Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние Влияние предварительного деформирования

При испытаниях на длительную прочность в предварительно деформированном металле поврежденность по длине образца распределена более равномерно, степень локализации поврежденного материала при ползучести в деформированном металле меньше, что оказывает влияние на снижение длительной пластичности стали. На третьей стадии ползучести в деформированном металле скорость накопления повреждений в 2—4 раза больше, чем в недеформированном.  [c.27]


Влияние предварительного деформирования растяжением и сжатием на деформационное старение аустенитных сталей при повышенной температуре  [c.213]

Рис. 152. Влияние предварительного деформирования на вид предельной кривой стали 20 Рис. 152. Влияние предварительного деформирования на вид <a href="/info/242766">предельной кривой</a> стали 20
Влияние напряжений на скорость коррозии в 7-н. растворе серной кислоты и скорости деформации на анодное растворение в этом же электролите изучали на проволочных образцах низкоуглеродистой стали Св-08 (диаметром 2 мм), предварительно отожженных в вакууме (при 920° С). Методика была описана выше. Параллельно определяли потери массы на аналогичных образцах, предварительно деформированных до заданного уровня.  [c.72]

I. Предварительные замечания. В 2.11 и 2.13 были описаны статические кратковременные испытания гладких образцов из различных материалов на растяжение и сжатие при комнатной температуре. Предыдущие параграфы настоящей главы содержат описание различных упругих и механических свойств материалов и оценку влияния различных факторов на эти свойства. Уже при этом обсуждении приходилось обращаться к результатам динамических испытаний (при определении сопротивляемости ударному воздействию и при оценке влияния скорости деформирования на различные свойства), кратковременных и длительных испытаний при высоких температурах (при определении предела длительной прочности и предела ползучести, а также при оценке влияния температурного фактора на различные свойства), длительных испытаний при переменных по величине и знаку нагрузках, длительных испытаний при комнатной температуре и постоянной нагрузке и при монотонно убывающей нагрузке. Приходилось, наряду с рассмотрением результатов испытания гладких образцов, обращаться и к анализу материалов испытаний образцов с надрезом указывалось, что, кроме непосредственного определения интересующих инженера свойств материала, существуют косвенные пути оценки этих свойств (при помощи определения твердости) отмечалось, что,  [c.298]


Для оценки влияния истории циклического деформирования на сопротивление деформированию при длительном статическом нагружении проведена серия испытаний на ползучесть образцов, предварительно подверженных мало цикловому нагружению (жесткий режим, jV= 500 циклов при размахе деформации е = 1,0%) и температурах 610 и 670 °С (штриховая линия на рис. 4.54, а). Образцы, прошедшие предварительную тренировку, испытывали на ползучесть при тех же температурах.  [c.223]

Влияние поверхностного пластического деформирования на упрочнение впадин предварительно нарезанной резьбы утяжеленных бурильных труб исследовалось И. В. Кудрявцевым  [c.294]

При амплитуде напряжения цикла, соответствующей примерно пределу текучести данных образцов (а =245 МПа), сплошность покрытия нарушается уже через 100—200 цикл от начала испытаний. При снижении амплитуды напряжения до о = 0,95 нарушение сплошности покрытия не происходит и после 10 цикл. Критическая деформация образцов, снятых с испытания через 2 10 — 10 цикл, составила 1,8—1,9 %, что совпадает с первоначальной критической деформацией данного покрытия. Испытания, проведенные на образцах стали СтЗ, окрашенных по второй схеме и выдержанных в морской воде в течение 12 мес, также не выявили влияния предварительного циклического деформирования при амплитудах деформации, меньшей критической (1,0-1,1 %).  [c.188]

При решении задач динамики бывает необходимо в ряде случаев оценить влияние предварительного нагружения конструкции на частоты и формы собственных колебаний или исследовать устойчивость неконсервативных систем с использованием динамического подхода. Для таких задач вначале решается задача статики и определяется начальное напряженно-деформированное состояние системы (если это необходимо). Далее рассматривается движение системы в окрестности начального состояния. Вариационную формулировку задачи можно получить, если повторить выкладки 3.3 с учетом инерционных сил. В результате будем иметь  [c.84]

Влияние напряженно-деформированного состояния образцов на проницаемость жидкостей изучали при двух режимах 1) последовательное ступенчатое двухосное деформирование образца, находящегося в контакте с жидкостью, вплоть до его разрушения (режим А) 2) предварительное нагружение образца на воздухе до заданного значения дефор-  [c.85]

Особенность вакуумных устройств термической обработки состоит в том, чтобы обеспечить теплопередачу не конвекцией, а с помощью излучения. Поэтому следует обращать внимание на образование тени, т. е. следить, чтобы изделия не перекрывали друг друга. Теплопередача в вакуумных печах ниже, чем в соляных ваннах, поэтому возрастает продолжительность нагрева, однако градиент температур в изделии уменьшается и, следовательно, коробление снижается. В вакуумных печах до 1100° С нет необходимости в ступенчатом предварительном нагреве и лишь быстрорежущие стали сначала подогревают до 850° С, а затем нагревают до температуры закалки. Увеличение продолжительности нагрева и соответственно. выдержки при термической обработке штамповых инструментальных сталей для холодного и горячего деформирования особенных трудностей не вызывает. Для быстрорежущих сталей короткое время выдержки (- 80 с), которое обычно используют при закалке в соляных ваннах, в вакуумных печах неосуществимо. Вредное влияние более продолжительной выдержки при нагреве ( 10 мин), связанное с принципом действия вакуумных печей, на величину зерна, вязкость и т. д. в значительной мере можно устранить соответствующим уменьшением температуры аустенитизации при этом существенного уменьшения твердости и износостойкости не наблюдается. Для Сталей некоторых типов температура аустенитизации при термической обработке в вакууме ниже, чем при термообработке в соляных ваннах, и т, д.  [c.154]

Установлено, что материал прослойки оказывает существенное влияние на напряженно-деформированное состояние таких конструкций, при этом более рациональным является применение жестких прослоек. Отсутствие стыков в нижнем слое сказывается незначительно, это обстоятельство имеет положительное значение, т.к. исключает необходимость предварительного ремонта усиливаемого покрытия.  [c.240]


ВЛИЯНИЕ ИЗМЕНЕНИЯ ТЕМПЕРАТУРЫ И ПРЕДВАРИТЕЛЬНОГО ДЕФОРМИРОВАНИЯ  [c.34]

Два предыдущих примера показывают, что методы исследования статически неопределимой конструкции в случае изменений температуры или предварительного деформирования< являются теми же самыми, что и при исследовании влияния нагрузок на конструкции.  [c.36]

Исследования влияния предварительного деформирования на длительную прочность аустенитных сталей [24] проводились на сталях 12Х18Н9Т, 12Х18Н12Т, широко применяемых для пароперегревателей. Заготовки образцов перед деформированием подвергались термической обработке по режиму аустенизации.  [c.31]

Анализ полученных результатов показывает, что деформирование образцов в контакте с жидкостью приводит к более интенсивному нарушению их герметичности при меньших к, чем предварительное деформирование на воздухе (рис. 11.17). Так, для системы ПВХ—гептан максимальные значения Q различались в 6 раз, а для системы винипроз С — гептан в 3 раза. Влияние условий деформирования также сказывается на максимально достигаемой в данных условиях предразрьшной деформации образцов. Так, разрушение ПВХ (режим А) происходило при = = 1,027, в то же время образец данного материала разрушался в контакте с гептаном после предварительного деформирования на воздухе при ip = 1,285 (см. рис. 11.17, б).  [c.86]

Влияние вида предварительного деформирования на кривые Баушингера экспериментально исследовано Морино (К. Morino) и др. в работе [424] при конечных деформациях до 30%. Циклическое нагружение также при конечных деформациях (до 50 %) описано в статье [464.  [c.90]

Влияние предварительного циклического деформирования на критическое напряжение хрупкого разрушения изучали применительно к стали 15Х2НМФА в третьей серии опытов. Для этого-корсетные образцы / (рис. 2.9) предварительно подвергали различным режимам жесткого циклического нагружения (табл. 2.1) при 7 = 20 °С. Затем из продеформированных образцов вырезали корсетные образцы II диаметром 5 и 3 мм (рис. 2.9), ко-  [c.74]

Предварительная пластическая деформация приводит к довольно существенному уменьшению величины а<г и слабее влияет на коэффициент т . Слабая зависимость гпт от ев достаточно легко объяснима. Дело в том, что переползание дислокаций и поперечное скольжение, определяющие б ск, являются существенно термоактивированными процессами и в гораздо меньшей степени чувствительны к дислокационной структуре материала, возникающей при его пластическом деформировании. Что касается влияния предварительной деформации на Od, то здесь необходимо дать некоторые пояснения. Полученный результат по снижению величины оа от предварительной деформации сначала кажется противоречивым, так как параметр Од имеет смысл прочности матрицы или границы соединения матрицы с включением, которая не должна меняться при деформировании. Указанный вывод действительно имел бы место, если бы мы рассматривали локальную прочность материала в масштабе порядка длины зародышевой трещины. В зависимости же (2.7) под Od понимается некоторая осредненная не меньше, чем в масштабе зерна, интегральная характеристика, отражающая сопротивление материала зарождению микротрещины. Поэтому при наличии предварительного деформирования материала необходимо учитывать возникающие остаточные микронапряжения. В этом случае в первом приближении параметр а<г можно определить по зависимости  [c.107]

Растрескивание латуни имеет смешанный характер межкри-сталлитный и транскристаллитный. Увеличение степени транс-кристаллитности коррозионного растрескивания характеризует относительно большее влияние механического фактора. Транс-кристаллитное растрескивание наблюдается преимущественно у предварительно деформированных нагартованных латуней при приложении относительно больших растягивающих нагрузок и в сравнительно не очень активных средах, например в естественных условиях атмосферы. Наоборот, для латуней, предварительно отожженных и напряженных растяжением более умеренно, для коррозионного растрескивания характерно преимущественное межкристалл[[тное разрушение.  [c.113]

У стали 1Х18Н9 в исходном состоянии пятна травления располагаются хаотически по объему зерна (фиг. 7, а). Чтобы раздельно изучить влияние силового и температурного факторов при МТО на структуру мате-риала, часть образцов предварительно деформировали на 10% при комнатной температуре. После такой обработки в структуре стали выявляется (еще до травления) отчетливый микрорельеф благодаря развитию полос скольжения по активным плоскостям, однако признаки образования субструктуры при этом отсутствуют, так как последующее травление показывает, что большая часть дислокаций еще не связана с выявленными следами пластической деформации и распределяется беспорядочно по телу зерен (фиг. 7, б). В то же время после длительного отжига деформированных образцов при температуре 600° (фиг. 7, в) образуется ярко выраженная субструктура вследствие выстраивания дислокаций в ряды. В результате этого у большинства зерен наблюдается четкая сетка субграниц, причем имеется определенная связь между расположением этих границ и следами скольжения при предварительном деформировании образца.  [c.35]

Многочисленные исследования показали, что одним из наиболее эффективных методов воздействия на состояние поверхности, приводящих к повышению циклической прочности, является предварительное поверхностное пластическое деформирование (ППД). При этом применение ППД повышает циклическую прочность не столько в области многоцикловой усталости, сколько при больших перегрузках. Известны примеры, когда применение методов ППД позволяет повысить долговечность деталей из титановых сплавов, работающих в области малоциклового нагружения, в 17 — 20 раз, а предел выносливости—в 2 раза [ 187, с. 35, 43]. Вместе с тем по сравнению с многоцикловой усталостью эффективность применения ППД для деталей, работающих в малоцикловой области, изучена меньше. До последних лет отсутствовало даже научно обоснованное объяснение влияния ППД при больших перегрузках (выше предела выносливости), так как при этом роль остаточных сжимающих напряжений не может быть решающей. Возникающие при ППД остаточные сжимающие напряжения при значительных циклических пластических деформациях неизбежно релаксируют при первых же циклах нагружения. С целью установления природы влияния ППД на малоцикловую долговечность титановых сплавов были поставлены специальные опыты по изучению влияния ППД на статическую прочность и характер деформации. Исследование проводили на цилиндрических образцах сплава ВТ5-1 диаметром 10 мм. После механической шлифовки и полировки часть образцов подвергали электрополированию до полного удаления наклепанного слоя. Поверхностное пластическое деформирование осуществляли в трехроликовом приспособлении для обкатки (диаметр ролика 20 мм, радиус профиля ролика г= 5 мм, усилие на ролик изменялось от 300 до 1200 Н при определении статической прочности и равнялось 900Н при оценке характера деформирования). Обкатку вели на токарном станке в 2 прохода при скорости вращения шпинделя 100 об/мин  [c.193]


На рис. 1.15 представлены графики длительной прочности стали 12Х18Н12Т после наклепа различными способами. Образцы, наклепанные неравномерным растяжением, разрушались в зоне максимальной деформации, равной 30%. Образцы, наклепанные изгибом, разрушались в зоне, деформированной на 15%. Из рис. 1.15 видно, что предварительный наклеп кручением снижает длительную прочность стали при степени деформации 30% и мало влияет в случае наклепа на 15 %. Наклеп изгибом 15% заметно снижает длительную прочность стали. Таким образом, способ деформирования оказывает существенное влияние на роль холодного наклепа в изменении свойств жаропрочности аустенитных сталей, причем из изученных способов деформирования наиболее отрицательное влияние оказывает деформирование изгибом. Кроме того, из данных, приведенных на рис. 1.15, видно, что значительную роль играет степень наклепа.  [c.31]

В ряде работ, однако, отрицается прямое влияние запасенной энергии остаточной деформации углеродистой стали на ускорение анодного растворения авторы их [97, 100, 101] объясняют ускорение коррозии деформированной стали в децинормальйом растворе соляной кислоты сегрегацией катодных примесей на дислокациях. Вряд ли это справедливо, так как опыты проводились на образцах, подвергнутых после деформации длительной выдержке (старению). В этом случае возможно образование сегрегаций примесей в результате-деформационного старения, хотя для этого требуется значительное время, что и было отмечено [2, 69]. Однако даже в случае состаренных (предварительно деформированных) образцов стали 08кп скорость коррозии в растворе серной кислоты [53] оказалась меньше, чем несостареннцх. На поверхности этих образцов в процессе старения появляются линии скольжения, а это прямо свидетельствует о наличии скоплений дислокаций под поверхностным барьером и упрочненных областей, которые в процессе старения разряжаются, что снижает механохимическую активность металла. Таким образом, попытка [100, 97] объяснить ускоренное растворение деформированного металла только сегрегацией примесей на дислокациях, основываясь на отсутствии влияния деформации на коррозию в случае чистого металла после старения, несостоятельна в чистых металлах старение приводит к рассасыванию дислокационных скоплений и элиминированию механохимической активности.  [c.116]

Результаты исследований И. А. Одинга и его сотрудников были подтверждены работами [76—78]. В них исследовалось влияние предварительного циклического деформирования на прочность и пластичность технического железа и сталей Ст. Зкп и 38ХА методом осциллографирования на копре ПСВО-1000. Образцы имели цилиндрическую форму диаметром 11 мм с нормальным надрезом (радиус 1 мм, глубина 2 мм). Циклическое нагружение выполнялось на растяжение— сжатие с частотой 20 000 Гц при амплитудах напряжений от 0,91 до 1,26 0-1. Критическая температура хрупкости определялась по величине ударной вязкости а =4 кгс-м/см . Наиболее чувствительной к усталости оказалась малоуглеродистая ст-аль кипящей плавки, критическая температура хрупкости которой под влиянием усталости повысилась на 60°С (с —10 до -]-50°С). Критическая температура хрупкости отожженного технического железа и стали 38ХА улучшенной повысилась на 30°С. При этом для исследованных сталей были установлены некоторые закономерности влияния усталости на температурную зависимость ударной вязкости.  [c.50]

В зависимости от соотношения влияния этих процессов в данных условиях испытания возможно как упрочнение, так и разупрочнение предварительно деформированного металла. При повышении температуры и продолжительности испытания роль и значение процессов разупрочнения возрастает по сравнению со значением деформационного упрочнения, что в случае наклепа приводит к понижению характеристик усталости и жаропрочности сталей и сплавов по сравнению с ненаклепанным состоянием. На характер зависимостей длительной прочности, ползучести и сопротивления усталости от предварительного наклепа влияет субструктура, возникающая в зернах в результате предварительной деформации металла и отжига.  [c.200]

На малоцикловую усталость углеродистых сталей существенное влияние оказывает также предварительное деформационное упрочнение. Эксперименты (Романив А.Н. [194, с. 101 — 102]) на листовых образцах из стали 20 толщиной 2,5 мм, предварительно деформированных циклическим пульсирующим изгибом в воздухе, с целью определения степени деформации при различной базе показали, что если величина предварительной амплитуды циклической деформации меньше рабочей, то предварительная деформация, может повысить долговечность стали до 40 %.  [c.124]

Влияние предварительной деформации на поведение радиационного роста циркония и циркониевых сплавов обслуживается в работе [13]. Исследованию были подвергнуты два типа образцов отожженные и деформированные путем прокатки. Образцы облучались в )еакторе при различных температурах в интервале 120—360° С, Несмотря на примерно одинаковые характер и степень выраженности, текстуры в отожженных и деформированных образцах на на-  [c.190]

В работе [16] отмечается, что низкий непродолжительный отжиг полностью устраняет возникающий после предварительного растяжения эффект Баушингера, в то время как упрочнение еще сохраняется. Более глубокий отжиг приводит к тому, что уже совпадающие между собой кривые растяжения и сжатия приближаются к исходной кривой деформирования. Вследствие того, что ориентированные дефекты в большей степени неравновесны, чем дефекты дезориентированные, процесс, протекающий при большей температуре и меньшей скорости, должен приводить к меньшему значению эффекта Баушингера по сравнению с процессом, протекающим при меньшей температуре или большей скорости нагружения. Вообще исследования закономерностей процесса упругопластического деформирования материала в условиях неизотермического нагружения необходимо связывать со скоростью протекания процесса деформирования. Диапазон скоростей деформирования, определяемый современными инженерными задачами, простирается от 10 до 10 с . Верхняя граница этого интервала скоростей определяется технологическими задачами взрывной сварки, ковки, штамповки, а нижняя — относится к случаю ползучести и релаксации напряжений. Ясно, что в столь широком диапазоне изменения скоростей деформирования не может быть единой зависимости, связывающей сопротивление деформированию со скоростью. Анализ экспериментальных данных показывает, что следует различать по крайней мере две зоны влияния скорости деформирования — статическую и зону высоких скоростей, динамическую (между этими зонами может лежать зона относительно слабого влияния скорости деформирования на процесс деформирования материала). Причем влияние малых скоростей деформирования на указанный процесс (порядка 10 —10 с ) с физической точки зрения объясняется наличием реологических эффектов (ползучестью), а больших скоростей (порядка 10 —10 с ) — наличием динамических эффектов. Анализируя результаты экспериментальных работ по растяжению образцов при различных скоростях и температурах, можно сформулировать два общих свойства простейшего уравнения состояния материала [17] о = f (е , Т, Р), где Т (Т ти тах)> Р (Рт1п> Ртах) Ртах <7 10 С  [c.133]


Влияние деформации зависит не только от этапа старения и режима его, но и от условий деформирования. При исследовании старения железа [208] отмечается сложный характер изменения твердости — появление максимумов первый связывался с образованием сегрегаций атомов внедрения (углерода и азота), второй — с выделением частиц нитридных или карбо-нитридных фаз. В случае предварительной деформации время достил<ения первого максимума немного уменьшается, но эффект деформации и старения больше, чем в результате старения непосредственно после закалки. Кинетика второй стадии сильно зависит и от состава, и от предварительной деформации.  [c.241]

Анализ этих работ показывает, что в одних случаях предварительное деформирование образца значительно меняет скорость переноса низкомолекулярных веществ, в других случаях ориентация не влияет на проницаемость и диффузию. Влияние направления ориентации макромолекул пленок ацетилцеллюлозы на скорость проникания растворителя было исследовано методом оптической границы [2]. Пленки в набухшем состоянии растягивали на 150%, высушивали, затем подвергали испытапию. В направлении, перпендикулярном ориентации, скорость диффузии значительно выше, чем в направлении ориентации. Отношение скоростей увеличивается с возрастанием степени ориентации. Для дихлорметана при 20 °С отношение коэффициентов диффузии в этих двух направлениях составляло 500. Наблюдаемый эффект объясняется тем, что колебания сегментов макромолекул в направлении, нормальном их преимущественной ориентации, имеют большую свободу и амплитуду, чем по оси ориентации. С увеличением степени набухания скорость диффузии в обоих направлениях возрастает. При набухании полимера может происходить дезориентация образца в результате вращательного движения макромолекул и их эластической деформации (скручивания), приводящих к уменьшению размеров образца в направлении ориентации и увеличению — в перпендикулярном направлении.  [c.69]

Выше рассматривалось проявление водородной хрупкости неде-формированной отожженной стали. Поскольку, однако, при эксплуатации наводороживанию подвергаются реальные детали, имеющие значительно деформированную решетку, представляет интерес рассмотрение влияния предварительной холодной деформации на эффект водородного охрупчивания. Этот вопрос изучался [198] путем определения влияния наводороживання на механические свойства горячекатаной и холоднодеформированной (с обжатием 25 и 45%) мягкой стали. Было установлено, что показатели пластичности стали быстро  [c.81]

Восстановление формы обнаружено и на сталях [168, 172]. Исследованием дилатометрических эффектов в деформированных хромомарганцевых сталях было установлено, что знак изменения размеров при е- -у-превращении противоположен тому, который вызывает при пластической деформации образование е-фазы. Обратное е- у-превра-щение при нагреве сопровождается неизотропным изменением линейных размеров. В направлении, в котором при предварительной деформации образец укорачивался, наблюдалось удлинение [168]. На любопытный факт изменения знака деформации при температуре фазового перехода предварительно деформированного двухфазного (е+ + 7)-сплава обратил внимание еще Шуман [93]. Образцы из железомарганцевого сплава Г16С подвергались воздействию упругих или пластических деформаций перед прямым и обратным фазовыми переходами или в процессе перехода. После 24-часовой выдержки под растягивающей нагрузкой при комнатной температуре образцы вместо того, чтобы удлиняться при нагреве несколько укорачивались. При охлаждении исчезал объемный эффект сжатия, если предварительно образец подвергался действию растягивающих напряжений при температурах у- е-пре-вращения или выше. Причем более эффективно влияет растягивающее напряжение в период у- е-перехода,— при последующем дилатометрическом цикле (20°Сч= 400°С) такой образец претерпевал сильное укорочение. Шуман объяснял наблюдаемые явления стабилизирующим влиянием наклепа и образованием е-фазы под действием внешних напряжений [93].  [c.147]

Экспериментальные данные по влиянию предварительных циклических нагружений на величину предела выносливости были описаны в работах j29, 45]. В этих исследованиях образцы нагружали при амплитуде напряжений (Уа > o -iH x ДО числа циклов п, где 0 1исх предел выносливости исходного неповрежденного металла. Далее по обычной методике или по методу лестницы определяли значение предела выносливости поврежденных образцов. Как следует из этих данных, величина предела выносливости поврежденных циклическим деформированием образцов может быть представлена в следующем виде [46]  [c.295]

П о с в я т е н к о Э. К. Влияние предварительного пластического деформирования на качество поверхности после чистовой обработки.— В кн. Сверхтвердые материалы для промышленности. Изд, ИСМ АН УССР, Киев, 1973, с. 213—215.  [c.181]

Рис. 152. Влияние искусственного старения на сопротивление коррозии дуралюмина Д16, предварительно деформированного на 1% [23]. Условия коррозии 5 суток в 3%-ном растворе ЫаС1 + 0,1% Н2О9 Рис. 152. <a href="/info/48087">Влияние искусственного старения</a> на <a href="/info/687491">сопротивление коррозии</a> дуралюмина Д16, предварительно деформированного на 1% [23]. Условия коррозии 5 суток в 3%-ном растворе ЫаС1 + 0,1% Н2О9
При исследовании влияния предварительной деформации на коррозионное растрескивание алюминиевого оплава Бренер и Меткальф [74] подвергали сплав А -f 5% Mg деформированию со степенью 5, 10, 20, 30 и 50%  [c.49]


Смотреть страницы где упоминается термин Влияние Влияние предварительного деформирования : [c.48]    [c.77]    [c.87]    [c.105]    [c.29]    [c.117]    [c.120]    [c.316]    [c.51]    [c.503]    [c.126]    [c.139]    [c.227]    [c.152]   
Основы конструирования Справочно-методическое пособие Кн.3 Изд.2 (1977) -- [ c.313 ]



ПОИСК



В предварительное



© 2025 Mash-xxl.info Реклама на сайте