Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Уравнения Лагранжа для конечных сил

Уравнения Лагранжа для конечных сил. Выведем общие уравнения движения в обобщенных координатах.  [c.340]

Присоединяя к дифференциальным уравнениям Лагранжа первого рода (19) два конечных уравнения поверхностей /, (х, у, 2) = О и /2 У< 2) = О, получаем пять уравнений для определения пяти величин X, у, 2, Хз как функций времени. Таким образом, и в этом случае поставленная задача может быть разрешена. Она принципиально разрешима и при учете силы трения.  [c.247]


Соотношения (6) образуют систему п уравнений Лагранжа второго рода для импульсивных движений. Неизвестными являются величины Q2 ..., q . В отличие от уравнений Лагранжа (11) п. 138 для движения под действием конечных сил, уравнения (6) являются алгебраическими (причем линейными), а не дифференциальными.  [c.460]

Уравнения Лагранжа применимы, когда связи некоторой системы без трения могут быть выражены в конечной форме и когда применяются параметры, являющиеся истинными координатами. Предположим для упрощения, что существует силовая функция V. Тогда можно написать уравнения движения, если только известны выражения половины живой силы Т и Z7 в функции независимых параметров.  [c.568]

Теперь для трехмерного тела ограниченного объема мы докажем справедливость предположения, что обобщенные силы Qi, определяемые вариационными уравнениями Лагранжа (3), действительно являются компонентами С результирующего давления или соответственно момента силы давления в обычном смысле ). Последние, конечно, определяются математически как интегралы по поверхности тела  [c.216]

В нашем курсе мы приведем некоторые примеры на составление и применение уравнений Лагранжа 2-го рода, но число их в силу ограниченности объема невелико и, конечно, недостаточно для освоения одной из самых важных глав механики.  [c.213]

С другой стороны, выпуская движение из точки a = (q, q ) в силу условия теоремы получаем, что обязательно существует такой конечный момент времени (, для которого d (/)/Л < О (здесь ( ) — значение энергии в движении Р ). Поэтому Е (t) а Е . Следовательно, значения энергии в движениях Р и в движении Р в момент времени t отличаются на конечную величину Е — Е ), несмотря на то, что начальные точки (<7 qs) и q, q ) этих движений сколь угодно близки, а это противоречит теореме о непрерывной зависимости решений дифференциальных уравнений от начальных данных. Уравнения же Лагранжа всегда алгебраически разрешимы относительно старших производных, и предполагается, что для них теорема эта верна. Мы пришли к противоречию, показывающему, что предположение >0 ошибочно. Теорема доказана.  [c.232]

Название соответствующего раздела в первой из работ Лагранжа вполне характеризует суть дела Общий метод для определения движения любой системы тел, действующих друг на друга, в предположений, что эти тела совершают только бесконечно малые колебания около их положений равновесия ( тела и здесь, конечно,— материальные точки). Как это до сих пор излагается в курсах теоретической механики, Лагранж показывает, что живая сила системы Т, с точностью до величины высшего порядка малости, является квадратичной формой первых производных от обобщенных координат, а. потенциальная энергия V — квадратичной формой самих координат (коэффициенты в Г и F —постоянные) и составляет уравнения движения вида  [c.265]


Эти последние преобразования дифференциальных уравнений движения второго порядка системы притягивающихся или отталкивающихся точек во всех отношениях совпадают (не считая небольших различий в написании) с изящными каноническими формами, данными Лагранжем в Me anique Analytique, но нам казалось, что стоит вывести их заново из свойств нашей характеристической функции. Предположим (как это часто считается удобным и даже необходимым), что п точек системы не являются целиком свободными и подвержены не только своим собственным взаимным притяжениям и отталкиваниям, но связаны любыми геометрическими условиями и подвергаются влиянию любых внешних факторов, согласующихся с законом сохранения живой силы так, что число независимых отметок положения будет менее велико, а силовая функция менее проста, чем раньше. Тогда мы можем доказать при помощи рассуждения, очень сходного с предыдущим, что и при этих предположениях (которые, однако, дух динамики все более и более склонен исключать) накопленная живая сила, или действие V системы, представляет собой характеристическую функцию движения уже разобранного выше рода. Эта функция выражается тем же законом и формулой вариации, подверженной тем же преобразованиям, и обязана удовлетворять таким же способом, как и выше, конечной и начальной зависимости между ее частными производными первого порядка. Она приводит при помощи варьирования одной из этих двух зависимостей к тем же каноническим формам, которые были даны Лагранжем для дифференциальных уравнений движения, и дает, исходя из изложенных выше принципов, их промежуточные и конечные интегралы. По отношению же к тем мыслимым случаям, в которых закон живой силы не имеет места, наш метод также неприменим однако среди людей, наиболее глубоко занимавшихся математической динамикой вселенной, все более крепнет убеждение, что представление о таких случаях вызывается недостаточным пониманием взаимодействия тел.  [c.189]

В результате исследований, посвященных принципу максимума и аналогичным ему критериям классического вариационного исчисления, были разработаны общие приемы построения необходимых признаков оптимальности, по-видимому, вполне достаточные для большинства типичных экстремальных задач о программном управлении. Как правило, в настоящее время решение этого вопроса не вызывает принципиальных затруднений, во всяком случае, если речь идет о минимизации (максимизации) функционалов вида (8.2) и подобных им. При встрече с новым кругом задач этого типа обычно удается учесть дополнительные обстоятельства и составить соответствующие необходимые условия экстремума по широко известным теперь общим рецептам. Однако составление дифференциальных уравнений, выражающих необходимые условия оптимальности, является лишь первым, хотя и чрезвычайно важным этапом в решении конкретных проблем. Следующий этап состоит в интегрировании этих уравнений с учетом краевых условий, которым должно удовлетворять искомое оптимальное движение. Эта краевая задача, связанная с необходимостью привести управляемый объект в заданное состояние, остается до сих пор трудной проблемой. Дело заключается в следующем. Необходимые признаки оптимальности, выражаемые дифференциальными уравнениями Эйлера — Лагранжа для координат Х1 1) и множителей Лагранжа Я-г ( ) (или для имеющих тот л е смысл координат г) г 1) вектора -ф ( ) в случае принципа максимума), определяют внутренние свойства оптимальных движений, описывая их локальное поведение в окрестности каждой точки на данной траектории. В силу этих свойств каждое оптимальное движение развертывается во времени совершенно определенным образом, отталкиваясь от начальных условий х ( о) и ( о)-Начальные данные ( о) обычно задаются по условиям задачи. Величины ( о) ("Фг ( о)) определяют по условиям принципа максимума направление в пространстве х , в котором уходит оптимальное движение х (t) из точки X to). Трудность состоит в выборе величин (Ьо), которые обеспечивают прицеливание оптимального движения как раз в заданное конечное состояние X 1х) (или на заданное многообразие М конечных состояний и т. п.). Эффективное преодоление этой трудности, как правило, тормозится невозможностью получения явной зависимости между величинами х ( 1) и А, ( о) вследствие неинтегрирз емости в замкнутой форме дифференциальных уравнений задачи. Каждая новая серия соответствующих краевых задач, особенно, если речь идет о нелинейных объектах, требует обычно для своего разрешения подбора специальных вычислительных алгоритмов. Лишь для отдельных классов задач выведены некоторые закономерности, облегчающие их конкретное решение.  [c.192]


Наша конечная цель — определить поле деформации и поле тензоров напряжений Коши, возникаюш,ие в теле, которое подвергается действию заданной системы приложенных сил. Для решения этой задачи не удаётся эффективно воспользоваться уравнениями равновесия в деформированной конфигурации, поскольку они записаны в переменных Эйлера х = ф (х), которые сами относятся к числу неизвестных. Чтобы избежать трудностей такого рода, перейдём в уравнениях равновесия к переменным Лагранжа х, соотнесённым с отсчётной конфигурацией, которая считается заданной раз и навсегда. Точнее, преобразуем левые части div" 7 и TV, а также правые части f и уравнений равновесия для в величины того же типа, определённые на Q.  [c.105]

Конечно, в ОТОЙ задаче можно составить и второе уравнение Лагранжа, соответствующее координате х. Из такого уравнения определяется приложенная к оси гаарпира сила, необходимая для создания заданного движения шарнира впрочем, вопрос об определении этой силы может и не возникать.  [c.104]

В общем случае система дифференпиальных уравнений движения ИСЗ в конечном виде не интегрируется. Поэтому прн разработке аналитических методов прогноанрования применяют различные способы получения приближенных решений. Для этих целей обычно используют методы приближенного интегрирования уравнений Лагранжа или стремятся найти такой вид потенциальной функции (потенциала тяготения), аппроксимирующей гравитационное поле Землн, которая допускала бы решение дифференциальных уравнений в квадратурах (через конечные аналитические аависимости). Получить решение в квадратурах удалось пока только в иекоторых частных случаях — для потен-пиалов тяготения, довольно полно учитывающих полярное сжатие Земли и частично аномалии поля сил притяжения [75].  [c.189]

Для того чтобы более ясно показать, что действие или накопленную живую силу системы или, другими словами, интеграл произведения живой силы на элемент времени можно рассматривать как функцию упомянутых выше бл -Ь 1 величин, а именно начальных и конечных координат и величины Я, следует отметить, что все, что зависит от способа и времени движения системы, может рассматриваться как такая функция. В самом деле, закон живой силы в первоначальном виде в сочетании с известными или неизвестными Зп зависимостями между временем, начальными данными и переменными координатами всегда дает известные или неизвестные Зп -р 1 зависимости, связывающие время и начальные компоненты скоростей с начальными и конечными координатами и с Я. Однако благодаря тому, что Лагранж не пришел к представлению о действии как функции такого рода, те следствия, которые были выведены здесь из формулы (А) для изменения этого определенного интеграла, не были замечены ни им, ни другими блестящими аналитиками, занимавшимися вопросами теоретической механики, несмотря на то, что в их распоряжении была формула для вариации этого интеграла, не очень отличающаяся от нашей. Дело в том, что Лагранж и другие, рассматривая движение системы, показали, что вариация этого определенного интеграла исчезает, когда даны крайние координаты и постоянная Я. Они, по-видимому, вывели из этого результата только хорошо известный закон наименьшего действия, а именно 1) если представить точки или тела системы движущимися от данной группы начальных к заданной группе конечных положений не так, как это в действительности происходит, и даже не так, как они могли бы двигаться в соответствии с общими законами динамики, или с дифференциальными уравнениями движения, но так, чтобы не нарушать какие-либо предполагаемые геометрические связи, а также ту единственную динамическую зависимость между скоростями и конфигурациями, которая составляет закон живой силы 2) если, кроме того, это геометрически мыслимое, но динамически невозможное движение заставить отличаться бесконечно мало от действительного способа движения системы между заданными крайними положениями, то варьированное значение определенного интеграла, называемого действием или накопленной живой силой системы, находящейся в представленном таким образом движении, будет отличаться бесконечно мало от действительного значения этого интеграла. Но когда этот закон наименьшего, или, как его лучше было бы назвать, стационарного действия, применяется к определению фактического движения системы, он служит только для того, чтобы по правилам вариацион-  [c.180]

Остановимся кратко на содержании главы. В разд. 2,2 на основе принципа виртуальных перемещений Лагранжа выведены основные соотношения подкрепленной ребрами криволинейной панели. В разд. 22.3 выделено элементарное решение Сопротивления материалов. Преобразование исходных уравнений для плоской панели к системе разрешающих уравнений содержится в разд. 2.4. Далее в разд. 2.5 изучено напряженно-деформированное состояние симметрично подкрепленной панели. Рассмотрена панель как конечной, так и бесконечной длины. Решение представлено в виде быстросходящихся рядов, даны результаты численных расчетов и программы расчета. В разд. 2.6 изучается эффект подкрепления панели на торце дополнительным ребром, работающим только иа изгиб. В разд. 2.7, как и в разд. 2.5, рассмотрена симметрично подкрепленная панель, но при кососимметрнчиом загруженин ребер парой сил. Решение отличается от полученного в разд. 2.5, так как требуется учитывать изгиб панели в ее плоскости. Решение доведено до числа. В разд. 2.8 рассмотрены панели с двумя ребрами разной жесткости для случа.я, когда поперечное перемещение панелн равно нулю или отлично от нуля. В разд. 2.9 на примере бесконечной пластины с полубесконечным ребром дается оценка погрешности решения путем введения гипотезы отсутствия поперечной деформации пластины. Эта оценка выполнена, путем срав неиня решения на основе упомянутой гипотезы с точным решением, полученным иа основе уравнений плоской теории упругости. Результаты этого раздела опубликованы Э. И. Грнголюком и В. М. Толкачевым [5]. В этой работе дана также общая постановка задач включения на основе гипотезы отсутствия поперечной деформации, рассмотрены задачи для пластины и ребра конечных размеров, для полубесконечной пластины с полубесконечным ребром, а также задача для защемленной по боковым сторонам полубесконечной полосы, нагруженной на торце постоянной распределенной нормальной нагрузкой.  [c.68]


Большое внимание уделено исследованию изгиба тонких упрзпгих пластин в рамках известного уравнения Жермен — Лагранжа (или Сен-В -нана для задач устойчивости). Здесь подробно рассмотрен изгиб прямой и первоначально искривленной пластин по цилиндрической поверхности, а также конечные прогибы круговой пластины при поперечном равномерном давлении (результат автора). Изложено решение об изгибе прямоугольных пластин с четырьмя опертыми и четырьмя защемленными краями при равномерном поперечном давлении. Оценено влияние на изгиб прямоугольной пластины сил, действующих в срединной поверхности, и влияние  [c.6]


Смотреть страницы где упоминается термин Уравнения Лагранжа для конечных сил : [c.73]   
Смотреть главы в:

Динамика системы твёрдых тел Т.1  -> Уравнения Лагранжа для конечных сил



ПОИСК



Вывод основного матричного уравнения движения конечного элемента из уравнений Лагранжа второго рода

Уравнение конечное

Уравнения Лагранжа



© 2025 Mash-xxl.info Реклама на сайте