Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Определение видов нагружения

Диаграммы усталости (см. рис. 159) строят на основании результатов испытания стандартных образцов при определенном виде нагружения (растяжения, сжатия, изгиба, кручения) и постоянных параметрах цикла (при постоянном значении коэффициента асимметрии цикла г).  [c.284]

Большую пользу приносят простейшие модели, изготовленные из резины. Это брусья различного поперечного сечения, которые можно подвергать растяжению, кручению или изгибу, нагружая их вручную. На поверхности таких брусьев должна быть нанесена сетка горизонтальных и вертикальных рисок, наблюдая за расположением которых при нагружении можно получить подтверждение гипотезы плоских сечений или, наоборот (например, при кручении бруса прямоугольного поперечного сечения), убедиться в том, что она не выполняется. Установка для определения видов нагружения брусьев, описание которой дано в пособии [27], с большим основанием может быть использована для демонстрационных целей, чем для проведения лабораторной работы.  [c.33]


Типичным примером неоднородности микроструктуры может быть наличие у материала распределения ячеек по размерам при постоянной толщине стенок. Может быть наоборот — размер ячеек постоянен, а толщина стенок распределена по какому-то закону. Возможны материалы, у которых оба параметра являются случайными. Причиной неоднородности структуры могут быть случайные изменения технологических параметров при изготовлении материала. В некоторых случаях неоднородность организуется сознательно, например для обеспечения устойчивости композита при определенных видах нагружения.  [c.179]

Определение видов нагружения  [c.23]

В случае плосконапряженного состояния а з = спз = = О-Обычно для плосконапряженного состояния полагают также, что компоненты тензора напряжений а не зависят от xs. Задачи о плосконапряженном состоянии возникают, например, при расчете тонких пластин при определенных видах нагружения [224, 230]. Под тонкой пластиной, как известно, подразумевают цилиндр, высота которого мала по сравнению с размерами основания. Плоскость, параллельную основаниям и находящуюся посередине между ними, называют средней (или срединной) плоскостью пластины. Систему координат выбирают так, чтобы оси х л Х2 лежали в этой плоскости.  [c.293]

В течение определенного периода методом каустик исследовалось распространение трещин в статическом приближении, т. е. с интерпретацией динамических испытаний при помощи статических уравнений, а возникающее при этом рассогласование относили к погрешности измерений. Кроме того, предполагалось, что оптические свойства материала остаются неизменными при нагружении волнами напряжений и при распространении трещин. Затем, однако, была установлена сильная зависимость оптических свойств от скорости нагружения и скорости распространения трещины, что потребовало соответствующей тарировки и введения поправочных множителей для некоторых констант при определенных видах нагружения.  [c.97]

Основой методов испытания материалов на твердость является вдавливание в испытываемый образец рабочего тела (наконечников) разной формы, имеющего гораздо большую твердость, чем образец. Это рабочее тело должно иметь вполне определенную форму и размеры. Должен быть также определен вид нагружения — статический или динамический.  [c.156]

Рассмотренные случаи являются основными и их необходимо усвоить, чтобы овладеть методикой определения вида нагружения колец [2, 4].  [c.173]

Следовательно, безопасное (или допускаемое) напряжение должно являться для данного материала и вида нагружения частью экспериментально определенного предельного напряжения.  [c.139]


Для определения запасов прочности при несимметричных циклах в случае любого вида нагружения (изгиба, растяжения — сжатия, кручения) можно воспользоваться следующими зависимостями для нормальных напряжений  [c.230]

Следует подчеркнуть, что состояние материала (хрупкое или пластическое) определяется не только его свойствами, но и видом напряженного состояния, температурой и скоростью нагружения. Как показывают опыты, пластичные материалы при определенных условиях нагружения и температуре ведут себя, как хрупкие, в то же время хрупкие материалы в определенных напряженных состояниях могут вести себя, как пластичные. Так, например, при напряженных состояниях, близких к всестороннему равномерному растяжению, пластичные материалы разрушаются, как хрупкие. Такие напряженные состояния принято называть жесткими . Весьма мягкими являются напряженные состояния, близкие к всестороннему сжатию. В этих случаях хрупкие материалы могут вести себя, как пластичные. При всестороннем равномерном сжатии  [c.189]

Примеры уравнений, составляющих основу моделей объектов на микроуровне. Первая важная задача проектирования летательного аппарата — определение прочности узлов и элементов конструкции при различных видах нагружения. Поэтому исследование напряженного состояния деталей конструкции и связанные с ним расчеты на прочность относятся к наиболее ответственным в самолетостроении.  [c.7]

Базовая параметрическая диаграмма служит основой для построения диаграммы механического состояния материала при статическом и циклическом видах нагружения с установлением экстремальных долговечностей [36]. Однако, это требует определения границ реализации механизмов диссипации энергии при данных значениях напряжения и параметра р.  [c.315]

Простое нагружение сопровождается возрастанием всех компонентов напряжений в данной точке пропорционально какому-то параметру, например, времени. Тогда и внешние нагрузки пропорциональны этому параметру (при внутреннем гидростатическом давлении на трубу). Форма тензора напряжений и его главные направления при простом нагружении все время сохраняются. Иногда для определения простого нагружения используют коэффициент Лоде и Надаи Ца, который при этом виде нагружения остается постоянным ( —1 1)  [c.97]

Изложение теоретического материала. Опираясь на понятие о внутренних силовых факторах, даем определение кручения как такого вида нагружения бруса, при котором в его попереч-  [c.103]

Из изложенного видно, что свойства пластичных и хрупких материалов различны. Однако это различие является относительным. При определенных условиях, например при дополнительном всестороннем сжатии, хрупкий материал может вести себя как пластичный. Пластичный же материал при определенных условиях, например при низких температурах, может вести себя как хрупкий. Следовательно, такие характеристики материалов, как хрупкий и пластичный , основанные на рассмотренных выще испытаниях материалов на растяжение и сжатие, определяют поведение материалов при обычных температурах и при указанных видах нагружения. Поэтому правильнее говорить не о хрупком и пластичном материале, а о хрупком или пластичном его состоянии в тех или иных конкретных условиях.  [c.41]

Для проверки уравнения (7.20) и определения значений были использованы экспериментальные данные, полученные на материале одной марки и плавки. По этим данным находились пределы выносливости элементов различных размеров и уровней концентрации напряжений при различных видах нагружения и строились зависимости lg( —1) от g L/G). Для трех сталей и двух легких сплавов экспериментальные и расчетные результаты приведены на рис. 7.13.  [c.145]

Следует отметить, что на другие виды разрушения материалов в разной степени влияют масштабный фактор и конструкция детали. Так, при оценке коррозионной стойкости материала результаты, полученные для образца, при сохранении внешних условий могут быть, как правило, использованы для различных деталей. Однако, если испытывается усталостная или коррозионно-усталостная прочность материала, то форма и размеры образцов (которые стандартизованы) оказывают существенное влияние на процесс разрушения, поскольку не только вид нагружения, но и конструкция детали и технология ее обработки (шероховатость поверхности) определяют напряженное состояние и выносливость материала. Как известно, для усталостного разрушения разработаны методы пересчета на другой цикл нагружения, а также методы оценки концентрации напряжения и масштабного фактора. Это позволяет более широко использовать результаты испытания образцов для определения усталостной долговечности деталей различных конструктивных форм. В общем случае можно сказать, что применяемая схема испытания стойкости материала отражает уровень познания физики данного процесса. Чем глубже наши знания в раскрытии закономерностей процесса, тем больше методы испытания стойкости материалов абстрагируются от конструктивных форм изделий и отражают свойства и характеристики самих материалов.  [c.487]


В практике исследования эксплуатационных разрушений помимо определения вида разрушения возникают и другие задачи. Они вытекают из требования проведения контроля над состоянием детали в эксплуатации и устранения несовершенств конструкции или изменения режимов ее работы. Эти стратегические задачи решаются в рамках количественной фрактографии. При количественных оценках силового и температурного нагружения элементов конструкций исходят из того, что изменение режима или условий внешнего воздействия приводит к изменению напряженного состояния материала в вершине трещины. Формирование того или иного параметра рельефа  [c.80]

Уравнения (5.6) и (5.7) совпадают между собой с точностью до коэффициента пропорциональности, поскольку КИН полностью определен параметрами нагружения, длиной трещины и формой образца или детали. Однако в уравнении (5.7) имеется дополнительный функционал /(я), зависимый от длины трещины. Применительно к анализу эксплуатационных разрушений Хоппер [19] предлагает использовать уравнение вида (5.6) и подчеркивает, что все условия внешнего воздействия и свойства среды, в которой распространяется усталостная трещина, полностью определяются коэффициентом пропорциональности Сг. В дальнейшем изложении, чтобы упростить написание, мы будем рассматривать управляющие параметры без поправочной функции, принимая ее равной единице. Такое упрощение правомерно для размеров трещины, когда в большей мере реализуется первое синергетическое уравнение, эквивалентное соотношению (5.5).  [c.236]

Несколько иной подход в определении вида поправочных функций на асимметрию цикла нагружения предложен в работе [93]. Была исследована рельсовая сталь (С — 0,57 % Сг — 0,08 % Mg - 1,6 % Мо - 0,01 % №0 - 0,03 %, Р - 048 % S — 0,04 % Si — 0,35 %) на крестообразных образцах при их нагружении по двум осям с разным сдвигом фаз. Эквивалентные характеристики про-  [c.335]

Стеклопластики при нагружении имеют тенденцию к прогрессирующему и необратимому повреждению. В некоторых случаях нагрузка при возникновении повреждений составляет всего лишь 10% от соответствующего статического предела прочности. Детальный характер поврежденности зависит от многих факторов, описывающих вид нагружения, расположение армирующих элементов, свойства матрицы и поверхности раздела и т. п. Было предложено много различных описаний повреждаемости, начиная с такого неясного определения, как растрескивание, до детальных микроскопических исследований.  [c.334]

В теории Гриффитса — Ирвина предполагается, что трещина распространяется линейно. Существуют примеры невыполнения этого требования у реальных материалов, как изотропных [28], так и анизотропных [20]. Си [7] показал, что применение линейной упругой механики разрушения к однофазным материалам, в которых трещина распространяется нелинейно (это часто бывает при смешанных видах нагружения), может привести к большим ошибкам. Среди перечисленных далее теорий в некоторых из них рассматриваются только определенное направление роста трещины и напряженное состояние. Различные подходы механики разрушения можно классифицировать в соответствии с возможностью их прямого применения для решения задач анализа слоистых композитов с трещинами.  [c.235]

Разрушение по механизму ямочного разрыва наблюдается при различных видах нагружения однократном и длительном статическом, на определенных стадиях усталостного.  [c.20]

Расстояние между отдельными сдвигами увеличивается с увеличением уровня переменного напряжения (см. рис. 123) и с увеличением длины усталостной трещины. Часто наблюдается чередование широких и узких сдвиговых полос (рис. 125), что связано, по-видимому, с обычно наблюдаемой при различных видах нагружения периодичностью в развитии разрушения. Из-за нечеткости очертания границ отдельных микроскопических сдвигов, как правило, не представляется возможным измерить расстояние между ними. Однако в ряде случаев возможен подсчет ширины усталостных линий, выявляемых при увеличениях оптического микроскопа между шириной этих полосок, представляющих собой полоски другого (нижнего) порядка, и уровнем действующего напряжения наблюдается определенная зависимость.  [c.154]

Вследствие зависимости (1.3) параметр испытания может быть задан набором переменных, характеризующих значения производных в точке разложения. Выбор этих переменных фиксирует определенный закон нагружения и деформации, и связь процессов нагружения и деформации (1.1а) преобразуется к виду  [c.18]

Изгиб — это определенный вид нагружения бруса, при котором изменение формы бруса характеризуется изменением его кривизны. Соседние сечения бруса при изгибе поворачиваются друг относительно друга на некоторый малый угол. Эта схема нам уже хорошо знакома и еще раз представлена на рис. 31. Если принять, что изменение кривизны произошло в плоскости чертежа, то нейтральная линия проек-21 тируется на плоскость черте-  [c.32]

По кривой усталости получают зиачеггия предела вьшосливости только для данного определенного вида нагружения. Чтобы охарактеризовать поведеггие материала при всех видах нагружения, суммируют результаты, представленные различными кривыми усталости, в полггую диаграмму усталости - диаграмму предельных напряжений (диаграмму Смита) (рис. 2.3.9).  [c.151]

Дайте определение, характеристику и укажите условия возникновения одного из видов нагружения колец подшипников а) местного 6 циркуляционного в) колеб1ательного.  [c.90]

Корпусные детали, относящиеся к той же группе, но состоящие из днух стенок с перпендикулярными или диагональными нерег0()0д-ками (типа станин токарных станкон), рассчитывают как тонкостенные, статически неопределимые H xeviH. В технических расчетах станины этого типа рассматривают как брусья постоянного 110 длине сечения некоторой приведенной жесткости, определенной из уточненного расчета системы как статически неопределимой при одном простом виде нагружения.  [c.464]


Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

В настоящее время накоплен большой опыт по испытанию композиционных материалов. Созданы различные разрушающие [78] и неразрушающие 46] методы определения механических свойств. При корректной постановке эксперимента и иравилышм выборе геометрических размеров образцов разрушающие м неразрушающие методы позволяют получать весьма близкие ио значениям механические характеристики на некоторых тниах анизотропных материалов 46]. Необоснованный выбор схемы нагружения и параметров образца может привести к несопоставимым значениям характеристик, полученных на одних и тех же материалах одними и темн же разрушающими методами 112, 26, 84, 93]. Это объясняется прежде всего тем, что не все разрушающие методы достаточно изучены . многие методы разработаны для изучения свойств изотропных материалов, позже перенесены на исследования пластмасс, а затем распространены на композиционные материалы. Естественно, они не учитывают особенностей структуры и свойств композиционных материалов, что приводит к результатам, которые невозможно повторить, а часто соио-ставнть даже при таких видах нагружения, как испытание на растяжение, сжатие п изгиб. Испытание на сдвиг композиционных материалов изучено мало [78, 119].  [c.26]

Контрольные и исследовательские испытания, связанные с оценкой характеристик сопротивления усталости, регламентированы системой нормативных документов. В последнее время разработаны и внедрены ГОСТы, всесторонне определяющие усталостные испытания. В [44] устанавливаются применяемые в науке и технике термины определения и обозначения основных понятий, относящихся к методам испытаний и расчетам на усталость. Стандарт [46] устанавливает методы испытаний при различных видах нагружения симметричных и асимметричных циклах напряжений или деформаций наличии или отсутствии концентраторов напряжений в много- и малоцикловой, упругой и упругоппастической областях.  [c.29]

Как уже было подчеркнуто выше, существуют два вида регулярного циклического нагружения — постоянство деформации и постоянство нагрузки. Реализованный кинетически процесс, описываемый соотношением (4.20) по параметрам рельефа излома или по результатам слежения за развитием трещины по поверхности образца или детали, не может быть отнесен к одному из указанных видов нагружения, если предварительно не были известны условия нагружения. Вместе с тем по параметрам рельефа излома, которые отражают тот или иной механизм роста трещины, реализуемый на определенном масштабном уровне, можно проводить оценку эквивалентности реализованного процесса роста трещины. Поэтому далее, рассматривая кинетические процессы роста трещин и их описание с помощью уравнений синергетики и механики разрушения, мы будем считать подобными те процессы роста трещины, которые реализуются при одинаковых механизмах разрушения, определяемых эквивалентными (качественно) параметрами рельефа излома.  [c.201]

Для сравнения влияния окружающей среды, в частности воздуха, масла или воды (при 100° С), авторы [2] нанесли на график нормированное начальное напряжение в зависимости от логарифма долговечности для случая, разрушения, определенного различными долями начального напряжения в цикле. Им удалось произвести полное сравнение только при весьма высоких уровнях напряжений, и для этого были выбраны напряжения, равные 75 и 90% от начального. Было найдено, что результаты в случаях масла и воздуха почти совпадают для композитов как с обработанными, так и с необработанными волокнами. В воде при 100 °С повреждения композитов обоих типов были примерно одинаковыми. Были проведены исследования [21 распространения трещины при кручении, из которых следовали аналогичные выводы. Нагружение кручением в виде, представленном в работах [12, 2], едва ли возникает на практике из-за очень низкой крутильной жесткости однонаправленных углепластиков. Однако проведенные исследования подчеркнули значение видов нагружения, при которых матрица и поверхность раздела испытывают существенные деформации.  [c.391]

Усталость при высоких температурах представляет собой сложный процесс, в котором определенную роль играют явления ползучести и повреждения, характерные для длительного статического высокотемпературного нагружения [97, 111]. Этим обстоятельством в значительной степени объясняется отсутствие физического предела выносливости для материалов, испытываемых при высоких температурах. Высокотемпературную усталость можно считать одной из разновидностей коррозионной усталости. Тем не менее целесообразно особо рассмотреть этот вид нагружения, поскольку при высокотемпературной усталости в материале происходит ряд специфических процессов, прямо не связанных с коррозией. Так, при испытании образцов из литейного никель-хромового сплава ЖС6К при 900°С наблюдалось резкое снижение значений микротвердости от головок к рабочей зоне образцов, что можно объяснить весьма существенным разу-142  [c.142]

В тех случаях, когда характер термонагружения обусловливает одновременное накопление циклического и статического повреждения, необходимо учитывать оба вида повреждений, суммируя их определенным образом. С. В. Серенсен и Д. Вуд впервые указали на нецелесообразность применения линейного закона суммирования относительных долей повреждения во временном выражении для случая изотермического нагружения. Для неизотермического термоциклического нагружения оказывается справедливым степенной закон суммирования относительных долей повреждения в виде а - -а = I, при этом коэффициенты а и р не зависят от уровня нагрузки. Кривые предельного состояния в координатах а,—имеют вид гипербол, показывающих весьма существенное взаимное влияние одного вида нагружения на другой. Расчетные уравнения, построенные на основе степенного суммирования относительных долей повреждения, позволяют определить долговечность при нагружении детали термическими циклами произвольной формы. Приведенные в гл. 7 примеры расчета иллюстрируют это обстоятельство.  [c.192]


Сравнивая полученные в настоящей работе экспериментальные данные с основными закономерностями развития повреждений в условиях статического и циклического видов нагружения, природу развития несплошностей в условиях испытаний на термическую усталость можно представить следующим образом. В процессе испытания на термическую усталость, а также во время изотермической выдержки при верхней температуре цикла развивается межзеренное проскальзывание. Следует полагать, что при накоплении определенного числа циклов величина смещения зерен относительно друг друга достигает критического значения, при котором образуются субмикроскопические несплош-ности на межзеренных границах. Если такое состояние границы возникает в условиях высокотемпературного растяжения, то приложенные нормальные растягивающие напряжения обеспечивают их быстрое раскрытие в клиновидные трещины, наб.людаемые в оптический микроскоп. Однако в условиях термоциклирования металл в диапазоне температур Тщах испытывает снижающие напряжения, что стабилизирует указанную структуру границ зерен, несмотря на продолжающийся процесс межзеренного про-  [c.49]

Определение долговечности пружин. Особенно большое распространение в промышленности получили витые цилиндрические пружины растяжения и сжатия, которые по виду нагружения можно разделить на четыре группы пружины сжатия, воспринимаюш ие продольно-осевую сжимающую нагрузку пружины растяжения, воспринимающие продольно-осевую растягивающую нагрузку пружины кручения, воспринимающие нагрузки, сводящиеся к паре сил, действующих в плоскостях, перпендикулярных к оси пружины, и пружины, воспринимающие комбинированные нагрузки.  [c.273]


Смотреть страницы где упоминается термин Определение видов нагружения : [c.206]    [c.147]    [c.189]    [c.432]    [c.168]    [c.42]    [c.310]   
Смотреть главы в:

Справочные таблицы по деталям машин Издание 5 Том 2  -> Определение видов нагружения



ПОИСК



Нагружение, виды



© 2025 Mash-xxl.info Реклама на сайте