Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Катод, определение

Катионы, определение 23 Катод, определение 23 Катодная защита 215 сл.  [c.451]

При дальнейшем повышении напряжения и при достижении катодом определенной температуры между ним и окружающим тонким слоем ионов водорода и газов устанавливается стационарный электрический режим. Слой газов начинает светиться вследствие искровых разрядов между ним и катодом. Газовый слой действует как конденсатор. Ионы водорода бомбардируют катод, их кинетическая энергия вызывает сильный его нагрев (третья стадия процесса).  [c.226]


Отметим, что форма катода, определенная таким способом, редко бывает окончательной вследствие отсутствия учета в уравнениях гидро- / J динамических, химических, термиче- ских и других особенностей процесса.  [c.105]

Большой интерес представляет также выяснение влияния количества водорода, поглощенного при электролизе осадками никеля, на стрелу прогиба катода. Определение количества растворенного водорода в никелированных образцах производилось по методу горячей экстракции. Никелирование образцов производилось прп температуре 45° pH = 4,3 плотности тока 1 2 3 и 5 а дм . Данные по определению количества водорода в никелевом покрытии приведены в табл. 6.  [c.91]

На общей кривой катодной поляризации имеется ряд характерных точек, местонахождение и особенности которых приведены в табл. 39, а также определенные области, характер работы катода для которых указан в табл. 40.  [c.263]

Как ранее было указано, электрохимическая реакция присоединения электрона к иону водорода требует некоторой энергии активации, т. е. для того, чтобы процесс разряда ионов водорода шел на электроде с определенной скоростью, необходимо сообщить ему некоторый избыточный (против равновесного) потенциал, который определяется величиной перенапряжения водорода. Потенциал разряда водородных ионов с определенной скоростью к равен сумме равновесного потенциала водородного электрода и величины перенапряжения водорода, обозначаемой г]. Под величиной перенапряжения водорода понимают сдвиг потенциала катода при данной плотности тока 1п в отрицательную сторону по сравнению с потенциалом водородного электрода в том же растворе, в тех же условиях, но при отсутствии тока в системе. Поэтому расход электрической энергии на получение водорода электролизом больше, чем это определяется термодинамическими подсчетами.  [c.42]

ОПРЕДЕЛЕНИЕ АНОДА И КАТОДА  [c.22]

В гальваническом элементе катод считается положительным полюсом, анод — отрицательным. Если ток подводится к элементу извне — от генератора или от батареи — восстановление идет на электроде, присоединенном к отрицательному полюсу внешнего источника тока, этот электрод служит катодом, а электрод, соединенный с положительным полюсом генератора, — анодом. Это определение справедливо, когда элемент генерирует ток, а также когда ток подается извне.  [c.23]


Основным фактором, определяющим скорость коррозии многих металлов в деаэрированной воде или неокисляющих кислотах, является водородное перенапряжение на катодных участках металла. В соответствии с определением поляризации, водородное перенапряжение — это разность потенциалов между катодом, на котором выделяется водород, и водородным электродом, находящимся в равновесии в том же растворе, т. е. разность измер — (—0,059 pH). Таким образом, водородное перенапряжение измеряют точно так же, как и поляризацию. Обычно считают, что водородное перенапряжение включает лишь активационную поляризацию, соответственно реакции 2Н" Hj — ё, но часто полученные значения содержат еще и омическое перенапряжение, а иногда и концентрационную поляризацию.  [c.56]

Обычно поляризуются как катодные, так и анодные участки. Это явление называется сл(е-шанным контролем. Следует заметить, что степень поляризации зависит не только от природы металла и электролита, но и от истинной площади корродирующего электрода. Если площадь поверхности анодных участков корродирующего металла очень мала, например из-за пористых поверхностных пленок, коррозия может сопровождаться значительной анодной поляризацией, даже если измерения показывают, что при данной плотности тока незащищенные участки анода поляризуются незначительно. Следовательно, отношение площадей поверхности анода и катода также является важным фактором в определении скорости коррозии. Если на график вместо суммарного коррозионного тока нанести плотность тока, например для случая, когда площадь анода составляет половину площади катода, мы получим поляризационные кривые, представленные на рис 4.9.  [c.63]

Магнетрон газонаполненный — магнетрон с холодным катодом и газовым генератором, поддерживающим определенное давление газа для обеспечения возбуждения.  [c.148]

Установка, использовавшаяся в опытах Ленарда, схематически изображена на рис. 2.3 (см. 2.3). При освещении катода в цепи возникает электрический ток (фототок). Измеряя зависимость силы фототока i от приложенной к электродам разности потенциалов и, Ленард получил кривые типа той, какая приведена на рис. 7.2 (каждая такая кривая снимается при неизменной интенсивности света и для определенной частоты).Участок  [c.159]

Это уравнение справедливо, например, для электронно-лучевой трубки в любой точке пространства между катодом и анодом. Поэтому можно взять определенный интеграл от левой части в пределах от и = О (поскольку электроны покидают катод с очень малыми начальными скоростями) до и = (скорость, с которой электроны достигают анода) интеграл от правой части берем в пределах от л = О до л = /,  [c.97]

Упражнение 3. Изотопный анализ лития. Определите процентное содержание изотопов Ы и Ьх в пробе лития по относительным интенсивностям компонент изотопов в линии 670,78 нм, измеряемым методом фотографической фотометрии (см. главу 1 4). Для анализа используйте две крайних компоненты линии. Интенсивности этих компонент сильно отличаются друг от друга. Поэтому, чтобы получить их одновременно в области нормальных почернений, рекомендуется фотографировать интерференционную картину через ступенчатый ослабитель, устанавливаемый на щели спектрографа. При этом сильную компоненту изотопа проектируют на ступеньку с минимальным пропусканием, а слабую компоненту Ы — на соседнюю ступеньку с максимальным пропусканием. Для нанесения марок почернений спектр полого катода фотографируют через ступенчатый ослабитель в отсутствие интерферометра (см. упр. 2). При фотометрическом определении интенсивности слабой компоненты необходимо учитывать фон,, интенсивность которого следует вычитать из измеренной интенсивности компоненты.  [c.86]

Определение изотопного состава по резонансной линии осложняется вследствие частичного поглощения ее излучения невозбужденными атомами лития (самопоглощение линии). Это искажает наблюдаемые интенсивности компонент. При понижении разрядного тока концентрация паров лития в полом катоде падает и самопоглощение линии уменьшается. Чтобы учесть самопоглощение, сфотографируйте интерферограммы при разных силах разрядного тока в пределах от 10 до 50 мА. Для каждого значения силы тока определите отношение интенсивностей компонент. Постройте график зависимости отношения интенсивностей компонент 7(ЬР)//(Ы ) от силы тока г. Для изотопного анализа используйте значение отношения интенсивностей, получаемое экстраполяцией графика к нулевой величине силы тока. В пределах точности достигаемой в настоящей задаче, можно считать, что полученное таким образом отношение интенсивностей компонент пропорционально отношению концентраций изотопов  [c.86]


Для определения параметров зашиты полностью пассивной конструкции расчетной моделью является труба с внутренним диаметром d,, заполненная электролитом, у одного конца которой расположен катод (рнс. 4S ).  [c.83]

Более высокое содержание углекислоты и низкое содержание кислорода в почвенном воздухе по сравнению с атмосферным обусловлены протекающими в почве биохимическими процессами. Кислород расходуется главным образом на процесс разложения органических остатков и потребляется корневыми системами растений. Весной и в начале лета на глубине, неодинаковой в разных почвах, наблюдается невысокое содержание кислорода. Зависимость воздухопроницаемости почвы и грунта от гранулометрического состава, влажности и изменения кислорода по глубине слоя является причиной образования пар дифференциальной аэрации. Анодом пары становится та часть подземного сооружения, к которой приток кислорода затруднен, а участки, омываемые достаточным количеством кислорода, служат катодами. Уменьшение аэрации в определенной степени характеризуется уменьшением электросопротивления.  [c.44]

Электроды, между которыми измеряют ток, должны быть укреплены на строго определенном расстоянии один от другого. Отношение между поверхностями анода и катода выбирают исходя из  [c.143]

Повышение КПД ЯЭГ может быть достигнуто 1) применением вместо U-235 элементов U-233 или Ри-239, что позволит при меньшей критической массе создать более тонкие слои с большим полезным выходом, 2) более совершенной конструкцией анода и экранирующих устройств, 3) применением вместо пластинчатых электродов цилиндрических, 4) использованием делящихся материалов в виде пылинок или капель, циркулирующих в системе, что позволит улавливать коллектором все частицы, разлетающиеся в разные стороны, 5) применением двухстороннего катода, при котором плазма из делящегося матерна.ча, заключается в определенную область, действующую как двухсторонний катод. Эти и ряд  [c.146]

Изменение структуры происходит при несоблюдении мер предосторожности. При тщательной подготовке шлифа также нужно считаться с деформацией слоя (рис. 2). Однако даже при механической полировке можно получить действительную структуру образца. При подготовке образцов хорошие результаты дает применение алмазной пасты в качестве полировочного средства. Процесс шлифовки и полировки тем осторожнее нужно проводить, чем мягче исследуемый металл. Возникающий при обработке слой нужно удалять соответствующим реактивом. Металлограф должен видеть, истинная ли это структура шлифа или еще деформированный слой. При анодной полировке не образуется деформированного слоя, для чистых металлов и однофазных сплавов онз является лучшей подготовкой шлифа. Для многофазных сплавов с различными электрохимическими свойствами фаз применение электрохимической полировки связано с определенными трудностями, однако благодаря правильно подобранному электролиту и в этом случае можно получить удовлетворительные результаты. Комбинированное полирование происходит при совмещении анодной и механической полировки [20, 21]. Шлиф подключают — как анод, вращающуюся полирующую шайбу — как катод. Этот способ применяют для гетерогенных сплавов, обычная анодная полировка которых вызывает осложнения.  [c.11]

Эти лампы состоят из анода, катода и газа или пара, который при определенных условиях может проводить электрический ток.  [c.443]

Иногда возникают терминологические трудности в связи с тем, что катод коррозионного элемента имеет более положительный потенциал, чем анод (см. рис. 2.6). Это обусловливается тем, что определения катод и анод даны на основе процессов, происходящих в электролите, тогда как измерение потенциалов проводится со стороны металла. Данное обстоятельство поясняется на рис. 2.8. Если электроды из железа и платины находятся в одном и том же растворе электролита с потенциалом фвг, то со стороны металла платина будет положительнее железа. Через U здесь обозначено напряжение холостого хода гальванического элемента. После замыкания выключателя 5 электроны текут от Fe (—) к Pt ( + ). Если же оба электрода с самого начала сое-  [c.59]

Определение местонахождения сравнительно крупных повреждений в изоляционном покрытии подземных трубопроводов основывается на тех же принципах, что и локализация местных анодов. В разделе 3.6.2.1 для этой цели приняли небольшую ограниченную поверхность анода и неограниченно большую поверхность катода (см. рис. 3.29, А я К). При локализации поврежденных участков покрытия в роли анода выступает катодно поляризованная сталь у поврежденного покрытия, а в роли катода — удаленный анодный заземлитель с наложением тока от постороннего источника. Характер кривых при этом остается в основном неизменным как на рис.  [c.126]

Для регулирования расстояния между электродами предусмотрено сменное регулировочное кольцо 6. При работе плaзмoтpo и газ истекает через анод. Катод с торца закрыт фланцем 1. С целью умень-щения длины и перемещения разрядного столба в сторону анода применяется подмешивание с торца катода определенной доли рабочего  [c.42]

От имальный состав покрытия для оксидных катодов определен недавно [Л. 53], хотя в последние годы было опубликорано много противоречивых работ по это.му вопросу. Однако с,тедует помнить, что для различных случаев применений катодов могут оказаться наиболее пригодными различные составы оксидного слоя. Оказалось, что максимальная электронная эмиссия в импульсном режиме длительностью 3 мксек при частоте повторения  [c.445]

А. Н. Фрумкиным и В. Г. Левичем было теоретически доказано, что поверхность корродирующего металла остается приблизительно эквипотенциальной и при наличии неоднородностей, если только размеры включений малы, а электропроводность электролита достаточно велика, что подтверждено измерениями Г. В. Акимова и А. И. Голубева (рис. 129). Как видно из рис. 129, наблюдаются заметные изменения потенциала при переходе от одной составляющей сплава (анод—цинк, катод — FeZn,) к другой, но абсолютная величина их невелика. В тех случаях, когда нас интересует только общая величина коррозии, а не распределение ее по поверхности (например, при определении величины само-  [c.185]


При определенном смещении потенциала в отрицательную сторону на катоде может начаться какой-либо новый процесс. В водных растворах таким процессом обычно является разряд водородных ионов, обратимый потенциал которого более чем на 1 В отрицательнее обратимого потенциала процесса ионизации кислорода. При достижении обратимого потенциала водородного электрода в данном растворе (КнЛобр на процесс кислородной деполяризации начинает накладываться процесс водородной деполяризации [кривая (1/hJo6pпроцесс катодной деполяризации будет соответствовать кривой (Ко обр A DEK на рис. 159, которую называют общй кривой катодной поляризации.  [c.242]

Катодные включения (например, Си, Pd) заметно повышают коррозионную стойкость железоуглеродистых сплавов в атмосфере даже при незначительном их содержании (десятые доли процента меди — рис. 272). В процессе коррозии медистой стали в электролит (увлажненные продукты коррозии) переходит и железо, и медь, но ионы последней, являясь по отношению к железу катодным деполяризатором, разряжаются и выделяются на его поверхность в виде мелкодисперсной меди. Медь является весьма эффективным катодом и при определенных условиях, например, при повышенной концентрации окислителя — кислорода у поверхности металла, что имеет место при влажной атмосферной коррозии, и отсутствии депассивирующих ионов, способствует пассивированию железа  [c.381]

Рис. 10.39. Принципиальная схема опыта по определению предельной скорости. Электроны ускоряются однородным полем в левой части прибора, а время их пробега между А и В определяется с помощью осциллоскопа. / — горячий катод 2 — однородное электрическое поле от ускорителя Ваи-де-Граафа 3 — сетка управления, действующая как затвор < —трубка, находящаяся под вакуумом 5 — электрическое поле отсутствует 6 — термопара 7 — алюминиевый диск 8 — осциллоскоп показывает импульсы, поступающие из точек А и В. Рис. 10.39. <a href="/info/4763">Принципиальная схема</a> опыта по <a href="/info/98192">определению предельной</a> скорости. Электроны ускоряются <a href="/info/19453">однородным полем</a> в <a href="/info/50358">левой</a> части <a href="/info/29836">прибора</a>, а время их пробега между А и В определяется с помощью осциллоскопа. / — горячий катод 2 — <a href="/info/12618">однородное электрическое поле</a> от ускорителя Ваи-де-Граафа 3 — сетка управления, действующая как затвор < —трубка, находящаяся под вакуумом 5 — <a href="/info/12803">электрическое поле</a> отсутствует 6 — термопара 7 — алюминиевый диск 8 — <a href="/info/77134">осциллоскоп</a> показывает импульсы, поступающие из точек А и В.
По своей конструкции счетчик обычно представляет металлический или стеклянный баллон цилиндрической формы диаметром в несколько сантиметров с тонкой металлической нитью по оси. Диаметр нити, как правило, не превышает 1 мм. Нить оголена, но в местах ввода тщательно изолирована от стенок цилиндра и заземлена через сопротивление. Цилиндрическая трубка наполняется газом (или смесью газов) под определенным давлением. Между нитью (анод счетчика) и стенками цилиндра (катод счетчика) подается разность потенциалов примерно в 10 —10 в (рис. 7). Вблизи нити вoзн [кaeт область сильного электрического поля, в этой области и происходит газовое усиление. Коэффициент газового усиления обычно не превышает 10 .  [c.40]

Фотоэлектронный умножитель (или Tp>.1i a Кубецкого) представляет собой вакуумный электронный прибор, имеющий несколько катодов (динодов), расположенных в стеклянной трубке под определенным углом друг к другу и аноду (рис. 9). Чаще всего фотокатодом служит сурьмяноцезиевая пленка. На фотокатод /(, диноды и анод А подается определенное положительное напряжение, величина которого на каждой последующей паре возрастает по сравнению с напряжением на предыдущей паре. Фокусировка эмитируемых электронов осуществляется или с помощью дополнительного поперечного магнитного поля, или с помощью электростатического поля (устанавливаются сетки).  [c.43]

По мысли Эйнштейна вся энергия, полученная электроном, доставляется ему юветом в виде определенной порции hv, величина которой зависит от частоты света световой квант), и усваивается им целиком. Таким образом, электрон не заимствует энергию от атомов вещества катода, благодаря чему природа вещества не играет никакой роли в определении ё.  [c.638]

Линейчатый спектр газов можно возбудить весьма различными способами. Он появляется при различных видах электрического разряда через газ (гейслерова трубка, искра, дуговой разряд), при бомбардировке атомов газа электронами, испускаемыми накаленным катодом (что также можно рассматривать как одну из форм электрического разряда), при нагревании паров и газов (в пламени горелки, например), при освещении паров светом подходящей длины волны и т. д. Во всех этих случаях получаются спектральные линии, длины волн которых характерны для изучаемого газа. Однако в зависимости от условий возбуждения относительная интенсивность различных линий может сильно различаться, так что некоторые линии могут отсутствовать при тех Или иных способах возбуждения. Можно даже иногда возбудить одну-единствен-ную линию из всего линейчатого спектра. Таким образом, внешний вид спектра данного газа сильно зависит от условий возбуждения однако следует помнить, что, меняя условия возбуждения, мы можем заставить исчезнуть или появиться только определенные для каждого данного вещества линии, совокупность которых и составляет характерный для него линейчатый спектр.  [c.712]

Разрядная трубка с полым катодом. Разряд в полом катоде, широко используемый в спектроскопии высокой разрешающей силы, представляет собой разновидность тлеющего разряда с катодом особой формы в виде полости. В определенном диапазоне давлений наполняющего газа - 100 Па) внутри полости катода возникает яркое свечение с интенсивным возбуждением линий как нейтральных, так и ионизованных атомов. Это свечение является аналогом отрицательного свечения в обычном тлеющем разряде, однако имеет ряд важных особенностей. Разряд с полым катодбм характеризуется небольшой величиной катодного падения напряжения. Напряжение зажигания разряда выше, чем напряжение горения, поэтому для полого катода необходим источник питания с напряжением 1000 В.  [c.73]

Рис. 25.9. Фазовая диаграмма оксидного катода (система ВаО—СаО—AI2O3) [10], определенная при 7 =1250°С Рис. 25.9. <a href="/info/26487">Фазовая диаграмма</a> <a href="/info/406007">оксидного катода</a> (система ВаО—СаО—AI2O3) [10], определенная при 7 =1250°С
Определение электродных потенциалов позволяет судить о коррозионной стойкости различных зон сварного соединения, обнаружить их наиболее уязвимые участки. Изменением потенциалов можно воспользоваться для выбора наиболее безопасного в коррозионном отношении метода и режима сварки. Особенно опасным является случай, когда шов или ЗТВ являются анодом, а основной металл - катодом макрогальванического элемента. Из-за их малой площади по сравнению с основным металлом плотность коррозионного тока будет весьма высокой, а следовательно, будет высокэй и скорость растворения.  [c.44]


Одновременно с ростом стримера, направленного от катода к аноду, начинается образование встречного лавинного потока положительно заряженных частиц, направленного к катоду. Положительный стример представляет собой канал газоразрядной плазмы. Это объясняется тем, что электронные лавины оставляют на своем пути большое число вновь образованных положительных ионов, концентрация которьк особенно велика там, где лавины получили свое наибольшее развитие, т. е. около анода. Если концентрация положительньк ионов здесь достигает определенного значения (близкого к 10 ионов в 1 см ), то, во-первых, обнаруживается интенсивная фотонная ионизация, во-вторых, электроны, освобождаемые частицами газа, поглотившими фотоны, притягиваются положительным пространственным зарядом в головную часть положительного стргсмера и, в-третьих, вследствие ионизации концентрация положительных ионов на пути стримера увеличивается. Насыщение электронами пространства, заполненного положительными зарядами, превращает эту область в проводящую газоразрядную плазму. Под влиянием ударов положительных ионов на катоде образуется катодное пятно, излучающее электроны. В результате указанных процессов и возникает пробой газа. Обычно пробой газа совершается практически мгновенно длительность подготовки пробоя газа при длине промежутка 1 см составляет 10 - 10 с. Чем больше напряжение, пркближснпОс к газовому промежутку, тем быстрее может развиться прооой. Если длительность воздействия напряжения очень мала, то пробивное напряжение повышается.  [c.119]

Предварительная ультразвуковая обработка мелкодисперсного устойчивого золя гидроокиси никеля- вызывает резкое увеличение катодной поляризащш в процессе осаждения никеля и увеличение плотности покрытия. Положительный эффект снижения пористости достигается при определенном соотношении времени обработки на аноде и катоде. Для каждого вида покрытия есть оптимальная величина соотношения, выбранная в соответствии с применяемым электролитом. Реверсивный ток используется для снижения пористости покрытий при оса>кдении меди, цинка, кадмия, никеля.  [c.68]

Одновременно с ростом стримера, направленного от катода к аноду, начинается образование встречного лавинного потока положительно заряженных частиц, направленного к катоду. Положительный стример представляет собой канал газоразрядной плазмы. Поясним это подробнее. Электронные лавины оставляют на своем пути большое число вновь образованных положительных ионов, кснцентрация которых особенно велика там, где лавины получили свое наибольшее развитие, т. е. около анода. Если концентрация положительных ионов здесь достигает определенного значения (близкого к ионов в 1 см ), то, во-первых, обнаруживается интенсивная фотонная ионизация, во-вторых, электроны, освобождаемые частицами газа, поглотившими фотоны, притягиваются положительным пространственным зарядом в головную часть положительного стримера и, в-третьих, вследствие ионизации концентрация  [c.61]

Горелка УМП-4-64, на которой производились исследования, имеет ступенчатое сопло диаметром 6/8 мм с большим диаметром на выходе. Подача порошка осуществляется за анодным пятном. Нами был изготовлен ряд сопел аналогичной конструкции, но отличных по диаметрам. На этих соплах проводилось напыление карбида вольфрама. Полученная зависимость адгезии от соотношения диаметров сопла представлена на рис. 2, Ли Б. Оптимальным соотношением оказалось 5/6. Очевидно, при меньших диаметрах вследствие недостаточной центровки катода по отношению к соплу дуга не отшнуровывается по оси сопла, а замыкается у его края в зоне начала цилиндрической части. Это приводит к слабой холодной струе в месте нагрева порошка. Большие диаметры сопла требуют большей мощности вследствие увеличенного расхода газа и также не обеспечивают необходимого прогрева порошка. Определение оптимальной зернистости порошка проводилось на выбранном сопле при мощности 28 квт. Были отсеяны следующие фракции РЭЛИТа 0—50, 50—73, 73—100 и 100—180 мк. Испытания на адгезию слоя 0.3 мм показали (рис. 2, 5, Г), что наилучшими фракциями являются 50—73 и 73—100 мк. Оптимальная мощность из условия максимальной адгезии и наибольшей стойкости сопла (рис. 2, Д) определилась в 28 КВТ при работе на аргоне и азоте. Данные по плотности и кажущейся пористости в зависимости от мощности горелки представлены на рис. 2, Е. Толщина покрытия для образцов была  [c.223]


Смотреть страницы где упоминается термин Катод, определение : [c.55]    [c.305]    [c.320]    [c.82]    [c.172]    [c.47]    [c.60]    [c.124]    [c.178]   
Коррозия и борьба с ней (1989) -- [ c.23 ]



ПОИСК



Катод

Определение анода и катода

Определение величины защитного тока, оценка объектов защиты, подсоединение катодов и анодных заземлителей

Определение скорости коррозии электрохимическими методами (испытание с защищенным анодом или катодом на моделях коррозионных элементов)



© 2025 Mash-xxl.info Реклама на сайте