Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Материалы камер сгорания

В камере сгорания — сосредоточии самых высоких температур — Т> 1650 °С. На рис. 2.7 показана камера сгорания кольцевого типа. Между внешней и внутренней стенками заключена часть кольцевого пространства, симметричного относительно оси двигателя. Выходя из компрессора, воздух проходит сквозь это пространство, смешиваясь здесь с топливом. Смесь поджигается. Топливо вводится через форсунки, расположенные в конце камеры сгорания. Однажды подожженная искрой, топливовоздушная смесь продолжает гореть до тех пор, пока не будет перекрыто топливо. Управление тягой двигателя осуществляют главным образом за счет управления подачей топлива в камеру сгорания. К моменту, когда наиболее разогретый газ достигает лопастей стационарных лопаток первой ступени турбины, он уже смешан с избыточным охлаждающим воздухом компрессора и, разбавленный таким образом, поступает в турбину при температурах от 950 °С (в газовых турбинах первого поколения) до 1500 °С (в некоторых современных установках). Кольцевая камера сгорания "осевой" конструкции, изображенная на рис. 2.7, изготовлена из точеных колец суперсплава. В утолщенных сечениях, расположенных в определенном порядке по наружной и внутренней стенкам, имеются охлаждающие полости, сквозь которые продувается нагнетаемый компрессором воздух. Образованный таким образом тонкий слой относительно холодного воздуха в совокупности с конвекционным охлаждением защищают материал камеры сгорания от нагрева горячим газом. Разница в температуре металла и пламени может существенно превышать 850 °С. Тепловое излучение от пламени к более холодному материалу камеры сгорания весьма значительно. На внутреннюю поверхность камеры сгорания может быть нанесено теплозащитное покрытие. Оно образует теплоизолирующий и отражающий слой.  [c.55]


Камера сгорания. Часть сжатого воздуха, входящего в камеру сгорания, смешивается с топливом и полученная смесь сгорает в камере сгорания, образуя газы с температурой более 1650 °С. Остальной поток сжатого воздуха проходит вокруг камеры сгорания и через щели в стенках, охлаждая ее, и смешивается затем с продуктами сгорания с тем, чтобы снизить температуру последних перед входом в турбину до температур 1100-1300 °С (до 1500 °С в некоторых современных установках). Материалы камеры сгорания и переходных газопроводов должны обладать достаточной прочностью при рабочих температурах (1100 °С и выше). Основным требованием является стойкость к окислению, термической усталости и короблению. Кроме того, материал должен иметь хорошую свариваемость и деформируемость, необходимые при изготовлении камер. Желательно также, чтобы материал обладал низким коэффициентом термического расширения и достаточной износостойкостью.  [c.577]

К конструктивным факторам, влияющим на возникновение детонации, относятся степень сжатия, форма камеры сгорания, расположение и количество свечей, размеры цилиндра, а также материалы камеры сгорания, головки и поршня двигателя.  [c.160]

МАТЕРИАЛЫ КАМЕРЫ СГОРАНИЯ  [c.442]

Основные требования, предъявляемые к материалам камер сгорания  [c.442]

В 1960 г. в США был создан двигатель ЬР-99-РМ-1 для экспериментального самолета Х-15. На этом ЖРД вновь нашли применение огнеупорные материалы — камера сгорания была изготовлена из трубок и изнутри была облицована двуокисью циркония. Двигатель работал на жидком кислороде и безводном аммиаке, который использовался в качестве хладагента [147, 195].  [c.102]

Применение пайки и склеивания в машиностроении возрастает в связи с широким внедрением новых конструкционных материалов (например, пластмасс) и высокопрочных легированных сталей, многие из которых плохо свариваются. Примерами применения пайки в машиностроении могут служить радиаторы автомобилей и тракторов, камеры сгорания жидкостных реактивных двигателей, лопатки турбин, топливные и масляные трубопроводы и др. В самолетостроении наблюдается тенденция перехода от клепаной алюминиевой  [c.68]

Так как температура в камере сгорания достигает 2500—3200 К, а температура на входе в канал генератора 2400—2600 К, существуют значительные трудности в выборе материалов стенок. Эти трудности обусловливаются тем, что к материалу стенок канала предъявляются требования по обеспечению большого ресурса работы и способности выступать в роли проводящих и непроводящих элементов при высоких температурах и при высокой химической активности рабочего тела (продукты сгорания с добавкой калия). Для выполнения этих требований и обеспечения совместимости элементов конструкции друг с другом применяются описанные нами покрытия.  [c.210]


При работе тепловых двигателей, компрессоров, холодильных установок, высокоскоростных летательных аппаратов отдельные части и узлы этих установок нагреваются. Для того чтобы конструкция работала надежно, необходимо предусмотреть меры, которые установили бы предел росту температуры. В противном случае нормальная работа таких установок может прекратиться, так как конструкционные материалы при нагревании теряют прочность и при определенной температуре разрушаются. Например, если не предусмотреть специальных мер для защиты камеры сгорания и сопла, то ракетный двигатель разрушится в течение долей секунды. Баллистическая ракета, входящая в плотные слои атмосферы, без тепловой защиты ее головной части и стенок корпуса разрушится в течение нескольких секунд, так как температура ее головной части при этом достигает нескольких тысяч градусов.  [c.6]

Повышение скорости и дальности (при выключенном ВРД) было достигнуто у самолета Н при сохранении полетного веса на уровне опытных истребителей с поршневыми двигателями (ниже 4 т). Это явилось следствием применения более совершенной (с меньшим удельным весом) силовой установки. Самолет Н строился серийно. В его конструкции был реализован ряд новшеств, характерных для будущих реактивных самолетов (тонкий профиль крыла, камера сгорания ВРД с регулируемой в полете площадью выходного сопла и др.). Создание самолетов с комбинированными силовыми установками выдвинуло перед институтами ЦАГИ, ЦИАМ, ВИАМ новые проблемы околозвуковой и сверхзвуковой аэродинамики, теоретических и экспериментальных работ по реактивным силовым установкам и материалам для них. Все это явилось базой для последующих работ по скоростным реактивным самолетам с турбореактивными двигателями.  [c.368]

В 1937 г. А. М. Люлька был разработан проект турбореактивного двигателя с осевым компрессором и кольцевой камерой сгорания, на несколько лет опередивший появление аналогичных проектов за рубежом. В 1943—1944 гг. под его же руководством в Центральном институте авиационного моторостроения был построен экспериментальный турбореактивный двигатель С-18 (рис. 104). Тогда же (1940—1945 гг.) в ЦИАМ велась разработка оригинальной конструкции авиационного газотурбинного двигателя с трехступенчатой газовой турбиной, с трехступенчатым центробежным компрессором и с системой испарительного жидкостного охлаждения по схеме, предложенной в 1935 г. проф. В. В. Уваровым. С 1945 г. к проектированию турбореактивных двигателей помимо группы А. М. Люлька были привлечены большие конструкторские коллективы А. А. Микулина,В. Я. Климова и других ОКБ и значительно увеличены объемы необходимых теоретических и экспериментальных исследований. К этому же времени относится начало работ по изысканию жаропрочных материалов для газовых турбин двигателей во Всесоюзном институте авиационных материалов (ВИАМ).  [c.369]

В цилиндровой группе двигателя внутреннего сгорания неплотности хорошо обнаруживаются при повышении давления жидкости, заполняющей блок или камеру сгорания цилиндра. При гидравлических испытаниях цилиндров или блоков последние устанавливают на стойку, а отверстия в них, за исключением одного, закрывают заглушками. К открытому отверстию присоединяют шланг от насоса, подающего из бака эмульсию или воду. Давление в процессе испытания постепенно повышают, следя за показаниями манометра и за состоянием поверхностей. При наличии погрешностей в материале или сборке на поверхности рубашки или соответственно в местах соединения появляются мелкие капли жидкости.  [c.500]

В текущее десятилетие впервые начались серьезные попытки применения керамиковых материалов для ответственных деталей и узлов газовых турбин — камер сгорания, сопловых венцов, рабочих лопаток и роторов.  [c.214]

При разработке технологии сварки жаропрочных материалов особую трудность представляет, как правило, выбор сварочных материалов (электродов и сварочных проволок), обеспечивающих необходимые свойства металла шва. Для работы при высоких температурах металл шва, кроме необходимого уровня механических свойств и технологической прочности, должен обеспечивать также достаточную стабильность структуры и свойств при заданных температурах, обладать необходимым сопротивлением ползучести и жаростойкостью, а также рядом других свойств в соответствии с условиями работы данного узла. При этом критерии оценки пригодности того или иного типа сварочных материалов будут существенно зависеть от назначения данного узла конструкции. Так, например, для сварных конструкций камер сгорания газовых турбин пригодность тех или иных электродов будет определяться прежде всего жаростойкостью металла шва. Ряд сварных узлов турбин (рабочие лопатки, роторы и другие) могут работать под воздействием динамических знакопеременных напряжений. Поэтому для данных сварных соединений должна быть проверена их усталостная прочность.  [c.21]


Учет релаксации напряжений, происходящей на площадках цикла при малоцикловом нагружении по жесткому режиму, должен производиться с оценкой циклических свойств материала. Для упрочняющихся материалов, к которым относятся жаропрочные сплавы для лопаток, дисков, камер сгорания, процесс циклической релаксации происходит при уменьшении релаксационных характеристик — скорости и величины релаксационного напряжения. Это приводит к тому, что кривые релаксации, обычно описываемые экспоненциальной функцией  [c.97]

Камеры [сгорания ((мусоросжигательных печей G 5/24-5/28 для получения продуктов сгорания высокого давления или высокой скорости R) F 23 (пульсирующие в воздушно-реактивных двигателях К 7/02-7/04 в ракетно-двигательных установках КЗ/11, 9/34, 9/62-9/66 в роторных ДВС В 55/14) F 02 на тепловозах и моторных вагонах В 61 С 5/02 в устройствах для сжигания топлива (твердого В 1/30-1/38, С 3/00 детали или элементы конструкции М удаление продуктов сгорания и остатков J 1/00) F 23) сушильные (стационарные для сушки твердых предметов или материалов 9/06-9/08 в сушильных устройствах 25/06-25/18) F 26 В форсажные турбореактивных двигателей для подогрева рабочего тела F 02 К 3/10, 3/11] Камни (В 28 D (машины для их обработки обработка охлаждением 7/02) В 24 (пескоструйная обработка С 1/04 шлифование В 7/22, 9/06) футеровочные для камер сгорания F 23 М 5/02)  [c.90]

Набивка сальников F 16 J 15/20-15/22 Наблюдательные устройства <в камерах сгорания (топках) F 23 FI 11/04 в промышленных печах F 27 D 21/02 в рентгеновских установках О 21 F 7/02 для слежения за полетом космических кораблей В 64 G 3/00 на подводных лодках В 63 G 8/38 на транспортных средствах В 60 R 1/00-1/12 в трубопроводах F 17 D 3/00-3/08, 5/00-5,06) Набор корпуса судов В 63 В 3/26-3/36 Навесы <для водителей на транспортных средствах В 60 N В 62 защитные для J 17/08 для прицепных колясок К 27/04) велосипедов, мотоциклов на судах В 63 В 17/02) Навивание (В 21 металлического материала для образования спиральной или винтовой формы D 11/06 проволоки F 3/00) по ст<рали для изготовления изделий из пластических материалов В 29 С 53/32, 53/56-53/78) Навигационные [В 63 В инструменты 49/00 приборы 51/00-51/04) G 01 С приборы (изготовление, градуировка, чистка, ремонт 25/00 комбинированные для измерения двух и более параметров движения 23/00 для космических целей 21/24, В 64 G 1/24)) приборы для указания курса и опасных мест для корабля В 63 В 51/00-51/04  [c.115]

Подача В 24 (абразивных материалов при пескоструйной обработке изделий С 7/00 шлифовальных, полировальных или притирочных материалов В 57/00) водяного пара и охлаждающей воды к конденсаторам общего назначения F 28 В 9/02 воздуха [в водолазные костюмы В 63 С 11/(18-24) в топки (камеры сгорания) F 23 L в устройствах (для  [c.139]

Из полимерных материалов (обычно фенопластов) в настоящее время изготовляют ряд футеровок и даже деталей ракет, таких как сопла, футеровка камеры сгорания и выходных каналов,  [c.393]

Противоточная камера сгорания может работать как на жидком, так и на газообразном топливе. Установка имеет две камеры сгорания. Распыление топлива производится сжатым воздухом, который отбирается из выпускного патрубка компрессора, охлаждается и сжимается в ротационном компрессоре с приводом от электродвигателя. Корпус этого компрессора охлаждается водой. Степень повышения давления в дожимающем компрессоре равна 2. Корпус камеры сгорания сделан из малоуглеродистой стали. Внутренний кожух и радиационная труба выполнены из нержавеющей стали 18/8. Пламенная труба толщиной 6,35 мм сделана из сплава Нимоник Р и имеет ребра для лучшего отвода тепла. Газопровод от камеры сгорания до турбины изолирован пластичным материалом из асбеста. Трубопровод от компрессора до камеры сгорания имеет внешнюю изоляцию, от камеры сгорания до турбины — внутреннюю (рис. 2-27). Изоляция покрыта металлическим кожухом. Для уменьшения потерь давления в местах поворота потока устанавливается направляющий аппарат. На трубопроводе до камеры сгорания имеются линзовые компенсаторы, после камеры сгорания — линзовые компенсаторы с шарнирной стяжкой. Это дает возможность камере сгорания, подвешенной на гибких стальных полосах, свободно передвигаться.  [c.42]

Жаровые трубы. К материалу камер сгорания ГТУ предъявляются следующие требования высокие жаростойкость, термостойкость, свариваемость и технологическая пластичность, допускающая гибку в процессе изготовления, по возможности высокая теплопроводность и низкий коэ( ициент линейного расширения, а также такой уровень значений предела текучести и сопротивления ползучести, чтобы возникающие термические напряжения не приводили к значительным пластическим деформациям (короблению). Для обеспечения требований по термостойкости материал не должен охрупчиваться в процессе эксплуатации и не должен обладать чувствительностью к надрезу как в исходном состоянии, так и после длительных выдержек при рабочих температурах. В ряде случаев высокая теплопроводность металла обеспечивается применением теплопроводных материалов (медь, никель) с жаростойкими покрытиями. В других случаях, наоборот, применяют малотеплопро-  [c.38]


Применение пайки и склеивания в машиностроении возрастает в связи с широким внедрением новых конструкционных материалов (например, пластмасс) и высокопрЬчных легированных сталей, многие из которых плохо свариваются. Примерами применения пайки в машиностроении могут служить радиаторы автомобилей и тракторов, камеры сгорания жидкостных реактивных двигателей, лопатки турбо-реактивных авиадвигателей, топливные и масляные насосы и др. Клеевые соединения элементов конструкции находят достаточно широкое применение в самолетостроении. Путем склеивания можно соединять элементы конструкции малой толщины с разнородными заполнителями. Так, например, на смену клепаной конструкции обшивки самолета приходит клеевая конструкция (см. рис. 3.8, где 1 — стыковка по контуру, II — клеевое соединение панелей с поясом лонжерона, III — клеевое соединение панелей с профилем носка крыла).  [c.362]

Ресурс этих установок, однако, ограничен . На рис. 5.27 показана часть МГД-генератора 200 МВт, впервые запущенного в 1978 г. и проработавшего 500 ч. Сегодня ясно, что для обеспечения надежной работы систе мы многое еще предстоит сделать в области разработки материалов. Высокие температуры в сочетании с коррозионным воздействием продуктов сгорания и присадки существенно снижают ресурс МГД-каиала. Для перехода к промышленному использованию необходимо добиться существенного улучн1ения конструкции воздухоподогревателей и камер сгорания.  [c.106]

Анализ имеющихся материалов показывает, что расхождение температур не остается постоянным и зависит от радиационной поверхности топки (рис. 3-26). График построен применительно к топке котла мощностью 150 Мкал (200 г/ч) на основе проделанных по действующим нормам расчетов. Как видно, для неэкраниро-ванной топки (Яр = 0) температура топочных газов на выходе из нее равна теоретической и для мазута выше, чем для газа. По мере увеличения охлаждающей поверхности указанные температуры сближаются. Точка пересечения соответствует площади поверхности камеры сгорания 100 выходной температуре, близкой  [c.93]

Для того чтобы достигнуть в газовых турбинах значения коэффициента полезного действия того же порядка, что и в паровых, начальная температура газа должна быть на 100—150° выше, чем температура пара. Высокая температура, низкие давления, большие расходы и малое число ступеней придают конструкциям газовых турбин специфический характер. Как правило, облопачивание первых ступеней газовых турбин выполняется из жаропрочной стали аустенитного класса. Это относится как к рабочим, так и к направляющим лопаткам, так как при температуре 650—750°, характерной для современных газовых турбин, даже при сравнительно невысоких напряжениях в направляющих лопатках приходится выбирать окалиностойкие материалы. По тем же соображениям горячие газовпускные патрубки турбин, внутренние части камер сгорания и внутренние обечайки горячих газопроводов выполняются из жаростойкой аустенитной стали.  [c.16]

Внутренние части камеры сгорания изготавливаются из высокожаростойкой стали аустенитного класса. В конструкции этих частей широко применяется сварка. Применение облицовки внутренних частей камеры сгорания керамическими материалами встречает затруднения, так как должно быть полностью исключено попадание в турбину частей такой облицовки в случае ее поломки. Между тем, защитить керамические материалы от растрескивания и поломки очень трудно.  [c.17]

Материалом для изготовления корпусов камер сгорания служит сталь типа 12МХ, 20ХМЛ, а в некоторых случаях (при низкой температуре охлаждающего воздуха) и обычная малоуглеродистая сталь. Пламенные трубы и другие внутренние части камер, в частности ребристые плитки, изготавливаются из стали аустенитного класса—  [c.195]

В опытах С. Н. Шорина и К. Н. Правоверова [48] в качестве излучателя использовалась нихромовая сетка в виде конусообразного колпака. В опытах И. Я. Сигала [371 промежуточный излучатель представлял собой систему проволок, равномерно расположенных по направлению-восьми лучей-радиусов над горелкой на расстоянии 50 мм. И. П. Колченогова и С. Н. Шорин [17] исследовали продольный излучатель в виде дырчатого цилиндрического стакана, расположенного в камере сгорания коаксиально, и поперечный излучатель в виде трех перфорированных перегородок, расположенных в камере сгорания на различной высоте и пронизываемых раскаленными продуктами сгорания. Материалом излучателей служила листовая жароупорная сталь толщиной 1 мм с круглыми отверстиями.  [c.79]

Газгольдеры F 17 ( переменной В 1/00-1/26 постоянной С) вместимости Газобалластные насосы F 04 В 37/00-37/20 Газовая В 23 К резка 7/00-7/10 сварка 5/00-5/24) Газовые [горелки, использование в устройствах для зажигания F 23 Q 13/02 гранаты F 42 В 12/46 ДВС F 02 В 43/00-43/12 потоки (для разделения твердых материалов В 07 В 4/00-11/00 реакции в физических и химических процессах В 01 J 12/00-12/02) использование термометры G 01 К 5/28-5/30 турбины (F 01 D, F 02 С камеры сгорания для них F23R)] Газогенераторные [ДВС F 02 В 43/08 установки (С 10 J 3/(20-44, 48-52, 56, 72-86) размещение на транспортных средствах В 60 К 15/10)] Газогенераторы (В 01 J 7/00-7/02 ацетиленовые СЮН 1/00-21/16 использование в газотурбинных установках F 02 С 3/28 колосниковые решетки F 23 Н 13/08) Газожидкостные двигатели F 02 В  [c.62]

Кожухи [водонагревателей и воздухонагревателей F 24 Н 9/02 F 16 гидравлических амортизаторов, демпферов F 9/38 для F 1/24) пружин, подшипников С 35/00-35/12) гидротурбин и других гидравлических двигателей F 03 В 11 /02 для грузоносителей и тяговых элементов конвейеров В 65 G 21/00-21/22 ДВС F 02 (F 7/00 распределителей в системах зажигания Р 7/04) дымовых труб и дымоходов F 23 J 13/02 защитные (общего назначения F 16 Р 1/02-1/04 металлорежущих станков В 23 Q 11/08) камер сгорания F 23 М 5/00 компрессоров F 04 (объемного В 39/12 и насосов необъемного D 29/40-29/56) вытеснения лебедок В 66 D 3/26 мельниц для измельчения материалов, их форма В 02 С 13/282 для нагревательных, обжиговых, плавильных и ретортных печей F27 (В 1/12-1/14, 3/12-3/16, 9/32-9/34, 13/08-13/10, 15/04-15/06, D 1/00) для осей транспортных средств В 60 В 35/16 портативных устройств для очистки воздуха В 03 С 3/82-3/84  [c.94]

Свечи [зажигания (охлаждение в двигателях F 01 Р 1/10, 3/16 очистка пескоструйная В 24 С 3/34 из пластических материалов В 29 L 31-.34 схемы F 02 (С 7/264, Р 19/02), F 23 Q 7/00 фильтровалыше В 01 D 29/32] Свободнопоршневые [F ()2 генераторы газов (В 71/06 использование в газотурбинных установках С 5/08) ДВС (В 71/(00-06) регулирование D 39/10)) двигатели F 01 <В 11/(00-08) распределительные механизмы для них L 27/(00-04) F 04 В компрессоры 31/00 насосы для глубоких скважин 47/12] Свободноструйные гидротурбины F 03 В 1/00-1/04 Своды камер сгорания (топок) F 23 М 5/06 печей F 27 D 1/02-1/08) Связьтание [В 65 (изделий В 13/(00-34) материалов в кипы и тюки В 27/(00-12), D 71/(00-04) пасм FI 54/62 узлов при соединении концов нитевидных материалов Н 69/04) проволоки перед скручиванием В 21 F 7/00] Сгибание (см. также складывание, фальцовка картонных листов при изготовлении коробок и т. п. В 31 В 1/26-1/58 листов или пластин при изготовлении трубчатых изделий из пластмасс В 29 С 53/(04-06)) Седла (велосипедов, мотоциклов и т. п. В 62 J 1/00-1/28 клапанов F 16 К 1/(34, 42, 44)) Сепараторы [жидкостные и воздушные для очистки жидкостей В 67 D 5/58 магнитные (для обработки формовочных смесей В 22 С 5/06 для разделения материалов В 03 С 1/02-1/30) для отделения частиц В 01 D 46/(02-54) паровых котлов F 22 В Ъ11 1Ь-ЪТ подшипников (изготовление ковкой или штамповкой В 21 К 1/05 F 16 С (роликовых и игольчатых 33/(46-56) шариковых 33/(38-  [c.172]


Экзотермические химические реакции как способ получения теплоты F 24 J 1/00-1/04 Экипажи, изготовление деталей В 21 D 53/88 Экономайзеры F 22 D 1/00 Экрапоплаиы В 64 С 39/00 Экраны [ водотрубных котлов F 22 В 21/38 защитные (для аппаратов и машин (общие вопросы) F 16 Р 1/02-1/04 в воздухозаборниках газотурбинных или реактивных двигательных установок F 02 С 7/055)) для камер сгорания F 23 М 5/08 в осветительных устройствах F 21 V <11/(00-18) крепление 17/(00-06)) отражающие в теплообменных аппаратах F 28 F 9/20 из пластических материалов В 29 L 31 14 в разбрызгивателях В 05 В 1/28 для сопел реактивных двигателей F 02 К 1/44 тепловые F 16 L 59/08 цветные для переносных осветительных устройств F 21 L 15/04] Эксгаустеры F 04 D Экструдеры В 29 С 47/00 Экструдинг-прессы В 30 В 11 /22 Экструдирование как способ изготовления изделий из глины, керамики и т. п. В 28 В 3/20-3/26, 21/52  [c.217]

Применение тангенциального ввода увеличивает время контакта продуктов горения с жидкостью, повышая тем самым к.п.д. аппарата. Свежий раствор, охлаждающий камеру сгорания, подается в аппарат через кольцевое пространство между наружным кожухом камеры сгорания и внутренней рубашкой, футерованной огнеупорным материалом. Для работы со вспенивающимися растворами внутри аппарата установлен вертикальный сепаратор с пеноразрушающим устройством. Унифицированные топочные устройства производительностью 200 кг]ч позволяют сжигать как жидкое топливо (мазуты), так и природный газ при минимальных избытках воздуха (пв = 1,05н-1,1) с тепловым напряжением 20 10 ккал/м -ч.  [c.283]

Большой ресурс работы парогазовых турбин может быть достигнут за счет применения эффективных систем охлаждения деталей и узлов, подверженных действию высоких температур и нагрузок, уменьшения нагрева деталей с помощью тепловой изоляции, теплоотражательных экранов и т. п. и применения жаростойких и жаропрочных материалов и жаростойких покрытий для деталей, подвергающихся воздействию высоких температур и больших нагрузок. Еще больший эффект в увеличении ресурса работы парогазовых турбин, очевидно, может быть получен путем снижения начальной температуры газа — парогазовой смеси. При этом, конечно, снизится и к. п. д. ПГТУ. Но основное достоинство ПГТУ, работающих по новым циклам с регенерацией тепла (особенно с промежуточным нагревом парогазовой смеси), как раз и состоит в том, что, несмотря на понижение начальной температуры газа (по сравнению с авиационными газовыми турбинами), они имеют к. п. д., больший, чем обычные ПТУ, и поэтому являются конкурентоспособными с последними. Поскольку в ПТУ с открытой схемой нагрев рабочего тела осуществляется так же, как и в газотурбинных двигателях, непосредственно в камере сгорания (без применения поверхностей нагрева какого-либо теплообменника), то начальная температура газа может быть более высокой, чем в паровых турбинах, и составлять примерно 1200—1400 К. При этом нижнее значение начальной температуры относится к энергетическим (длительно работающим), а верхнее — к транспортным (авиационным — с меньшим ресурсом работы) парогазовым турбинам. Начальное же давление парогазовой смеси равно 3—30 МН/м . Такие же величины начальных тепловых параметров газа можно принять и для ПГТУ с закрытой тепловой схемой с высокотемпературным ядерным реактором. При создании парогазовых турбин, безусловно, может быть использован опыт отечественного энергетического и транспортного газо- и па-ротурбостроения.  [c.78]


Смотреть страницы где упоминается термин Материалы камер сгорания : [c.141]    [c.319]    [c.74]    [c.165]    [c.215]    [c.25]    [c.238]    [c.93]    [c.92]    [c.129]    [c.190]    [c.198]    [c.28]    [c.70]    [c.70]    [c.230]   
Смотреть главы в:

Конструкция и проектирование авиационных газотурбинных двигателей  -> Материалы камер сгорания



ПОИСК



Камера сгорания ВРД



© 2025 Mash-xxl.info Реклама на сайте