Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Испытания на растяжение пластических материалов

Испытания на растяжение пластических материалов  [c.332]

Г ИСПЫТАНИЯ НА РАСТЯЖЕНИЕ ПЛАСТИЧЕСКИХ МАТЕРИАЛОВ ЗЗЗ  [c.333]

При испытании на сжатие пластические материалы до предела текучести ведут себя так же, как и при растяжении, но далее пластическая деформация растет медленнее. Образец постепенно сплющивается. На рис. 2.21 и 2.23 зависимость между о и е при сжатии образцов показана штриховой линией.  [c.169]

Сначала определимся с опасными напряжениями. Как показали испытания на растяжение пластичных материалов, при достижении предела прочности происходит образование шейки, ее развитие, приводящее к разрушению с большими пластическими деформациями. Хрупкие материалы при достижении предела прочности разрушаются без существенного пластического деформирования. Для хрупкого материала эти напряжения опасны. Для пластичного материала опасными будут меньшие напряжения, а именно — предел текучести, так как при напряжении, равном пределу текучести и выше, полная деформация в основном будет возникать благодаря пластической составляющей, которая после разгрузки не исчезает. Таким образом, при нагружении и последующей разгрузке в изделии появляются остаточные деформации, которые имеют тенденцию накапливаться, т. е. размеры изделия при каждом нагружении будут изменяться. Такое изделие работоспособным не будет.  [c.345]


Акустическую эмиссию при деформации материалов вначале рассмотрим на примере механических испытаний гладких образцов. Каждому типу диаграммы напряжение — деформация (а—е), получаемой при испытании на растяжение различных материалов, соответствует своеобразное изменение процесса АЭ (рис. 2.45). Из кривых видно, что даже в области упругости (от О до Ое) наблюдается АЭ. Она возникает от того, что материал неоднороден, нагружен неравномерно и в отдельных областях происходит пластическая деформация, хотя в целом процесс упругий.  [c.174]

Некоторые пластичные материалы (например, среднеуглеродистая сталь, дюралюминий) дают при испытании на растяжение диаграмму, не имеющую площадки текучести. Для таких материалов вводят понятие об условном пределе текучести как о напряжении, при котором остаточная пластическая деформация составляет 0,2%, это напряжение (механическую характеристику материала) обозначают (в специальной и в справочной литературе зачастую обозначения физического и условного предела текучести не разграничивают, применяя общее обозначение о ).  [c.330]

При сжатии образцов хрупких материалов разрушение происходит в основном по наклонным площадкам (рис. 41) и сопровождается образованием и развитием трещин. Разрушение происходит путем сдвига по этим поверхностям, при этом обнаруживается большая пластическая деформация по сравнению с испытанием на растяжение. Поскольку происходит сдвиг, то можно было бы заключить, что в условиях сжатия хрупкие материалы разрушаются вязким образом. На самом деле разрушение хрупкое, поскольку трещины могут распространяться и в поле сдвига без существен-  [c.64]

Путем измерения установлено, что плоский стальной образец длиной 20 см после испытания на растяжение имеет остаточную продольную деформацию 0,4 мм. Принимая для пластических деформаций коэффициент Пуассона равным 0,5, вычислить максимальный остаточный угол сдвига в материале образца.  [c.59]

В монографии представлены результаты исследования механического поведения конструкционных материалов под действием импульсных нагрузок ударного и взрывного характера. Рассмотрена связь процессов нагружения и деформирования материала при одноосном напряженном состоянии. Описаны оригинальные методики и средства квазистатических испытаний на растяжение со скоростями до 950 м/с. Приведены результаты испытаний ряда металлических материалов и реологическая модель их механического поведения учитывающая влияние на сопротивление скорости деформации. Исследовано упруго-пластическое деформирование и разрушение материала в плоских волнах нагрузки. Описаны новые методики и изложены результаты экспериментальных исследований зависимости характеристик ударной сжимаемости н сопротивления пластическому сдвигу за фронтом плоской волны от ее интенсивности, связи силовых и временных характеристик откольной прочности.  [c.2]


При ударном испытании на растяжение образцов без надреза из вязких материалов при статических и динамических нагрузках полностью соблюдается закон подобия. Разброс результатов испытаний на удар значительно больше, чем при статических испытаниях. С увеличением скорости деформирования у большинства металлов возрастает сопротивление металла пластической, деформации.  [c.32]

При испытании на твердость можно определить количественную зависимость между твердостью пластичных металлов, установленной путем вдавливания, и другими механическими свойствами (главным образом пределом прочности). Твердость характеризует предел прочности сталей (кроме аустенитной и мартенситной структур) и многих цветных сплавов. Указанная количественная зависимость обычно не наблюдается у хрупких материалов, которые при испытаниях на растяжение (сжатие, изгиб, кручение) разрушаются без заметной пластической деформации, а при измерении твердости получают пластическую деформацию. Однако в ряде случаев и для этих материалов (например, серых чугунов) можно установить эту зависимость (возрастанию твердости обычно соответствует увеличение предела прочности на сжатие). По значениям твердости определяются некоторые пластические свойства металлов.  [c.24]

Все эти три типа разрушения проиллюстрированы испытанием на растяжение образца из малоуглеродистой стали (см. рис. 1.4). Окончательному разрушению предшествует развитие значительного пластического течения. Непосредственно перед тем, как прЬ исходит разрушение, в материале вблизи оси шейки возникают не только значительные растягивающие напряжения Oi, но также и несколько меньшие по величине радиальные сжимающие напряжения 02 = 0j. Поэтому максимальные касательные напряжения оказываются существенно более низкими по сравнению с максимальным растягивающим напряжением Oi, чем в случае одноосного растяжения, и благодаря прогрессирующему уменьшению площади поперечного сечения напряжение Oi в конце концов достигает значения, близкого к сопротивлению внутреннему разрыву при растяжении Тс, вблизи оси шейки возникает когезионное разрушение (т, е. внутренний разрыв при растяжении). На внешней поверхности шейки радиальное растяжение отсутствует, поэтому касательные напряжения имеют свое полное значение, в. отличие от случая одноосного растяжения. Следовательно, может произойти разрушение при сдвиге и, по крайней мере частично, из-за высокого значения растягивающего напряжения на поверх-3 .  [c.35]

Диаграммой, или кривой деформирования материала, называют график зависимости, связывающий напряжение и деформацию при заданной программе внешнего воздействия. Диаграмма деформирования при пропорциональном нагружении, полученная при постоянных скорости деформации и температуре, представляет собой обобщенную характеристику материала, отражающую его сопротивление упругому и пластическому деформированию вплоть до начала разрушения. Такую диаграмму обычно получают при испытаниях на растяжение или на чистый сдвиг (основные типы испытаний), а также при испытаниях на сжатие (последнее — обычно только для хрупких материалов).  [c.20]

Использованный в работе сополимер стирола с полиэфиром, который удовлетворяет большинству требований, предъявляемых к материалу мо дели, по-видимому, может быть применен для исследования динамического пластического сжатия, но имеет существенные недостатки при соответствующих испытаниях на растяжение из-за склонности к хрупкому разрушению при динамическом нагружении до достижения необходимого уровня больших постоянных деформаций. Хотя динамические краевые эффекты и не проявляются, время работы материала до разрушения оказалось ограниченным из-за наблюдавшегося охрупчивания, обусловленного, по-видимому, потерей летучей составляющей. Однако, несомненно, существует большее число других пригодных для такого типа исследований материалов, которые можно смешивать для моделирования конструкционного материала любого типа.  [c.235]


По своему поведению при переходе от упругих к пластическим деформациям при растяжении все металлы могут быть разделены на две группы. Большинство металлов и сплавов при испытании на растяжение дают постепенный переход в пластическую область (рис. 14.3,а). Для этих материалов можно оп-  [c.17]

Критерием чувствительности материала к надрезу часто служит отношение условных пределов прочности гладкого и надрезанного образцов (ов/сгв ). Для хрупких материалов это отношение всегда больше единицы. Для пластичных оно может оказаться меньше единицы, если жесткость надреза недостаточна и образец с надрезом имеет возможность существенно пластически деформироваться. Поэтому для получения сопоставимых результатов особенно важно унифицировать форму, образцов и методику испытаний. В наиболее распространенных испытаниях на растяжение угол надреза (см. рис.  [c.196]

На рис. 220 дан график, полученный при испытании на статическое растяжение пластических материалов. По горизонтальной ( си графика отложены удлинения образца Д/, а по вертикальной оси — растягивающая сила Р. На прямолинейном участке ОА удлинения пропорциональны силе.  [c.274]

Расчет частей машины и сооружений на прочность требует знания соотношений между компонентами тензора напряжений, при которых начинается разрушение материала или, по меньшей мере, в нем возникают пластические деформации (наступает текучесть). Эти соотношения приводятся в различных гипотезах прочности , основанных на тех или иных допущениях об основном факторе, определяющем начало разрушения или появления текучести [65, 59]. При этом материалы, находящие себе применение в технике, делят, как правило, на класс хрупких и класс пластических материалов. Первые нередко удовлетворительно упруги при деформировании вплоть до разрушения и часто обладают разными временными сопротивлениями при простом растяжении и при простом сжатии Вторые, напротив, имеют, как правило, одинаковые временные сопротивления при испытании на растяжение и на сжатие. Вместе с тем, такие материалы перестают подчиняться закону Гука уже задолго до разрушения, обнаруживая свойство текучести, т. е. большого деформирования без заметного увеличения усилий, действующих на материал. Напряжение, соответствующее появлению текучести, называемое в дальнейшем пределом текучести, оказывается для большинства материалов одним и тем же при испытании как на растяжение, так и на сжатие. Было построено несколько гипотез прочности хрупких тел. Наиболее удовлетворительной из них, по-видимому, является гипотеза Мора, предложенная им в 1894 г. Что же касается гипотез прочности пластических тел, то здесь следует упомянуть три гипотезы, которыми пользуются в практических расчетах.  [c.50]

Фронт пластических деформаций в растягиваемом образце. Опыты с найлоном. Прежде чем переходить к вопросу о распространении фронта пластических деформаций мягкой стали, упомянем о материале совершенно иного рода, внутреннее строение которого при определенной нагрузке претерпевает внезапное и резкое изменение. В 1938 г. внимание автора было привлечено тем, что при испытаниях на растяжение тонких волокон найлона характер  [c.340]

Это означает, что основные механические свойства прочностные и пластические в испытаниях на растяжение могут быть определены преимущественно для сравнительно пластичных материалов, разрушению которых предшествует отчетливо наблюдаемая пластическая деформация. Существенно, что такими материалами являются наиболее широко применяемые в технике конструкционные стали, цветные металлы и большая часть полимерных материалов. Испытания на растяжение пригодны и для инструментальных сталей в тех  [c.136]

Подобная количественная зависимость не наблюдается для хрупких материалов, которые при испытаниях на растяжение (или сжатие, изгиб, кручение) разрушаются без заметной пластической деформации, а при измерении твердости получают пластическую деформацию. Однако в ряде случаев и для этих металлов (например, серых чугунов) наблюдается качественная зависимость между пределом прочности и твердостью возрастанию твердости обычно соответствует увеличение предела прочности на сжатие.  [c.168]

Предел прочности при растяжении о для пластичных материалов не отражает изменения сопротивления разрушению и является характеристикой сопротивления пластической деформации. Истинный предел прочности 5 характеризует момент разрушения металлов. При испытании на растяжение определяются также пластические свойства металла, характеризуемые относительным удлинением и относительным сужением.  [c.13]

Нагружение при кручении более мягкое, чем при растяжении. Материалы хрупкие при испытании на растяжение при кручении дают значительную пластическую деформацию. В случае кручения наибольшие нормальные напряжения равны наибольшим касательным, а в случае растяжения, сжатия и изгиба они вдвое больше касательных напряжений.  [c.13]

Между твердостью пластичных металлов, определяемой способом вдавливания, и другими механическими свойствами (главным образом временным сопротивлением) существует количественная зависимость. Величина твердости взаимосвязана с временным сопротивлением металлов и сплавов, проявляющих при растяжении сосредоточенную пластическую деформацию шейку), а именно сталей (кроме сталей с аустенитной и мартенситной структурой) и многих цветных сплавов. Это вызвано тем, что при испытаниях на растяжение наибольшей нагрузке, предшествующей разрушению, отвечает предельная равномерная деформация, после которой начинает развиваться шейка. В этих случаях предельная равномерная деформация при растяжении примерно совпадает со средней пластической деформацией поверхностных слоев металла при измерении твердости вдавливанием сферического индентора. Обычно такая зависимость не наблюдается для хрупких материалов, однако в ряде случае (например, серые чугуны) она есть.  [c.195]


Надо, однако, учитывать, что хрупкие материалы, например, чугуны и закаленные стали с мартенситной структурой, не дают в испытаниях на растяжение значительной пластической деформации и характеризуются хрупким разрушением, а некоторые пластичные материалы (стали с аустенитной структурой) деформируются при растяжении, равномерно по всей длине образца, т. е. без значительной местной пластической деформации в отдельных участках. Для этих материалов не имеется количественной, а для чугунов иногда и качественной связи между пределом прочности и твердостью.  [c.121]

Испытания на кручение применяют для определения прочностных и пластических свойств материалов, предназначенных для изготовления деталей машин, работающих на кручение, а также пластичности хрупких материалов, которую трудно или невозможно обнаружить при испытаниях на растяжение или изгиб.  [c.54]

Испытания на растяжение. Эти испытания являются основными для определения прочностных, упругих и пластических свойств металлов. При испытании на растяжение образец находится в равновесии под действием растягивающих сил, вызывающих в материале напряжение.  [c.27]

Испытания на удар применяются для изучения вязкости материалов, т. е. способности материала поглощать энергию при пластической деформации. При статических испытаниях на растяжение эта энергия представляется площадью диаграммы кривой растяжения и можно заключить, что для того, чтобы иметь высокую вязкость, материал должен иметь высокую прочность и в то же время большую пластичность. Хрупкие материалы имеют низкую вязкость, так как они имеют лишь малую пластическую деформацию перед разрушением. Применение таких материалов в конструкциях является опасным, так как разрушение может произойти внезапно без значительной деформации.  [c.384]

Согласно современным представлениям природа усталостного разрушения металла носит статистический (случайный) характер и связана с неизбежной неоднородностью его кристаллической структуры. Металл состоит из большого числа случайно ориентированных кристаллов и имеет различные дефекты внутреннего строения. Отдельные кристаллы имеют различные размеры и форму и анизотропны, т. е. обладают различной прочностью в разных направлениях. Поэтому при нагружении детали все кристаллы напряжены неодинаково, одни в большей, другие в меньшей степени. В силу случайных причин в наиболее неблагоприятно ориентированных кристаллах возникают пластические деформации. При однократном нагружении это приводит к некоторому местному перераспределению напряжений и не вызывает разрушения металла. При повторном нагружении в этих кристаллах появляется наклеп, т. е. они упрочняются (аналогичное явление упрочнения после текучести наблюдается и при испытаниях на растяжение образцов из различных пластических материалов). С каждым последующим циклом нагружения в таких кристаллах накапливаются необратимые механические повреждения, напряжения в них постепенно увеличиваются, и, когда способность какого-то кристалла к упрочнению исчерпывается, в нем появляется трещина. Трещина обычно возникает на поверхности детали в местах наибольших напряжений, а также в местах, имеющих дефекты внутреннего строения металла или обработки поверхности. По мере увеличения числа циклов нагружения трещина увеличивается в размерах, и, когда статическая прочность оставшейся неповрежденной части сечения (зона А — зона долома, см. рис. 14.4) становится недостаточной, происходит внезапное разрушение детали. Края развивающейся трещины в процессе циклического нагружения многократно трутся друг о друга.  [c.341]

Анализ причин аварий конструкций и машин, проводящийся периодически в разных областях техники, показывает, что разрушение деталей имеет во многих случаях хрупкий характер, в то время как эти детали были сделаны из пластичных материалов. Образцы, вырезанные из потерпевших аварию деталей после их хрупкого разрушения, при испытании на осевое растяжение в лабораторных условиях снова показывают пластический характер разрушения, которому предшествует заметная пластическая деформация.  [c.113]

При испытании некоторых пластических материалов (среднеуглеродистая сталь, медь, алюминий) на диаграмме растяжения не образуется ясно выраженной стадии текучести (рис. 2.23). Для таких материалов вводится условный предел текучести, равный напряжению, при котором продольная деформация образца в — =0,002, т. е. 0,2%. Условный предел текучести обозначается Оо.г-  [c.169]

Если внешние нагрузки невелики, то в материале детали возникают только упругие деформации. Говорят, что материал находится в упругом состоянии. С ростом внешних сил в материале появляются заметные остаточные деформации, значит материал перешел из упругого в пластическое состояние. И, наконец, с увеличением нагрузки наступает момент, когда целостность материала нарушается, начинается разрушение материала в буквальном смысле слова. В таком случае говорят, что материал перешел из пластического состояния в состояние разрушения. При испытании материалов на одноосное растяжение было установлено, что не все материалы одинаково ведут себя под нагрузкой. У пластичных материалов состоянию разрушения предшествует заметное на глаз пластическое состояние. Наоборот, хрупкие материалы переходят в состояние разрушения при очень малых остаточных деформациях, т. е. практически минуя пластическое состояние.  [c.320]

Возникает вопрос взаимного расположения этих предельных кривых. Для материалов, которые мы традиционно относим к категории пластичных, горизонтальная прямая (рис. 57, а) в правой части диаграммы располагается ниже предельной огибающей по разрушению. И это легко понять. Обычное испытание образца на растяжение отображается кругом Мора. По мере увеличения напряжения а круг увеличивается, как это показано на рис. 57, а, и -когда напряжение а достигнет предела текучести, круг Мора касается предельной прямой, отражающей возникновение пластических деформаций. Дальнейшее увеличение напряжения а приводит к разрушению образца. На диаграмме это отмечается тем, что круг Мора соприкасается с предельной огибающей по разрушению. Все это — для материала пластичного.  [c.89]

Теперь рассмотрим взаимное расположение огибающих для хрупкого материала (см. рис. 8.5, б). Здесь прямая 1 в правой части диаграммы расположена выше кривой 2. При испытании образца на растяжение круг Мора S, не касаясь прямой 1, соприкасается с кривой 2. Разрушение происходит без заметных остаточных деформаций, как и положено для хрупких материалов. Предел текучести при этом, естественно, не определяют. Но это еще не значит, что он не существует. Представим себе, что мы испытываем тот же образец на растяжение в условиях высокого гидростатического давления. Тогда круг 5, как единое целое, сместится в левую часть диаграммы и при увеличении растягивающей силы коснется сначала прямой 1, но не кривой 2. Мы получаем и пластические деформации для материала, считающегося хрупким, и находим даже его предел текучести.  [c.359]

На рис. 28 показаны форма и размеры образца для испытания на растяжение пластических масс, а на рис. 29 — образцов для испытания слоистых пластиков (гетинакса, текстолита,, стеклотекстолита) и листовых материалов (винипласта, оргстекла, фибры). При испытании на сжатие образцы пластмасс выполняют в виде цилиндров высотой 15 мм и диаметром 10 мм. Основания цилиндра должны быть гладкими и строго перпендикулярными его оси. При испытании слоистых пластиков на сжатие образцы выполняют в виде параллелепипедов высотой 15 мм и основанием 10X10 мм (слоистые пластики, толщина которых меньше 15 мм, на сжатие не испытывают).  [c.41]


На рис. 131 представлены микрофотографии, снятые в процессе растяжения на установке ИМАШ-5С-65 с поверхности образцов биметалла СтЗ + + Х18Н10Т, изготовленного горячей прокаткой и (для сравнения) непосредственным импульсным плакированием. Рис. 131, а иллюстрирует микростроение, возникающее в переходной зоне биметалла, полученного способом горячей прокатки и испытанного на растяжение в интервале температур 20—400° С со скоростью перемещения захвата 10 мм/мин. В данных условиях испытания как в материале основы, так и в плакирующем слое образуется внутризеренный сдвиговый микрорельеф, отражающий одинарное и множественное скольжение. Судя по изменению микрорельефа, в непосредственной близости от границы раздела слоев деформация распределена весьма неравномерно. Сдвиговый микрорельеф в науглероженной прослойке плакирующего слоя выражен наименее четко, что объясняется блокированием полос скольжения многочисленными дисперсными частицами. В обезугле-роженной зоне стали СтЗ происходит локализация пластической деформации,, сопровождающаяся образованием развитых полос скольжения. В этом участке с увеличением степени деформации образуются трещины, которые и приводят к разрушению композиции.  [c.235]

Преимуществом наполненных термореактивных пластмасс является большал стабильность механических свойств и относительно малая зависимость от температуры, скорости деформирования и длительности действия нагрузки. Они более надежны, чем термопласты. При испытаниях на растяжение материалы разрушаются без пластического течения и образования шейки (см. рис. 13.15, б). Верхняя граница рабочих температур реактопластов определяется термической устойчивостью полимера или наполнителя (меньшей из двух). Несмотря на понижение прочности и жесткости при нагреве, термореактивные пластмассы имеют лучшую несущую способность в рабочем интервале температур, и допустимые напряжения (15-40 МПа) для них выше, чем для термопластов. Важными преимуществами термореактивных пластмасс являются высокие удельная жесткость Е/ рд) и удельная прочность а рд). По этим показателям механических свойств реактопласты со стеклянным волокном или тканями превосходят многие стали, сплавы титана и сплавы алюминия. Термореактивные порошковые пластмассы наиболее однородны по свойствам. Такие пластмассы хорошо прессуются и применяются для наиболее сложных по форме изделий. Недостаток порошковых пластмасс — пониженная ударнал вязкость (табл. 13.9).  [c.393]

При такого рода обсуждении можно только надеяться привлечь внимаиие к некоторым более важным вопросам, которые часто остаются незамеченными. Некоторая информация о поведении материалов при различных усдовиях может быть получена из других статических испытаний, таких, как испытания на сжатие и кручение, или динамических испытаний, испытаний на усталость и на ударную вязкость по Изоду. Так же, как. и при испытаниях на растяжение, имеются трудности в выполнении и интерпретации этих испытаний. Нетрудно реализовать при испытаниях наиболее сложные трехосные напряженные условия (т. е. случаи возникновения напряжений в трех направлениях), но часто трудно или дан е невозможно количественно оценить результаты опытов, так как неизвестны распределения напряжений, особенно после того, как возникли хотя бы незначительные пластические деформации.  [c.33]

Для измерения малых упругих деформаций Баушингер изобрел зеркальный тензометр ), позволивший ему измерять с высокой точностью относительные удлинения порядка 1 10 . С помощью столь чувствительного прибора он получил возможность исследовать механические свойства материалов гораздо более тщательно, чем это было доступно его предшественникам. Производя испытания на растяжение железа и мягкой стали, он заметил, что до известного предела эти материалы следуют закону Гука весьма точно, причем до тех пор, пока удлинения сохраняют пропорциональность напряжениям, они остаются вместе с тем и упругими, так как никаких остаточных (пластических) деформаций при этом обнаружить не удается. Из этих испытаний Баушингер сделал тот вывод, что мы вправе считать предел упругости для железа и стали совпадающим с пределом пропорциональности. Если увеличивать нагрузку на образец за предел упругости, то удлинения начнут возрастать с большей скоростью, чем нагрузка, однако только до некоторого предела, при котором происходит резкое возрастание деформации, продолжающей расти со временем и дальше уже при постоянной нагрузке. Это критическое значение нагрузки определяет предел текучести материала. Предел текучести мягкой стали повышается, если загрузить образец выше начального предела текучести тогда наибольшее значение этой нагрузки дает нам новое значение предела текучести, если только вторичное загруже-ние произведено непосредственно после первого. Если вторичное загружение сделано по истечении некоторого времени, порядка нескольких дней, предел текучести получается несколько выше наибольшей нагрузки первичного загружения. Баушингер обратил также внимание на то, что образец, растянутый выше предела текучести, уже утрачивает свойство совершенной упру-  [c.336]

Вопрос о переходе в пластическое состояние материалов, кажущихся хрупкими при обычных испытаниях на растяжение и сжатие, был исследован Т. Карманом и Р. Бёкером, которые производили испытания при одновременном действии давления в осевом и поперечном направлениях. Оба исследователя нагружали цилиндрические образцы из мрамора и песчаника либо лишь осевым сжатием, либо осевым сжатием совместно с высоким гидростатическим давлением на боковой поверхности (в последнем случае испытание производилось в стальном резервуаре). Результаты их исследований можно резюмировать следующим образом. С увелп-  [c.267]

При разработке типовых графиков нагружения заготовки в зависимости от схем ее предполагаемого напряженно-деформи-рованного состояния и технологических операций определение исходных механических свойств материала заготовки, соответствующих началу пластического деформирования и затем на промежуточных и конечной стадиях обработки, традиционно выполняют методами статических испытаний на растяжение, сжатие, кручение, изгиб и т.п. Результаты этих испытаний ввиду неполного соответствия режимов реально действующим режимам нагружения основных энерготипов кузнечно-прессовых машин и упрощениям, принятым на начальных стадиях развития теории обработки материалов давлением, привели к применению в расчетах традиционных технологических процессов следующих допущений статическое состояние обрабатываемого тела и пренебрежимо малые упругие деформации обрабатываемой заготовки. Такие допущения вызвали завышение значений энергосиловых параметров кузнечно-прессовых машин и несоответствие показателей их качества по критериям энергоемкости, материалоемкости и надежности современному техническому уровню и конкурентоспособности.  [c.99]

Детали машин в большинстве случаев имеют сложную форму с резкими изменениями сечений в виде буртов, галтелей, надрезов, отверстий и т. п. Все это вызывает в отдельных частях деталей концентрацию напряжений и является источником возникновения сложного напряженного состояния. Наиболее правильная оценка свойств материалов может быть дана при условии приближения методов испытания к практическим условиям работы. Проведение таких испытаний иногда методически трудно осуш,ествимо и часто связано с большими дополнительными затратами. В связи с этим представляют интерес методы создания в образце сложного напряженного состояния при обычных испытаниях на растяжение. Одним из таких методов является нанесение на цилиндрический образец кольцевого надреза. Изучение характера разрушения материала и процесса распространения пластической деформации в месте надреза может содействовать выяснению общих закономерностей пластической деформации при сложном напряженном состоянии.  [c.117]

Теория наибольших касательных напряжений дает лучшее согласование с опытами, по крайней мере для пластических материалов, для которых 0 = 0 . Эта теория предполагает, что текучесть начинается, когда наибольшее касательное напряжение в материале становится равным наибольшему касательному напряжению предела текучести при испытании на простое растяжейие. Так как наибольшее касательное напряжение в материале равняется половине разности между наибольшим и наименьшим гд вными напряжениями ), и так как наибольшее-касательное напряжение прй испытании на растяжение равно половине нормального напряжения, то условием состояния  [c.372]


Смотреть страницы где упоминается термин Испытания на растяжение пластических материалов : [c.163]    [c.221]    [c.358]    [c.14]   
Смотреть главы в:

Сопротивление материалов Том 2  -> Испытания на растяжение пластических материалов



ПОИСК



ИСПЫТАНИЕ МАТЕРИАЛОВ Испытание материалов на растяжение

Испытание материала на растяжение

Испытание материалов

Испытание материалов на растяжени

Материал пластический



© 2025 Mash-xxl.info Реклама на сайте