Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Гамильтонова форма уравнений динамики

Скобки Пуассона и их свойства. Обычная гамильтонова форма уравнений динамики имеет вид  [c.27]

Гамильтонова форма уравнений динамики  [c.52]

Применим первый из указанных способов для приведения к гамильтоновой форме уравнений движения непотенциальной системы, динамика которой определяется функцией Лагранжа  [c.160]

Автор благодарен дирекции Университетского издательства в Торонто, которая предоставила ему возможность дополнить свою книгу этим материалом, относящимся к одному из наиболее поразительных открытий человеческого гения. В этой главе в очень сжатой форме, но последовательно изложены все основные идеи, принципы и результаты Эйнштейна, относящиеся к кинематике и динамике одной частицы. Общая теория преобразований Лоренца изложена при помощи гамильтоновых кватернионов. Они так удачно подходят для этой цели, что вряд ли найдется другой математический аппарат, столь же простой и компактный. Уравнения поля общей теории относительности, естественно, не вошли в эту книгу, однако здесь подробно рассматриваются динамические аспекты гравитационной теории Эйнштейна, в том числе три решающих эксперимента по проверке теории, поскольку они не выходят за рамки лагранжевой и гамильтоновой форм динамики.  [c.14]


Обычная нерелятивистская динамика имеет дело с состоянием динамической системы в определенный момент времени, заданным значениями д тл р. С помощью уравнений движения можно, зная состояние в один момент времени, вычислить состояние в другой момент времени. Такие уравнения движения, записанные в гамильтоновой форме с однородными скоростями,, требуют только Ф первого класса. Чтобы построить динамическую теорию, необходимо ввести систему уравнений, допускающую наблюдателей с любыми скоростями, причем каждому наблюдателю ставится в соответствие момент времени. Под моментом мы подразумевали трехмерную гиперплоскость пространстве-времени с нормалью внутри светового конуса. Момент времени задают, таким образом, четырьмя параметрами тремя направляющими косинусами нормали гиперповерхности или скорости наблюдателя и четвертым параметром, позволяющим различать моменты для одного и того же наблюдателя.  [c.718]

В уравнении Гамильтона переменными, которые определяют движение механической системы, являются обобщенные координаты q и обобщенные моменты р. Гамильтонова функция W(p, q), которая входит в гамильтоновы уравнения, обычно является функцией обеих этих переменных. Если мы преобразуем переменные q и р в новые переменные q и р посредством какого-либо произвольного преобразования, общая форма гамильтоновых уравнений изменится. Однако Якоби показал, что существует некоторое преобразование, отличающееся тем свойством, что оно оставляет форму этих уравнений неизменной. Так как уравнения Гамильтона часто называются каноническими уравнениями динамики, то указанным преобразованиям было дано наименование канонических преобразований. Канонические преобразования представляют собой специальный случай касательного преобразования. Касательное преобразование в трехмерном пространстве определяется так  [c.915]

В 1850 г. Остроградский опубликовал еще один мемуар, содержащий важные результаты по математической теории уравнений движения,— Об интегралах общих уравнений динамики (представлен в 1848 г.). Он показал, что и в более общем случае, когда связи и силовая функция содержат время (этот случай был оставлен в стороне Гамильтоном и Якоби), уравнения движения также могут быть преобразованы в гамильтонову форму.  [c.216]

Шестая глава посвящена важнейшему разделу механики — гамильтонову формализму. Основная цель этого раздела — представить математические аспекты гамильтоновой динамики как мощный аппарат решения широкого круга задач механики, физики и прикладной математики. В лагранжевом подходе проблема решения уравнений лежит вне рамок лагранжева формализма. Положение меняется в гамильтоновом подходе, который позволяет получить решение как каноническое преобразование начальных данных, не обращаясь непосредственно к уравнениям. Вся информация об эволюции системы содержится в одной функции — гамильтониане в результате канонического преобразования можно получить новый гамильтониан, который в определенном смысле мал . Более того, поскольку все операции ограничены рамками группы движения кососимметричной метрики, то удается создать универсальные алгоритмы построения приближенных решений. В рамках гамильтонова подхода изложены теория специальных функций, каноническая теория возмущений, метод усреднения нелинейных систем, методы анализа движения системы в быстропеременном внешнем поле и т.д. Особый интерес представляет лекция 30, в которой развит метод Дирака удвоения переменных, позволяющий представить в гамильтоновой форме систему нелинейных уравнений общего вида и получить решения уравнений, описывающих сингулярно-возмущенные системы, решения алгебраических и трансцендентных уравнений, разрешить проблему обращения интегралов и т.д. В лекции 32 приведено решение задачи о движении релятивистской частицы в гиперболическом волноводе, представляющей интерес для проблемы сепарации частиц по энергии и удельному заряду. В рамках канонического формализма рассмотрена задача о движении протонов в синхрофазотроне.  [c.8]


Уравнения Гамильтона. Перейдем теперь к формулировке другой важной формы вариационного принципа, которая приведет нас к так называемому гамильтонову или каноническому виду уравнений динамики.  [c.61]

Наиболее естественные и удобные для исследований формы уравнений движения твердого тела могут быть получены из общих уравнений динамики в квазикоординатах. Лагранжева форма этих уравнений была установлена А. Пуанкаре [255], а гамильтонова — П. Г. Четаевым [181]. Их возможные обобщения для неголономной ситуации рассматривались в [91, 154]. В динамике твердого тела уравнения Пуанкаре-Четаева приводят к гамильтоновым уравнениям с линейным структурным тензором, т. е. к только что рассматривавшейся структуре Ли-Пуассона (см. 1). Приведем здесь свой вывод уравнений Пуанкаре и Пуанкаре-Четаева, т.к. их обсуждение отсутствует в доступной литературе.  [c.33]

Всякий раз, когда говорят о гамильтоновой структуре уравнений, описывающих динамику какой-либо непрерывной (бесконечномерной) системы, по существу имеют в виду специальный способ записи этих уравнений. Наиболее известна классическая или каноническая форма записи. В этом случае система описывается четным числом уравнений  [c.182]

Относительные преимущества и слабости этих двух аспектов гамильтоновой динамики находятся в тесной аналогии с относительными достоинствами и недостатками выражения уравнения поверхности в двух формах, f(x, у, z) = о ж Z = f x, у) впрочем, для того чтобы улучшить аналогию, следовало бы рассматривать любое число переменных. Q-динамика кажется предпочтительнее по общим причинам, когда желательно поставить все 2N 2 переменных в равное положение. Я-динамика во многих отношениях предпочтительнее с аналитической точки зрения. Таким образом, уравнения движения (68.16) представляют собой, очевидно, систему 2N уравнений первого порядка, в то время как в (68.7), очевидно, систему 2N -Н 2 уравнений. Число уравнений последней системы можно уменьшить до 2N + 1, разделив все уравнения на dxj +i/dw, так что (т. е. время) становится незави-  [c.225]

Лагранжева и гамильтонова динамики. Можно не класть в основу динамики уравнения движения в форме  [c.401]

Интересно заметить, что связь между лагранжевой и гамильтоновой формой понятна большинству механиков только в канонической записи. Так в книге [21] гамильтонова форма уравнений динамики твердого тела считается заведомо установленной из некоторых не вполне естественных соображений, в частности, со ссылкой на работу [133], в которой реально автор, не зная общего формализма динамических уравнений, даже переоткрывает углы Эйлера и сопряженные им импульсы. Далее в [21] доказывается несколько странных теорем, что из гамильтоновой формы можно получить лагранжеву, при этом, конечно, возникает некоторая путаница, так как пуассонова коммутация компонент момента с импульсами и направляющими косинусами одинакова, и одни и те же уравнения Кирхгофа можно представлять себе как часть импульсных уравнений на группе (3) — уравнения Эйлера - Пуанкаре для М, р, которая в случае отсутствия потенциала отделяется от позиционных уравнений (для направляющих косинусов), а с другой стороны — как гамильтоновы уравнения на 30(3), при этом необходимо интерпретировать компоненты импульсивной силы р как направляющие косинусы. В этом, кстати, заключается аналогия Стеклова [272] (см. также 4 и гл. 3, 1).  [c.38]

Аналитическую динамику для гинердвижения релятивистской материальной точки можно записать в нескольких вариантах, причем речь идет о записи одних и тех же уравнений в лагранжевой и гамильтоновой формах, но в разных функциональных обозначениях.  [c.255]

Первое издание книги опубликовано издательством Московского университета в 1988 г. Во втором издании книги приведены решения 160 новых задач. Включена новая глава 11 Релятивистская механика . Теперь сборник содержит решения 560 задач, иллюстрируюш их приложения методов теоретической механики к исследованию широкого круга проблем. Представлены задачи по всем разделам классической механики динамика частицы во внешнем поле и тел переменной массы, динамика системы частиц, уравнения Лагранжа, линейные и нелинейные колебания, динамика твердого тела, электромеханика, уравнения Гамильтона и канонические преобразования. Задачи по электромеханике рассмотрены в рамках лагранжева формализма. Включены также 42 задачи по релятивистской динамике, которые отсутствуют в известных сборниках задач по механике. Ряд задач, представляюш их различные аспекты одной проблемы, представлен в нескольких разделах сборника. Значительно расширен раздел, включаюш ий множество задач, иллюстрируюш их применение новых методов интегрирования систем нелинейных уравнений обш его вида, представленных в гамильтоновой форме.  [c.5]


Уравнения (1.1) не являются инвариантными относительно произвольных координатных преобразований. Кроме того, при записи основных уравнений динамики твердого тела в виде (1.1) они теряют алгебраичность и приобретают особенности, не связанные с существом задачи (см. 4 п. 2). Прежде чем привести уравнения движения в более приемлемой форме, сохраняющей основные свойства канонической записи, остановимся на инвариантном изложении гамильтоновой механики.  [c.28]

Гамильтонова, или симплектическая, динамика. Эта теория — естественное обобщение анализа дифференциальных уравнений классической механики. Фазовое пространство в этом случае представляет собой четномерное гладкое многообразие с замкнутой невырожденной дифференциальной 2-формой П. Однопараметрические группы диффеоморфизмов, сохраняющих форму Q, соответствуют дифференциальным уравнениям классической механики в гамильтоновой форме. Сохраняющий форму П диффеоморфизм обобщает понятие канонического преобразования. Мы впервые встретимся с такими системами в 1.5 и рассмотрим эту тему более систематически в 5.5.  [c.23]

Стохастическое поведение консервативных гамильтоновых систем известно из работы [136), где показано, что неинтегрируемость некоторой гамильтоновой системы с двумя степенями свободы приводит к возникновению хаоса. Обзор проблемы хаоса в гамильтоновых системах дан в [200]. в которой проведено интенсивное сопоставление старых и новых взглядов на вопросы интегрируемости. Учитывая некоторую аналогию между задачами небесной механики и движением точечных вихрей, можно предположить, что и в последнем случае будет иметь место хаотическое поведение. Поэтому усилия многих современных исследователей направлены на выяснение вопросов как, где и почему хаотическое поведение входит в динамику точечных вихрей В исследованиях [ 55, 93 ) рассмотрены типичные задачи этого класса. Важной особенностью хаотического движения в задачах вихревой динамики на плоскости является то, что хаос здесь возникает из полных уравнений движения Эйлера, сведенных к гамильтоновой форме, а не в результате модовых (галеркинских) аппроксимаций. Использование таких аппроксимаций является ахиллесовой пятой многих работ по изучению перехода к турбулентности. В частности, если в задаче Лоренца использовать большее число базисных функций, т.е. учесть следующие гармоники полей скорости и температуры, то полученная нелинейная система обыкновенных дифференциальных уравнений уже не обладает <саттракторными свойствами.  [c.158]

Как будет показано в следующей главе, эти обобщения уравнений Гамильтона разделяют с последними то важное свойство, что для них автоматически выполняются все условия полной устойчивости, если только они удовлетворяют очевидным условиям устойчивости первого порядка. Следовательно, с этой точки зрения пфаффовы уравнения являются столь же важными для динамики, как и гамильтоновы, хотя первые принадлежат к более общему типу и, кроме того, имеют одно дополнительное преимущество, а именно они сохраняют свою пфаффову форму при любом преобразовании переменных, принадлежащем к формальной группе. В самом деле, достаточно только произвести замену переменных под знаком интеграла в формуле (12), чтобы получить преобразованные значения функций Xi и Z.  [c.100]

Важное качественное свойство лагранжевой динамики и гамильтоновой динамики заключается в том, что они сохраняют определенную каноническую форму объема. Действительно, во-первых, из координатного представления (5.3.6) немедленно следует, что уравнения Гамильтона являются бездивергентными, так что они сохраняют фазовый объем в х, р)-простран-стве, который на самом деле представляет собой п-ю внешнюю степень формы fi. Возвращаясь на касательное расслоение с помощью инверсии преобразования Лежандра, мы видим, что инвариантный объем является произведением формы объема на многообразии и евклидова объема, определенного в касательном пространстве римановой метрикой. Лагранжева система сохраняет гиперповерхности Н = onst, так что для каждого регулярного значения Н имеется индуцированная инвариантная форма объема на гиперповерхности Н — onst. Это особенно просто понять в случае геодезических потоков, когда инвариантные гиперповерхности являются сферическими расслоениями г) = onst и инвариантный объем потока есть  [c.212]

Как и гамильтонова динамика, вариационный формализм естественным образом применим к консервативным системам дисси-. нативные эффекты описываются несколько неудобным образом как ненулевые добавки к правым частям предыдуш,их уравнений. Однако можно сохранить различные канонические формы и левые части по-прежнему можно записывать через лагранжиан. Для того чтобы продемонстрировать это, рассмотрим как частный пример уравнение  [c.490]


Смотреть страницы где упоминается термин Гамильтонова форма уравнений динамики : [c.293]    [c.832]    [c.911]    [c.220]    [c.315]    [c.403]    [c.42]    [c.9]   
Смотреть главы в:

Общая теория вихрей  -> Гамильтонова форма уравнений динамики



ПОИСК



70 - Уравнение динамики

Восьмая лекция. Интеграл Гамильтона и вторая Лагранжева форма уравнение динамики

Гамильтон

Гамильтона уравнения

Гамильтонова форма

Динамика гамильтонова

Зэк гамильтоново

Уравнения форме

Форма уравнением в форме



© 2025 Mash-xxl.info Реклама на сайте