

Высокоотражающие интерференционные покрытия (интерференционные зеркала). Наряду с необходимостью уменьшать коэффициент отражения на практике часто приходится решать противоположную задачу — получать высокоотражающие поверхности. При решении также и этой задачи па помош,ь приходит явление интерференции. Легко убедиться, что если в системе, изображенной на рис. 5.14, показатель преломления диэлектрического слоя взять больше показателя преломления стекла п > п ), то произойдет увеличение коэффициента отражения. Вследспзие того, что потеря полуволны будет происходить теперь только на пиеш-ней поверхности пленки, оптическая разность хода между отраженными когерентными волнами I и 2 будет равна Л/4 + Х/4 + к/2 = = X, что соответствует разности фаз, равной 2я. Таким образом,  [c.108]

Первое предельное состояние защитного покрытия, наступающее в результате коррозионного растрескивания, характеризует величина порогового значения коэффициента интенсивности напряжения Kis , выше которого наблюдается резкое увеличение скорости роста трещин. Значения порогового Krs определяют с помощью оптического индикаторного метода, которым контролируется глубина проникновения среды в вершине трещины, В тех случаях, когда коэффициент интенсивности напряжений Ki меньше критического, трещина не растет и агрессивная среда равномерно проникает в глубь материала через трещину. Если Ki больше критического, в устье трещины возникает зона разрыхленного материала (зона предразрушения), в которую более интенсивно проникает агрессив-  [c.48]


ОПТИКА [ асферическая содержит элементы, поверхности которых, не имеют сферической формы просветленная обладает уменьшенными коэффициентами отражения света у отдельных ее элементов путем нанесения на них специальных покрытий) как оптическая система (волновая изучает явления, в которых проявляется волновая природа света волоконная рассматривает передачу света и изображений по световодам и пучкам гибких оптических волокон геометрическая изучает законы распространения света в прозрачных средах на основе представлений о световых лучах интегральная изучает методы создания и объединения оптических и оптоэлектронных элементов, предназначенных для управления световыми потоками квантовая изучает явления, в которых при взаимодействии света и вещества существенны квантовые свойства света и атомов вещества когерентная изучает методы создания узконаправленных когерентных пучков света и управления ими нелинейная изучает распространение мощных световых пучков в оптически нелинейных средах (твердые тела, жидкости, газы) и их взаимодействие с веществом силовая изучает воздействие на твердые тела интенсивного светового излучения, в результате которого может нарушаться механическая цельность этих тел статистическая изучает статистические свойства световых полей и особенности их взаимодействия с веществом тонких слоев изучает прохождение света через прозрачные слои вещества, толщина которых соизмерима с длиной световой волны физическая изучает природу света и световых явлений) как раздел оптики электронная занимается вопросами формирования, фокусировки и отклонения пучков электронов и получения с их помощью изображений под воздействием электрических и магнитных полей корпускулярная изучает законы движения заряженных частиц в электрическом и магнитном полях нейтронная изучае взаимодейс вие медленных нейтронов со средой) как раздел физики]  [c.255]

Экспериментальное исследование напряжений возможно на натурных деталях и на их моделях. Исследование натурных деталей возможно с помощью проволочных датчиков сопротивления, метода лаковых покрытий, а также с помощью рентгенографии. Однако на металлической модели очень трудно определить величины концентрации напряжений. Это успешно можно выполнить с помощью поляризационнооптического метода на моделях из оптически-активпого материала. Условия работы и условия нагружения таких деталей паровых турбин, как корпусы стопорных и регулирующих клапанов свежего пара, корпусы клапанов промежуточного перегрева, корпусы цилиндров турбин, сопловые коробки, различные элементы паровпуска, близки, особенно в блочных установках, к работе таких элементов паровых котлов, как цилиндрические барабаны, камеры, коллекторы и т. п. Диски, сварные и цельнокованые роторы паровых турбин работают, как правило, при отсутствии знакопеременных нагрузок и при относительно малых температурных градиентах по радиусу. Вследствие этого для них можно в общем случае применить те же коэффициенты запаса прочности, что и для перечисленных выше неподвижных деталей. При всех прочих равных условиях коэффициенты запаса прочности различны для деформированного и для литого металла для литого они более высоки.  [c.30]

Никелирование черное — электролитическое нанесение на поверхность металличес1сих изделий слоя никеля черного цвета. Такое покрытие используют как с защитно-декоративной целью, так и для уменьшения коэффициента отражения света. Оно нашло применение в оптической промышленности и в некоторых отраслях машиностроения. У черного никеля низкие показатели коррозионной стойкости, пластичности и прочности сцепления с поверхностью. Поэтому применяют предварительное оловянирование или осаждение матового никеля. Если применить предварительное цинкование, а затем осадить черный никель, то покрытия приобретают такую же коррозионную стойкость, как если бы они были покрыты только цинком. Часто черный никель наносят на изделия из меди или латуни.  [c.271]

В томе П будет показано, что применение спектрофотометрии в области видимого света позволяет измерять цвета прозрачных жидкостей и пленок, а также цвета непрозрачных покрытий на различных подложках. Цвета прозрачных или непрозрачных видимых нами предметов являются совокупностью входящих в состав белого цвета волн различной длины, которые проходят сквозь предмет или отражаются от него. Свет, состоящий из остальных волн, входящих в состав белого света, поглощается предметО(М. Например, если предмет поглощает голубой и зеленый свет п пропускает или отражает красный, он будет нам казаться красным. Если предмет поглощает все видимые лучи, он не пропускает и не отражает никаких лучей и кажется поэтому черным. Когда избирательное поглощение происходит в ультрафиолетовой или инфракрасной областях спектра, оно не воспринимается глазом, как видимый свет, но его можно сфотографировать на специальную пленку или зафиксировать спектрофотометром в виде диаграммы. Такие диаграммы составляются также и для видимой части спектра, причем на ординате откладывается процент проходящего или отраженного света, а на абсциссе — длины волн видимого света. Однако результаты абсорбции в ультрафиолетовой области удобнее выражать математически в величинах, хотя они и воспринимаются труднее. В этом случае па ординате откладывается логарифм коэффициента затухания света, а на абсциссе откладывается волновое число X (см- ). Эти величины характеризуют оптическую плотность раствора образца, концентрацию образца в растворе, размеры ячейки, в которой находится образец, а также длину волны поглощенного света. Соотношение между длиной волны в ангстремах и волновым числом в м следующее  [c.699]

Рассмотрим оптическую подложку, например стекло, покрытую рядом слоев с попеременно высоким Пн и низким Пь показателями преломления по сравнению с показателем преломления пз подложки. В качестве материалов с высоким и низким показателями преломления можно рассмотреть соответственно ТЮг и Si02. Если толщина слоев 1н и U такова, что Пн1н = = П1к = 1о1 , где Хо —длина падающей волны в вакууме, то электрические поля от всех отражений на границах слоев будут складываться в фазе. Рассмотрим, например, две границы раздела слоя с высоким показателем преломления (рис. 4.16). Коэффициент отражения для электрического поля на границе раздела при переходе от среды с низким показателем преломления к высокому записывается в виде  [c.180]

Если оптическая толщина слоя Пн1н равна Яо/4, то нетрудно видеть, что оба отраженных пучка на рис. 4.16 сложатся в одной и той же фазе. Этот результат будет справедлив также для всех многократных отражений между двумя границами раздела на рис. 4.16, как и в случае интерферометра Фабри — Перо. Следовательно, если нанесено достаточное число четвертьволновых слоев с попеременно низким и высоким показателем преломления, то полная отражательная способность вследствие всех многочисленных отражений может достигать весьма больших значений. Если многослойное покрытие начинается и заканчивается слоями с высоким показателем преломления, так что число слоев / нечетно, то результирующий коэффициент отражения по мощности (при Я = Яо) запишется в виде  [c.181]


Конструктивно лазер выполнен в виде рамы из инваровых стержней, соединенных между собой перегородками из алюминиевого сплава. На раме закреплены головки генератора и усилителя и оптические элементы схемы. Головки генератора и усилителя идентичны и имеют трубчатую конструкцию, закрытую с двух сторон фланцами. Внутри конструкции находится осветитель в виде кварцевого цилиндрического блока, в цилиндрические продольные отверстия которого вставляются линейная лампа-вспышка и рубиновый стержень. Кварцевый блок снаружи имеет стойкое многослойное диэлектрическое отражающее покрытие с коэффициентом отражения, близким к 100% в сине-зеленой области, и пропускающее красное и ИК излучение. Трубчатая конструкция предусматривает водяное охлаждение элементов головки от водопроводной сети.  [c.154]

ЛПМ Криостат с условным обозначением ЛПМИ-75 в 1975 г. демонстрировался на Международной выставке в Мюнхене (Германия). Лазер использовался в основном для накачки перестраиваемого по длинам волн ЛРК типа ЛЖИ-504 (Л = 530-900 нм). Основные параметры ЛПМ Криостат следующие оптимальная ЧПИ 10 кГц, средняя мощность излучения 3-6 Вт, диаметр пучка излучения 12 мм, время готовности 60 мин, мощность, потребляемая от выпрямителя ИП-18, 2,3-2,5 кВт (питание от трехфазной сети), минимальная наработка АЭ не менее 200 ч, срок сохраняемости 5 лет, габаритные размеры АЭ диаметр и длина 80 и 1300 мм, масса 5 кг, для излучателя размеры 1680 х 240 х 300 мм и масса 50 кг, и для ИП-18 — соответственно 600 х 600 х 1700 мм и 350 кг. Излучатель включает в себя АЭ ТЛГ-5 с коаксиальным кожухом охлаждения, несущий алюминиевый двутавр и зеркала оптического резонатора с механизмами юстировки на торцах. Глухое вогнутое зеркало резонатора с многослойным диэлектрическим покрытием (коэффициент отражения превышает 99%) имеет радиус кривизны i = 5 м, выходное зеркало представляет собой плоскопараллельную пластину из стекла К8 с коэффициентом отражения 8%. Источник питания ИП-18 состоит из блока высоковольтного трансформатора и выпрямителя, блока регулировки напряжения, подмодулятора, высоковольного модулятора, блока вентиляторов и системы водяного охлаждения. Высокие удельные массогабаритные показатели (на единицу мощности) выходного излучения являются одним из заметных недостатков этого ЛПМ.  [c.30]

Блок-схемы экспериментальной установки для измерения пространственных, временных и энергетических характеристик излучения ЛПМ представлены на рис. 4.1. Испытания проводились в основном с отпаянным саморазогревным АЭ ГЛ-201 (см. гл. 2), часть исследований — с удлиненным АЭ ГЛ-201Д (см.гл.З). Характеристики выходного излучения АЭ ГЛ-201 исследовались в режиме без зеркал, с одним зеркалом, с плоским и плоско-сферическим резонаторами и с телескопическим HP. В плоском резонаторе в качестве глухого зеркала 3 использовалось зеркало с многослойным диэлектрическим покрытием, в качестве выходного 4 — стеклянная плоскопараллельная пластина без покрытия (коэффициенты отражения зеркал 99% и 8% соответственно). Вогнутое диэлектрическое зеркало с радиусом кривизны R = 3 м (диаметр 35 мм) и коэффициентом отражения 99% и стеклянная плоскопараллельная пластина образовывали плоскосферический резонатор длиной 1,5 м. Зеркало с радиусом кривизны R = 3 м использовалось в качестве глухого зеркала и в телескопическом HP с коэффициентом увеличения М = 10-300. Выходными зеркалами в HP служили выпуклые зеркала с диэлектрическим или алюминиевым покрытием, имеющие диаметр 1-2,5 мм и радиус кривизны R = 10-300 мм. Эти зеркала наклеены на просветленную плоскопараллельную стеклянную подложку так, что оптическая ось зеркала образует с плоскостью подложки угол не менее 94°. Последнее необходимо для устранения обратной паразитной связи подложки с активной средой АЭ. При коэффициентах увеличения М = 15-60 в качестве выходных зеркал резонатора использовались и стеклянные мениски диаметром 35 мм. При М — 5 глухое вогнутое зеркало имело R — = 3,5 м, а выходное выпуклое — 0,7 м. В режиме работы с одним зеркалом применялись выпуклые зеркала с Д = 0,6-10 см. Средняя  [c.108]

Фокусировка излучения ЛПМ на обрабатываемый материал, который устанавливается на координатном столе XY, производится с помощью ахроматического объектива с фокусным расстоянием 100 мм (возможна установка объектива с фокусным расстоянием до 200 мм). За счет движения стола Z сфокусированное пятно излучения наводится на мишень. Перемещение осуществляется двигателем ШД-5Д1М со скоростью 0,1 мкм за один импульс (шаг). Объектив состоит из двух склеенных между собой линз. Транспортировка пучка излучения ЛПМ до рабочего объектива осуществляется оптической системой из трех поворотных плоских зеркал с коэффициентом отражения 99%. Зеркала имеют многослойное диэлектрическое покрытие (Mgp2, ZnS). Со стороны мишени, непосредственно перед объективом для его защиты от запыления продуктами разрушения материала установлена защитная тонкостенная плоскопараллельная стеклянная пластина, имеющая просветляющее покрытие (Mgp2), при котором потери составляют 0,5%. Пластина съемная и при запылении меняется на новую. Общие расчетные потери в оптическом тракте составляют 10%, но в процессе эксплуатации они могут возрастать до 30-40%. Поэтому оптические элементы необходимо регулярно чистить. Срок службы поворотных зеркал составляет не менее 2000 ч, объектива — не более 700 ч. В объективе происходило выгорание клеевого материала, что  [c.246]

Например, оптические детали лабораторных и полевых приборов, служащие в качестве зеркал с внешним отражением, обычно покрываются зеркальн. 1И21Е (алюминирование испарением с защитой анодным оксидированием с фосфорнокислым аммонием) коэффициент отражения покрытия R не менее 86%. Следовательно, по табл. 20 интерполированием находят 0,065.  [c.78]

K/iea ОК-72Ф — для с леивания оптических деталей, в том числе с различными покрытиями, а также деталей консольно по (вешенных, работающих на удар для склеивания деталей в тропическом исполнении деталей с разностью коэффициентов Да >  [c.687]

Исследована возможность использования оптического интерференционного микрометода для исследования диффузии органических кислот в отвержденные эпоксидные смолы. Показано, что метод позволяет получить комплекс важных характеристик процесса взаимодействия агрессивной среды с противокоррозионным полимерныгл покрытием профиль распределения концентрации агрессивной среды в полимере, равновесную степень набухания, концентрационную зависимость коэффициента диффузии, а также качественную информацию о наличии и пространственной локализации напряжений набухания.  [c.147]

Серебро обладает высокой электропроводностью, отражательной способностью и химической устойчивостью, особенно в условиях действия щелочных растворов и большинства органических кислот. Поэтому, покрытие серебром получило применение, главным образом, для улучшения электропроводящих свойств поверхности токонесущих деталей в электрохимической и радиоэлектронной отраслях промышленности, придания поверхности высоких оптических свойств (свежеполированное серебро имеет коэффициент отражения света около 99%), для защиты химической аппаратуры и приборов от коррозии под действием щелочей и органических кислот, а также с декоративной целью, часто с последующим оксидированием. Обычно покрывают серебром изделия из меди и ее сплавов. Для защиты от коррозии черных металлов серебрение не применяется.  [c.327]


Смотреть страницы где упоминается термин Оптический Коэффициент покрытия : [c.40]    [c.276]    [c.371]    [c.227]    [c.38]    [c.181]    [c.189]    [c.48]    [c.51]    [c.111]   
Справочник технолога-приборостроителя (1962) -- [ c.753 , c.771 ]



ПОИСК



Коэффициент вытяжки покрытия для инструмента оптического — Расчет



© 2025 Mash-xxl.info Реклама на сайте