Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Контроль обработки блоков

Д. Контроль обработки блоков 491  [c.491]

Станкозавод им. Серго Орджоникидзе изготовил гамму автоматических линий для обработки деталей V-образных восьмицилиндровых двигателей, которые будут устанавливаться на новых грузовых автомобилях ЗИЛ. Отдельные автоматические линии этой гаммы объединяются транспортными устройствами в единую автоматическую систему, выполняющую весь комплекс механической обработки узла двигателя, включая технический контроль. Для обработки блока цилиндров, например, предусмотрена система из 9 автоматических линий, включающих 147 многошпиндельных станков. Линии связываются между собой автоматически действующими поперечными транспортерами, параллельно которым в промежутках между линиями установлены накопители деталей. Параллельные потоки станков в каждой линии управляются самостоятельно, и таким образом простои станков одного потока не вызывают простоев станков другого потока. Наличие накопителей деталей также повышает коэффициент использования станков этих линий. Управляются все механизмы линии с пультов управления участками. В системе линий имеется диспетчерский пульт, принимающий сигналы о простоях и регистрирующий их. Этот пульт связывает систему автоматических линий с различными службами завода. Участковые пульты управления снабжены автоматическими искателями повреждений электрических цепей. Линию обслуживают два оператора и восемь наладчиков.  [c.281]


На фиг. 119 показано приспособление для контроля поковки блока зубчатых колес коробки передач. В приспособлении проверяются припуски на обработку по торцу каждого зубчатого колеса.  [c.113]

Капиллярные методы неразрушающего контроля широко используют в процессе технической диагностики различных видов нефтегазового оборудования например, для выявления поверхностных дефектов корпусов вертлюгов, щек талевых блоков, буровых крюков и др. Контроль проводят по следующим этапам подготовка поверхности объекта к контролю, обработка дефектоскопическими материалами, осмотр и выявление дефектов, окончательная очистка контролируемой поверхности.  [c.72]

При такой системе фиксации блока возможны неправильные команды например, на некоторых автоматических линиях для обработки блока цилиндров при определенных условиях транспортер может переместить обрабатываемый блок вдоль линии так, что он пройдет меньший путь по сравнению с требуемым для его правильной установки. В результате этого блок цилиндров займет неправильное положение на рабочей позиции станка. Фиксирующие штифты войдут не в отверстия блока, а в его внутреннюю полость. Поскольку контроль этой фазы цикла производится в зависимостя от длины пути, пройденного каждым фиксирующим штифтом, и они не встретят никаких препятствий на своем пути, то каждый пз них пройдет весь заданный ему путь. Следовательно, система управления последовательностью фаз работы агрегатов линии даст команду зажимным элементам приспособления на закрепление блока в неправильном положении.  [c.286]

При обработке блока на автоматических линиях для контроля отверстий под все коренные подшипники и под подшипники распределительного вала наибольшее распространение получили контрольные устройства с пневмоэлектрическими датчиками. Эти устройства обеспечивают получение диаметра отверстия в заданных пределах, а также сигнализируют об условном браке, когда отклонение от наименьшего диаметра отверстия находится в заданно.м пределе.  [c.167]

Д. КОНТРОЛЬ ОБРАБОТКИ ГИЛЬЗ БЛОКОВ  [c.202]

Контроль гильз блоков после механической обработки заключается в осмотре п с целью определения чистоты обработки и отсутствия дефектов материала, li проверке размеров поверхностей, их взаимной координации и пр. Отверстие гильзы проверяют с помощью индикаторного прибора.  [c.202]


Если машина должна автоматически корректировать программу работы в результате измерения изделий или перемещений ИО в процессе обработки, то применяют замкнутую СУ с обратной связью (рис. 16.2, а). При этом работой блока ИМ управляет блок БУ, в котором сходятся два потока информации один / от программоносителя Б И и второй //—от блока активного контроля ( /С), регистрирующего действительные результаты обработки.  [c.466]

Функциональные блоки, обеспечивающие создание любого СНК, имеют устройства воздействия на объект контроля, сканирования объекта контроля или визуализации пространственно-сформированных полей, измерения, первичного и вторичного преобразования информации, ее обработки, хранения и представления, включая индикацию, документирование и разметку дефектов на объекте, управления и регулирования, а также вспомогательные устройства. Выбор параметров сигналов (табл. 8) и электрических цепей, используемых в СНК, требования к эксплуатационным условиям и  [c.22]

И — источник В — объект контроля Л — детектор П — пленка Э, и Эг — экраны Ф устройство фотообработки А — устройство обработки изображения К — апертура О — оптика Р — детектор-преобразователь С, - блок предварительной обработки j — вычислитель i — блок вывода данных  [c.347]

Структурные схемы приборов, в которых используется способ стабилизации режима контроля, разнообразны, однако во всех приборах имеется обратная связь между блоком обработки информации 3 и блоком генераторов I или между блоком обработки информации 3 и блоком ВТП 2 (рис. 70, а) (4 — индикатор).  [c.134]

Низкочастотные структуроскопы позволяют визуально (по экрану ЭЛТ) или автоматически анализировать форму кривой напряжения измерительной обмотки проходного ВТП, возбуждаемого -током регулируемой амплитуды. Чаще используется промышленная частота 50 Гц, мощность источника при этом достаточно велика и позволяет получить сильное магнитное иоле. В ряде приборов применяют специальные генераторы с набором частот от одного до тысячи герц. Измерение производят но кривой напряжения, полученного при встречном включении обмоток двух ВТП, в одном нз которых находится контролируемый объект, а в другом — стандартный образец. Структурная схема приборов такого типа приведена на рис. 67, б. Для сортировки изделий с помощью таких приборов необходимо провести ряд предварительных экспериментов непосредственно на объектах с последующим их сравнением с данными химического, спектроскопического или металлографического анализа или с результатами других видов разрушающего контроля. По результатам статистической обработки результатов экспериментов выбирают силу намагничивающего тока и режим настройки блока автоматики.  [c.152]

Генератор синхронизирующих импульсов обеспечивает синхронизацию работы узлов дефектоскопа, реализуя импульсный режим излучения — приема УЗ-колебаний. При ручном контроле этот генератор работает в режиме самовозбуждения при использовании дефектоскопа в многоканальной аппаратуре механизированного и автоматизированного контроля его переключают в режим внешнего запуска. Независимо от режима генератор вырабатывает импульсы, используемые для пуска генератора радиоимпульсов, генератора напряжения развертки, блока цифровой обработки,  [c.180]

Крупногабаритные (длиной 6 м) поковки круглого сечения диаметром 160. .. 400 мм контролируют с помощью установки УДЦ-60, 400. .. 700 мм — УДЦ-61 и 300. .. 1200 мм — УДЦ-62. По конструктивному исполнению эти установки близки к установке УДЦ-52. Акустическая система содержит три ПЭП — прямой совмещенный, прямой РС-ПЭП и наклонный. В зависимости от диаметра контролируемого валка применяют частоты 1,25, 1,80, 2,50 МГц. Все преобразователи выполнены в одинаковых цилиндрических корпусах. Электронный блок, как и в УДД-52, в четырехканальном исполнении имеет дополнительные усилители для компенсации затухания при контроле поковок диаметром 700 мм и более. Разработано программное обеспечение установок, которое включает в себя пакет программ по заданию исходных данных, подготовки установки к работе и основную программу по обработке поступающей информации о размерах, координатах, условной протяженности дефектов и их  [c.377]


Для контроля сварных швов большой толщины (до 250 мм) наиболее эффективны установки, разработанные в НПО ЦНИИТМАШ ПП. Сварные швы роторов атомных турбин (толщиной около 140 мм) успешно контролируют установкой УДЦ-31. Она состоит из сканирующего устройства с акустическим блоком и электронной стойки. Сканирующее устройство включает в себя привод, три каретки и соединяющие штанги. Акустический блок содержит шесть ПЭП, закрепленных в каретках. В комбинированной каретке закреплены три ПЭП один прямой РС-ПЭП и два наклонных с углом ввода 39°. Наклонные ПЭП ориентированы под углом 90° к оси сварного шва. В горизонтальной каретке закреплены два ПЭП с а = 39°, направленных вдоль шва. В вертикальной каретке закреплен один ПЭП с а = 39°. ПЭП в комбинированной и горизонтальной каретках перемещаются при сканировании в радиально-осевой плоскости. ПЭП в вертикальной каретке перемещается в радиальном направлении ротора. Благодаря ориентации наклонных ПЭП поперек и вдоль сварного шва удается уверенно обнаруживать дефекты, ориентированные различным образом в сварном шве. Электронный блок трехканальный каждый канал содержит УЗ-дефектоскоп, блоки обработки и регистрации сигналов в аналоговой форме. Блок обработки сигналов, входящий в каждый канал, предназначен для автоматического измерения координат залегания дефектов и амплитуды сигналов, отраженных от дефектов. К каждому каналу подключены по два ПЭП.  [c.385]

В блок управления входят все элементы и устройства, предназначенные для изменения режимов обработки (энергии или мощности излучения, длительности импульса, частоты следования импульсов, формы импульсов и т. п.), для контроля и управления работой отдельных узлов установки.  [c.38]

В радиометрическом дефектоскопе в процессе регистрации поток излучения преобразуется в электрический сигнал. Он может быть выведен для обработки во внешних устройствах с любой схемы, входящей в канал регистрации. Характеристики этого сигнала с достаточной точностью описываются математическими выражениями, что особенно существенно при обработке данных контроля. Блоки, входящие в канал регистрации, допускают замену, причем характеристики выходных сигналов сохраняются.  [c.164]

Большую производительность показали автоматические роторные линии непрерывного технологического процесса по системе Л. Н. Кошкина. Они состояли из ряда последовательно расположенных многооперационных блоков, на которых выполнялись операции механической обработки, и промежуточных транспортных роторов, передающих обрабатываемые детали на последующие рабочие роторы. Автоматы и полуавтоматы повысили производительность труда по сравнению с универсальными станками в 5— 10 раз, автоматические линии — в 20 раз. Широкое применение получили копировальные станки, устройства программного управления, средства активного контроля (рис. 5).  [c.84]

I — определение статистического описания входного сигнала 2 — система оперативного анализа параметров атмосферы 3 — система оперативного анализа фоновой обстановки 4 — анализ характеристик поверхности лоцируемой цели 5 — телескопическая система 6 — переключатель каналов 7 — управляемый фазовый транспарант 5 — контроль качества поступающей информации 9 — алгоритм управления W — решающее устройство П — алгоритм оценки неизвестных параметров — голографическая обработка — блок эталонных голограмм 14 — вычисление условного функционала 15 — формирование безопорной голограммы —свертка /7 — некогерентная согласованная фильтрация М — формирование атмосферной маски /9 — блок эталонных безопорных голограмм 20 — формирование голограммы 21 — препарирование голограммы 22 — формирование величины Zi 23 — формирование величины Zj 24 — блок амплитудных эталонов 25 — блок фазовых эталонов 26 — формирование изображения 27—блок эталонных изображений 28 — формирование масок 29 — восстановление 30 — блок эталонных киноформов 31 — формирование ка(у)  [c.154]

Фирмой Студебекер — Паккард (США) применяется ряд автоматических линий новых конструкций. На заводе двигателей Паккард в Утике (штат Мичиган) имеется, в частности, автоматическая линия для обработки блока восьмицилиндровых двигателей детали на этой линии проходят 131 операцию. Заготовка за время обработки покрывает расстояние в 336 м. Осуществляется постоянный контроль за работой режущих инструментов с подачей необходимых сигналов.  [c.6]

На рис. 4 показана схема автоматической линии для обработки блоков цилиндров тракторных двигателей, спроектированная СКВ-1 и изготовленная станкозаводом им. С. Орджоникидзе. Автоматическая линия состоит из четырех аналогичных потоков. В каждом потоке производится чистовое растачивание отверстия под подшипники коленчатого и распределительного валов, протачивание замкового торца и контроль размеров. Независимая работа потоков, по которым заготовки перемещаются перпендикулярно основному направлению их движения, достига-  [c.9]

Например, на линиях СКБ-1 обработки блоков цилиндров применяется дополнительный контроль положения очередной детали, поступившей на позицию, при помощи электрического путевого переключателя (рис. У.8), что гарантирует против ложной команды. Для повышения точности контроля положения детали в приспособлении на позиции увеличивают число контролируемых точек (рис. У.9). Для этой цели применяют и пневмодатчики (рис. У.Ю) если деталь ориентируется неправильно и возникает щель между базовыми плоскостями, то пневмодатчик подает команду на остановку линии.  [c.130]

На современном этапе развития технологи 18ских систем начинают широко применяться самонастраивающиеся, т. е. автоматически устанавливающие оптимальные режимы обработки, машины и самоорганизующиеся, т. е. линии, автоматически устанавливающие оптимальный маршрут обработки. Самонастройка, или самоорганизация, осуществляется в функции параметров объекта обработки и позволяет при обработке конкретных объектов, свойства каждого из которых можно неслучайным или случайным образом варьировать в каком-то диапазоне, вырабатывать такую программу действия, которая обеспечивает, например, качество обработки, ее точность, минимальную себестоимость и т. д. В этих случаях схема, показанная на рис. 28.8, дополняется блоками, осуществляющими процесс самонастройки фис. 28.12). К блокам программы 1, управления 4, исполнительных механизмов 5 и контроля 6 прибавляется блок самонастройки 2 и блок памяти 3.  [c.590]


Комплекс состоит из позиционного стола /, на котором закрепляется плготовка (если специальное зажимное приспособление) н обеспечивается продольное движение, оптико-механического блока 2, и состав которого входят механические привод ,г и система липз и зеркал, обеспечивающая подачу сфокусированного луча Г зону обработки лазера на СО., генерирующего вынужденное непрерывное монохроматическое излучение с длиной волны к 10.6 мкм (генерирующее устройство, ) блока контроля н управления лазерного комплекса 4 силового блока 5 лазера.  [c.303]

По степени автоматизации процессов средства контроля подразделяют на следующие 1) приспособления (механизированные с несколькими универсальными головками и автоматизированные светофорные с различными датчиками), в которых операции загрузки и съема осуществляются вручную 2) полуавтоматические системы, в которых операция загрузки осуществляется вручную, а остальные операции — автоматически 3) автоматические системы, D которых весь цикл работы автоматизирован 4) самонастраивающиеся (адаптивные) автоматические системы, в которых автоматизированы циклы работы и настройки, или системы, которые могут приспособливаться к изменяющимся условиям среды. По воздействию па технологический процесс автоматические средства подразделяют на средства пассивного контроля (контрольные автоматы), осуще-ствляюа ие лишь рассортировку деталей на группы качества без непосредственного участия человека, и средства активного контроля, в которых результаты контроля используются для автоматического управления производственным процессом, вызывая изменение его параметров п улучшая показатели качества. Действие автоматизированных приспособлений, контрольных автоматов п средств активного контроля основано на использовании различного рода измерительных преобразователей. Измерительный первичный преобразователь (ГОСТ 16263—70) —это средство измерения или контроля, предназначенное для выработки сигнала в форме, удобной для передачи, дальнейшего преобразования, обработки и (или) хранения. Измерительный преобразователь как составной элемент входит в датчик, который является самостоятельным устройством и кроме преобразователя, содержит измерительный шток, рычаг с наконечником, передающий механизм, элементы настройки и др. Остальные элементы электрической цепи измерительной (контрольной) системы конструктивно оформляют в виде отдельного устройства электронного блока, или электронного реле). Наибольшее распространение получили измерительные (контрольные) средства с электроконтакт-нымн, пневмоэлектроконтактнымп, индуктивными, емкостными, фотоэлектрическими, радиоизотопными и электронными преобразователями.  [c.149]

Наиболеее распространена схема проектора с передающей телевизионной трубкой. Она включает источник света, объектив, передающую трубку, видеотракт с блоками усиления и обработки сигнала и видеоконтрольное устройство. Для управления процессом контроля и запоминания информации могут быть использованы ЭВМ и видеомагнитофоны.  [c.80]

В толщиномере РТЦП-2, предназначенном для контроля толщины цинкового покрытия стальной полосы, для стабилизации коэффициента усиления блок высоковольтногопреобразователя, питающий сцинтилляционный счетчик, вырабатывает две последовательности импульсов. Блок обработки информации представляет результаты измерений в микрометрах на цифровом табло и в виде функции длины полосы на самописце. Блок амплитудной селекции и автоматической стабилизации коэффициента усиления обеспечи-, вает преимущественное выделение участка спектра, соответствующего характеристическому излучению цинкового покрытия, что позволяет, в конечном итоге, повысить чувствительность измерения в области малой толщины покрытия. Температура полосы должна быть не более 80 °С.  [c.397]

Основные технические характеристики установки МД-90И следующие. Объект контроля — холоднокатаные полосы из низкоуглеродистых сталей толщиной 0,5—2,5 мм по ГОСТ 1050—74 , выявляемые дефекты — сварной шов, рваная кромка, дыра, плена, раковина, вдавлина, царапина, вкатанная окалина и другие нарушения сплошности металла глубиной более 5 % от толщины полосы. Рабочий зазор между индукционными преобразователями и полосой,3—5 мм. Число вращающихся преобразователей 96, неподвижных — 12. Число вращающихся блоков обработки сигналов преобразователей 48, неподвижных — 12.  [c.53]

Электронная часть установки включает приборную стойку и соединительные кабели. Приборная стойка многоблочной конструкции состоит из четырех независимых субблоков обработки сигналов, субблока автоматики, субблока контроля, субблока световой индикации, субблока питания, субблока управления и блока осциллогра-фической индикации.  [c.54]

В приборе УС-ПИ предусмотрено устройство для определения отношения амплитуд двух импульсов донных сигналов с выдачей результатов на цифровом индикаторе. В приборе предусмотрен сменный блок статистической обработки сигналов, обеспечивающий получение аналогового напряжения, пропорционального среднему значению амплитуд за определекную выборку (при иммерсионном контроле), и сигнализирующий о выходе этого напряжения из заданных допусков.  [c.282]

Повышение требований к качеству продукции, увеличение производительности основных технологических операций, необходимость повышения информативности, достоверности и получение объективного документа контро гя обусловили необходимость механизации и визуализации УЗК. При ручном контроле подготовительные операции, контроль, отметку дефектных участков, расшифровку результатов, их регистряцню и выдачу заключения осуществляет оператор. Качество этих операций во многом зависит от его квалификации, психофизиологического состояния, добросовестности и окружающих условий. Чем большее число операций контроля будет механизировано, тем более объективные данные можно получить о качестве изделия. Если все функции, выполняемые оператором, передать контролирующему устройству, то в общем виде оно должно содержать следующие функциональные элементы акустический блок, содержащий один или несколько пьезоэлементов механизм сканирования акустического блока систему слежения за швом и качеством акустического контакта систему подачи и сбора контактной жидкости электронный блок для генерирования зондирующих импульсов, приема и усиления эхо-сигналов блок обработки информации с помощью микроЭВМ микропроцессор для контроля за работой всех блоков и управления траекторией и скоростью сканирования в зависимости от полученной информации о дефекте блок регистрации информации на дефсктограмме. Уровень или степень автоматизации зависит от совокупности экономических, технологических, технических и инженерно-психологических требований к методам и средствам контроля и определяется наличием в них упомянутых систем (табл. 7.1) [851.  [c.370]

Для контроля полосы толщиной 4. .. 5 мм и шириной 1700 мм применяют установку УД-65ЭТ (ВНИИНК), являющуюся составной частью АСУТП стана 1420 Выксунского металлургического завода. Она состоит из электронно-акустической части, средств транспортирования листа и устройств обработки и регистрации информации. Электронно-акустическая часть состоит из двух функционально законченных блоков электронной стойки и двух акустических блоков контроля продольных кромок полосы электронной стойки и двух акустических блоков контроля центральной части полосы.  [c.380]


Для контроля продольных стыков швов трубопроводов и стыковых швов резервуаров диаметром более 1000 мм и толщиной стенки 10. .. 25 мм предназначена установка НК-106 (ИЭС им. Е. О. Патона), которая содержит все необходимые функциональные блоки, присущие современным автоматизированным установкам. Акустический блок включает в себя восемь преобразователей на частоту 2,5 Мгц, работающий в разных режимах, что обеспечивает надежное обнаружение разноориентированных внутренних дефектов. Как и для предыдущих установок, методика контроля построена в соответствии с условием неподвижности акустических блоков относительно движущегося контролируемого изделия. В процессе контроля осуществляется слежение за швом, качеством акустического контакта и автоматическая отметка дефектных мест. С помощью электро- и гидрооборудования обеспечивается ручной и полуавтоматический режимы подачи акустического блока к контролируемому изделию в горизонтальной плоскости. Для обработки, отображения и регистрации поступающей информации разработаны специальные системы. Установка содержит также специальный электронный блок. Производительность контроля 0,2 м/с, масса около 1000 кг.  [c.382]

Предусмотрен щелевой ввод УЗ-колебаний с использованием локальных иммерсионных ванн. Установка снабжена системой помехозащиты реализована возможность автоматического диагностирования неисправных блоков. Наличие аналогового выхода позволяет подключать самописец или АЦП для обработки результатов контроля. Масса установки около 250 кг. Недостаток этой установки, как и установок типа УКСА, — отсутствие автоматической системы слежения за швом. Отслеживание осуществляет оператор, для чего применяют светоуказатель, установленный по центральной оси сканирующего устройства, или телевизионную камеру.  [c.384]

Ниже рассмотрим прибор группы I, который отвечает нормативным требованиям контроля вибрационного параметра на рабочих местах, но с экономической точки зрения использование приборов такого типа бесперспективно. На рис. 3 изображена блок-схема виброметра группы 1, построенного по принципу цифровой обработки сигнала. Прибор имеет, как и все виброметры, стандартную аналоговую часть САЧП, но, начиная с блока 2, имеет принципиально иное решение. С целью обеспечения требований стандартов ИСО 2631 и 5349 (вычисления эквивалентной экспозиции, эквивалентнога уровня, регистрации мгновенных пиковых значений) прибор снабжен вычислительным устройством.  [c.29]


Смотреть страницы где упоминается термин Контроль обработки блоков : [c.485]    [c.489]    [c.48]    [c.189]    [c.161]    [c.104]    [c.176]    [c.210]    [c.218]    [c.391]    [c.129]    [c.44]   
Смотреть главы в:

Механическая обработка деталей Кн 1  -> Контроль обработки блоков



ПОИСК



Контроль обработки гильз блоков

Обработка Контроль



© 2025 Mash-xxl.info Реклама на сайте