Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Прецизионная резка

Большой интерес представляет применение так называемой микроплазмы, например для прецизионной резки и сварки высокотемпературной тонкой струей — лучом плазмы. При резке плазма вытекает из сопла со сверхзвуковой скоростью (3...4 М). Это достигается малым объемом и высоким давлением в камере (до 5 МПа), а также расширяющейся формой сопла.  [c.106]

Для прецизионной резки тонколистовых конструкций, прошивки отверстий и фрезерования пазов в конструкционных материалах используют импульсно-периодическое излучение твердотельных лазеров. В этом случае получают более точные и качественные резы, однако производительность резки в этом случае намного ниже. Расширяется применение лазерной и газолазерной резки и контурной обработки неметаллических материалов. Обрабатываемые материалы и режимы обработки приведены в табл. 32.5.  [c.621]


За период эксплуатации АЛТУ Каравелла был проведен большой объем экспериментальных исследований, касающихся прецизионной резки и сверления различных материалов. Изготовлено большое количество отдельных деталей для приборов электронной техники и др. Основные результаты опубликованы в работах [18, 142-153, 175, 218.  [c.251]

Наличие различных дефектов в кристаллической решетке алмаза с суммарной концентрацией до 10 см приводит к появлению дополнительных уровней поглощения и полос фотоионизации, одна из которых, связанная преимущественно с дислокациями и лежащая в области 2,0-2,3 эВ, совпадает с линиями излучения ЛПМ. Необходимо отметить, что из всех форм углерода только алмаз является диэлектриком. Любое структурное изменение в нем приводит к появлению проводимости. При сравнении с другими способами обработки прецизионная резка графита излучением ЛПМ признана лучшей. Результаты термического воздействия на алмаз отражены в табл. 9.4. Пороговое значение плотности мощности лазерного излучения, вызывающее разрушение материала, определяется его природой и концентрацией дефектов. Эти пороговые значения для поликристаллического алмаза при воздействии наносекундных импульсов различных лазеров приведены в табл. 9.5.  [c.256]

В процессе исследований отчетливо наметились три основных независимых направления для использования излучения ЛПМ в технологии прецизионная резка и сверление, обработка пленочных покрытий, поверхностная обработка.  [c.265]

Под прецизионной резкой понимается такой выполняемый с помощью технических средств процесс, при котором поверхность реза не требует последующей обработки вследствие высокой точности реза. Для деталей машин прецизионная резка является одним из самых рациональных способов производства (рис. 5.10) [25—29].  [c.386]

Для прецизионной резки используется преимущественно следующее оборудование.  [c.387]

Ориентировочные параметры прецизионной резки при толщине материала  [c.388]

Для скрайбирования кремния, обладающего высокой поглощательной способностью на полосе 1 мкм, применяются ИАГ-лазеры свободной генерации или с модуляцией добротности. Для прецизионной резки полупроводниковых материалов может использоваться установка на базе импульсного лазера на азоте. В отлитие от полупроводников, обработанных излучением твердотельных лазеров, работающих в режиме свободной генерации, монокристаллы сурьмянистого индия, арсенида галлия и германия, подвергнутые воздействию излучения азотного лазера, не изменяют структуру вблизи зоны реза. Указанное обстоятельство является весьма важным, так как даже незначительное изменение структуры поверхности полупроводника может сильно изменить его электрофизические свойства. Этот метод был применен для разделения плоского /7-л-перехода на ряд элементов различной конфигурации.  [c.317]


Наиболее перспективными в этом направлении являются технологические процессы автоматическая ковка в открытом штампе, горячая изостатическая штамповка, прецизионная штамповка, лазерная сварка и резка и др. Развитие вычислительной техники предопределило внедрение гибкой автоматизации и в другие технологические процессы (литье, переработку пластмасс, нанесение покрытий, термообработку и сборку). Такой подход позволит создавать технологические процессы со сквозной гибкой автоматизацией.  [c.186]

В текущей пятилетке резко увеличился выпуск прецизионных станков, специальных и агрегатных, всех технологических направлений в машиностроении.  [c.91]

Прецизионные станки с недостаточно жесткими станинами, с большими скоростями движения посту-нательно-движущихся элементов с резкими реверсами.  [c.483]

Повышение точности и жесткости манипуляторов может резко ускорить сборку. Однако это не всегда оправдано, ввиду того что прецизионные роботы дороги, сложны и ненадежны.  [c.179]

Область применения подшипников скольжения в современном машиностроении сократилась в связи с распространением подшипников качения. Однако значение подшипников скольжения в современной технике не снизилось. Их применяют очень широко, и в целом ряде конструкций они незаменимы. К таким подшипникам относятся 1) разъемные подшипники, необходимые по условиям сборки, например для коленчатых валов 2) высокоскоростные подшипники ( >30 м/с), в условиях работы которых долговечность подшипников качения резко сокращается (вибрации, шум, большие инерционные нагрузки на тела качения) 3) подшипники прецизионных машин, от которых требуется особо точное направление валов и возможность регулировки зазоров 4) подшипники, работающие в особых условиях (воде, агрессивных средах и т. п.), в которых подшипники качения неработоспособны из-за коррозии 5) подшипники дешевых тихоходных механизмов и некоторые другие.  [c.332]

Микроплазменную сварку применяют для соединения особо тонких материалов, для исправления микродефектов (микротрещин, царапин, раковин) миниатюрных деталей, для резки металлов и неметаллов, для прецизионной наплавки. Малая площадь нагрева и незначительная ширина зоны термического влияния обеспечивают высокое качество соединений миниатюрных и высокоточных деталей гофрированных трубок (сильфонов) и мембран с арматурой, миниатюрных трубопроводов, полупроводниковых приборов, конденсаторов, термопар и т.п.  [c.233]

Уменьшить можно тремя приемами. Первый из них - уменьшение деформационного упрочнения шероховатого слоя в контакте путем замедленного сжатия деталей при высокой температуре нагрева (диффузионная и газопрессовая сварка). В этом случае = 5...15 %. Второй прием - это резкое увеличение напряженного состояния в шероховатом слое контакта путем чисто контактного сжатия (сварка взрывом, импульсом магнитной энергии). В этом случае в 1 Третий прием - создание чисто контактного, локального нагрева при одновременном сохранении условий, при которых не происходит деформационного упрочнения в контакте. Это способы контактной сварки, при которых Ев =15 %, и прецизионные способы контактной сварки, при которых Ев = 2...5 %.  [c.257]

Азот Для резки прецизионной цветных металлов сравнительно небольшой толщины (до 20 мм) и ручной резки всех толщин Для резки меди толщиной до 20 мм и латуни до 90 мм Для резки металлов толщиной до 30 мм Для резки металлов толщиной до 75 мм Для резки металлов всех толщин  [c.213]

Из экспериментов известно, что технические характеристики и особенности прецизионной лазерной резки тонких металлических пластин определяются в целом теми же условиями и факторами, что и технические характеристики процессов многоимпульсного лазерного сверления. Средняя ширина сквозного реза в тонких металлических пластинах обычно составляет 30-50 мкм на всей длине образца, стенки их практически параллельны, поверхность не содержит крупных дефектов и инородных включений. Одной из особенностей резки импульсным излучением является возможность так называемого эффекта канализации. Этот эффект выражается в увлечении качественного (дифракционного) пучка в сформированный предыдущими импульсами канал посредством переотражения от его стенки. Формирование нового канала начинается после смещения всего дифракционного пучка за контуры предыдущего. Этот процесс определяет предельную шероховатость стенки реза и может стабилизировать точность реза за счет компенсации нестабильности диаграммы направленности при многопроходной обработке. При этом шероховатость кромок реза обычно не превышала 4-5 мкм, что можно считать вполне удовлетворительным. И следует ожидать, что при уменьшении погрешности позиционирования осей координатного стола XY на порядок (до 1 мкм) будет достижим уровень шероховатости в 1 мкм (при условии высокой стабильности оси диаграммы направленности).  [c.254]


Для прецизионной обработки материалов необходимо использовать ЛПМ со средней мощностью 1-40 Вт [18, 142-153, 175, 218]. Толщина обрабатываемого материала — от 0,05 до 2 мм и больше. Скорость качественной резки при толщине 0,1-0,2 мм мало зависит от материала и составляет 3,0-3,5 мм/с. Процесс лазерной резки одинаково эффективен как для тугоплавких металлов (Мо, Та, W, Nb, Zr и др.), так и для металлов с хорошей теплопроводностью (А1, Си, Ag, Ли и др.). Шероховатость поверхности реза может составить менее 1 мкм.  [c.265]

Технические данные этих машин и полуавтоматов приведены в табл. 9.4. Все машины используют сжатый воздух в качестве плазмообразующего газа, а полуавтомат ПРП-2 (рис. 9.3) — как неактивные газы (аргон или азот), так и активные (кислород). Кроме того, РПР-2 работает с использованием водорода в смеси с азотом или аргоном. Водородсодержащие смеси расширяют предельную толщину разрезаемой стали до 120 мм по алюминию и до 100 мм по высоколегированным сталям, а также улучшают поверхность реза и обеспечивают возможность прецизионной резки. В случае применения водорода в > качестве плазмообразуш-  [c.216]

Двухканальный ЛПМ Карелия стал основой для создания лабораторной автоматической лазерной технологической установки (АЛТУ) Каравелла (1986-1987 гг.), предназначенной для прецизионной обработки материалов, используемых в производстве изделий электронной техники. На АЛТУ Каравелла продемонстрирована возможность прецизионной резки и сверления большой группы металлических, полупроводниковых и диэлектрических материалов, многие из которых до этого момента практически не были включены в сферу лазерной микрообработки. Показано, что Каравелла позволяет на порядок сократить сроки изготовления малых и средних партий изделий электронной техники по сравнению с традиционными методами, включая и электроискровую обработку.  [c.24]

В России (СССР) первые сообщения об использовании ЛПМ для микрообработки, как уже упоминалось, относятся к 1973 г. Однако экспериментальные исследования по применению излучения ЛПМ для обработки различных материалов были проведены в 1983-1986 гг. в рамках НИОКР Карелия в НПП Исток (г. Фрязино Московской области). Был разработан двухканальный синхронизированный ЛПМ Карелия (см. гл. 6), работающий по схеме ЗГ - ПФК - УМ, со средней мощностью излучения 20-40 Вт и дифракционным качеством пучка при ЧПИ 8-12 кГц. ЛПМ Карелия стал основой для создания первой отечественной технологической установки АЛТУ Каравелла для прецизионной резки и сверления тонколистовых материалов для изделий электронной техники.  [c.243]

Микролучевая прецизионная резка (см. 5.1.5) толщина заготовки 2—100 мм на 30% более узкая ширина реза по сравнению с прецизионной резкой на 20% более высокая плоскостность поверхности реза меньшая термическая деформация по сравнению с прецизионной резкой.  [c.387]

Ориентировочные параметры микролучевой прецизионной резки при толщине материала 5—100 мм.  [c.388]

Микролучевая резка является усовершенствованным вариантом прецизионной резки, когда за счет повышения давления режущего кислорода достигается технологическое повышение производительности. При этом используются подогревающие сопла в стандартном исполнении и специальные режущие мундштуки. Внутреннее отверстие режущего сопла выполняют расширяющимся, что позволяет менять акустическую скорость струи режущего кислорода.  [c.388]

Параметры этот вариант резки является разновидностью термической микрорезки, используемой в машиностроении. По сравнению с прецизионной резкой (см. 5.1,4) достигается на 20% более гладкие поверхности реза на З0 в меньшая ширина реза на 100% более высокая скорость резки уменьшение раскола режущего кислорода.  [c.389]

Исследование температурных полей и деформаций. Исследования температурных полей нужны для оценки работоспособности узлов трения, теплостойкости и точности машии. Температура сказывается на работе узлов трении в связи с температурными изменениями зазоров, резким изменением вязкости масла, изменением свойсги поверхностных слоев материалов, особенно коэффициентов сухого трения. При высоких температурах понижаются механические свойства материалов, происходит тепловое охрупчивание и ползучесть. Температурные деформации существенно влияют на точность измерительных маптин, прецизионных станков и других машин.  [c.481]

Такое различие масштабов является причиной резкого качественного разграничения явлений атомной и ядерной физики. В атомной физике имеют дело со столь большими расстояниями, что ядро почти всегда можно рассматривать просто как заряженную материальную точку. В ядерной же физике имеют дело со столь высокими энергиями, что почти всегда можно пренебрегать влиянием процессов, происходящих в электронных оболочках, на структуру ядра и протекание ядерных реакций. Тонкие эффекты влияния атомных явлений на внутриядерные требуют специальных прецизионных измерений, таких как, например, в эффекте Мёссбауэра (см. гл. VI, 6, п. 6).  [c.30]

В процессе работы гидравлической системы в ней образуется довольно большое количество нерастворимых веществ продукты износа пар трения насосов, гидродвигателей и аппаратуры абразивные частицы, попадающие в гидросистему при некачественной сборке или при ремонтных работах в полевых условиях, органические загрязнения, являющиеся продуктами окисления и полимеризации минерального масла, и ряд других. Это резко снижает надежность и долговечность гидравлических приводов. Загрязняющие частицы сцособствуют повышенному износу трущихся пар как в результате непосредственного механического воздействия их на прецизионные поверхности, так и посредством разрушения смазывающей пленки между трущимися парами.  [c.49]

Предвоенные годы характеризовались расширением номенклатуры оборудования автогенной промышленности, строительством сети кислородных и ацетиленовых станций и увеличением их мощности, ростом производства карбида кальция, увеличением применения механизированной резки и выпуском средств механизации. Был освоен выпуск специализированного оборудования и аппаратуры (установок для резки стали больших толщин и для подводной резки, ранцевых установок для газовой резки, прецизионных редукторов, ацетиленовых генераторов различных типоразмеров и т. д.), стала изготовляться аппаратура для новых видов газопламенной обработки металлов (металлозащитные газовые аппараты, горелки для поверхностной закалки, многопламенные горелки для подогрева изделий и т. д.).  [c.120]


При таком методе изготовления кондукторов резко сокращается объём работ на прецизионных станках с делительными столами, упрощается и удещевляется изготовление кондукторов и обеспечивается взаимозаменяемость как кондукторов, так и изготовленных по ним конструкций. Изготовление эта-  [c.513]

Наиболее перспективны для резки полупроводников ИАГ-лазеры, обладающие большой мощностью излучения и малой длительностью импульса и позволяющие осуществлять прецизионную сквозную резку кремниевых пластин толщиной 0,25 мкм [76]. Так, ИАГ-лазеры положены в основу созданных в США (фирма Квантроникс ) и СССР установок для разделения кремния [76, 178].  [c.172]

С целью дальнейшего повышения плоскостности, пластины после проволочной резки проходят цикл многократной шлифовки или подвергаются операции двухсторонней прецизионной обточки на специальных шпиндельных обточных станках. Последняя операция обеспечивает получение пластин диаметром до 400 мм с общей неплоскостностью (GBJR) на уровне ниже 1 мкм. Последующая односторонняя поверхностная обточка позволяет довести этот показатель до 0,5...0,6 мкм, при этом уровень локальной неплоскостности составляет 0,10...0,17 мкм.  [c.64]

КОСТЬ сплава, свойства которого могут достигать уровня 30 10 , М тах 120 10 , jH = 1 А/м. Высокой износостойкостью сендаст обладает благодаря наивысшей среди магнитомягких кристаллических сплавов твердости ( 500 HV). Однако этот сплав чрезвычайно хрупок, так что его использование вызывает повышенные трудности. Необходима прецизионная технология изготовления деталей, исключающая возможность возникновения микротрещин и концентраторов напряжений. Такая технология использует электроискровую резку и шлифование для доводки детали до требуемых размеров. В литом сгшаве 10СЮ-ВИ требуется пониженный размер зерна (< 300 мкм) для обеспечения высоких механических свойств. В лабораторных условиях может быть получен сплав с размером зерна 20 мкм, однако меньших размеров зерна, способствующих повышению технологической пластичности сплава, добиться по традиционной технологии не удается. По сравнению с ЮСЮ-ВИ более высокой износостойкостью и технологичностью обладает полученный методом порошковой металлургии (прессованием порошка) сплав 10СЮ-МП, структура которого состоит из мелкозернистой матрицы с высокой магнитной проницаемостью и тонких слоев оксидов. Оба варианта изготовления сплава ЮСЮ не позволяют получить тонкую ленту, потребность в которой для нужд электроники и приборостроения наиболее велика.  [c.553]

Одно из условий прецизионности измерений — геометрия съемки, от которой зависит острота линии. Это обеспечивается коллимированием пучка или созданием специальных условий фокусировки. Одна из схем фокусировки — расположение поверхности анализируемого образца, анализируемой линии на рентгенограмме и источника излучения (анода трубки или диафрагмы) на одной окружности. Эта схема осуществима в камере типа КРОС. Специальные фокусирующие камеры (экспрессные) позволяют резко сократить экспозиции (камера РКЭ, табл. 5.16), что особенно важно при использовании монохроматоров. Условия для прецизионной съемки рентгенограмм указаны в табл. 5.17.  [c.120]

Прецизионные измерения относительного изменения параметров а и с решетки кристаллов НБС по длине и сечению кристаллического слитка позволили авторам работы [54] установить, что для образцов стехиометрического состава с, х — 0,25 относительные изменения параметра а по сечению кристаллического слитка превышают изменения параметра с (рис. 4.32). Для параметра а характерны резкие скачкообразные изменения значений, в несколько раз пре ышаюп1 ие ошибку измерения ( 1,6 10 ), в то время как колебания параметра с находятся в пределах ошибок ( 1,3 10 ). Для кристаллов, выраш енных из шихты с избытком ниобия (1 мол. %) наблюдается плавное увеличение параметров а и с от центра к краям кристалла, причем изменение параметра с в этом случае превышает изменение параметра а. В областях кристалла, прилежащих непосредственно к сердцевине, отмечается аномальное увеличение обоих параметров. Рентгенов-  [c.149]

Одним из недостатков модуляторов титус и фототитус с кристаллом ДКДР является необходимость охлаждения кристалла. Это усложняет изготовление прибора и увеличивает энергопотребление при его функционировании. Параметры ДКДР вблизи рабочей температуры имеют резкие зависимости, поэтому необходимо обеспечить однородное и стабильное охлаждение кристалла, что требует прецизионной термостабилизации. Эти недостатки могут быть прео-  [c.194]

В заключение укажем, что достижение перечисленных и ряда других технически изощренных результатов оказалось и оказывается возможным благодаря разработке более совершенных процессов синтеза исходных веществ и шихтовых материалов с заданными стехиометрией и гранулометрией (включая форму и характеристики поверхности частиц шихт), широкому применению и технологии керамики горячего и изостатического прессования, существенному прогрессу в автоматизации процессов выращивания кристаллов, а также резкому улучшению процессов формообразования рабочих элементов, таких, как прецизионная размерная обработка, ионная, электронная н лазерная обработка, литография субмнкропного разрешения, специальные приемы текстурировапия, поляризации и монодоменизации и ряд других. Более детально этп вопросы рассматриваются в [22, 51].  [c.155]

Существенное отличие ЛПМ от большинства других технологических лазеров заключается в том, что прецизионная микрообработка при сверлении и резке происходит преимущественно в испарительном режиме и без поддува газа в зону обработки [245]. Это позволяет существенно уменьшить зону термического влияния. Поскольку плотность пиковой мощности излучения заметно превышает порог испарения 10 Вт/см ), то испарение имеет характер микровзрывов и сопровождается разлетом паров и перегретой жидкости [238, 246, 247]. Последнее существенным образом влияет на параметры резки — эффективность и скорость, а также на шероховатость края реза. При толщине материала, сопоставимой с шириной реза (10-20 мкм), разлетающиеся из зоны воздействия излучения пары и капли металла  [c.236]

Экспериментальные результаты исследований процессов резки и сверления различных материалов с помощью ЛПМ Карелия стимулировали создание первой отечественной лабораторной технологической установки АЛТУ Каравелла , предназначенной для прецизионной обработки тонколистовых (до 1 мм) материалов изделий электронной техники. Средняя мощность излучения АЛТУ Каравелла в пучке дифракционного качества составляет не менее 20 Вт при ЧПИ 10 кГц. Многолетняя эксплуатация АЛТУ Каравелла убедительно показала, что импульсным излучением ЛПМ можно эффективно производить прецизионную обработку целого ряда материалов тугоплавких металлов (Мо, W, Та и т.д.), металлов с высокой теплопроводностью (Си, А1, Ag, Au и др.) и их сплавов, полупроводников (Si, Ge, GaAs, Si и др.), керметов, графита, естественных и искусственных алмазов, прозрачных материалов (стекло, кварц, сапфир) и др. Прецизионная обработка излучением ЛПМ имеет следующие преимущества высокую производительность изготовления деталей по сравнению с традиционными методами обработки (включая и электроискровой способ), прогнозируемое и контролируемое удаление обрабатываемого материала микропорциями, малую зону термического влияния, отсутствие расслоения материала, возможность обработки сложных поверхностей и под разными углами. Излучением ЛПМ эффективно производятся следующие технологические операции прямая прошивка отверстий диаметром 3-100 мкм, прецизионная контурная резка, скрайбирование.  [c.285]


Смотреть страницы где упоминается термин Прецизионная резка : [c.386]    [c.149]    [c.613]    [c.273]    [c.533]    [c.161]    [c.168]    [c.146]    [c.453]    [c.19]   
Смотреть главы в:

Справочник по сварке, пайке, склейке и резке металлов и пластмасс  -> Прецизионная резка



ПОИСК



29 Том прецизионные



© 2025 Mash-xxl.info Реклама на сайте