Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Внутреннее-трение резины

Здесь г — коэффициент внутреннего трения резины.  [c.123]

Используемая в 20-к годах резина в виде прокладок во многих случаях не служила эффективной защитой машин от высокочастотных колебаний и поэтому были созданы резинометаллические соединения, обладающие вследствие высокого коэффициента внутреннего трения резины большой демпфирующей способностью при любых амплитудах колебаний.  [c.721]

Энергия колебаний диска превращается в работу внутреннего трения резины, вследствие чего амплитуда крутильных колебаний уменьшается.  [c.38]


При использовании упругого элемента из резины фрикционный элемент отсутствует вследствие значительного внутреннего трения резины.  [c.100]

Деревянные буферы, изготовляемые из дубовых, буковых или кленовых брусков, используют только на кранах с ручным приводом. Резиновые буферы весьма просты по конструкции, компактны, удобны в эксплуатации. Они имеют малую отдачу, так как 30... 40% кинетической энергии движущихся масс поглощается за счет внутреннего трения резины. Однако в силу ограниченной энергоемкости их применяют при скоростях наезда  [c.105]

Для металлов коэффициент поглощения при внутреннем трении очень мал (около 0,01 — 0,02 для сталей разных марок) и при расчете звеньев из металла внутреннее трение обычно не учитывают. Однако для высокомолекулярных материалов (например, резины и пластмасс) коэффициент поглощения имеет порядок в пределах 0,1 —1,0, т. е. почти в 100 раз больше, чем для металлов. Поэтому при расчетах деталей из резины и пластмасс необходимо учитывать потери на внутреннее трение в материале.  [c.230]

При поглощении поток звуковой энергии переходит в тепловой поток, а при рассеянии остается звуковым, но уходит из направленно распространяющегося пучка. Поглощение звука обусловливается внутренним трением и теплопроводностью среды. Для одной и той же среды поглощение поперечных волн меньше, чем продольных, так как они не связаны с адиабатическими изменениями объема, при которых появляются потери на теплопроводность. Коэффициент поглощения в твердых телах пропорционален или / (стекло, металлы), или Р (резина). Поглощение является доминирующим фактором, обусловливающим затухание ультразвука в монокристаллах.  [c.21]

Резина обладает ценными качествами как амортизационный материал очень высоким удлинением, большим внутренним трением, обусловливающим эффективное гашение вибраций. Модуль упругости резины весьма  [c.208]

Модуль упругости лежит в пределах I —10 МПа, т. е. он в тысячи и десятки тысяч раз меньше, чем для других материалов. Особенностью резины является ее малая сжимаемость (для инженерных расчетов резину считают несжимаемой) коэффициент Пуассона 0,4—0,5, тогда как для металла эта величина составляет 0,25—0,30. Другой особенностью резины как технического материала является релаксационный характер деформации. При нормальной температуре время релаксации может составлять 10 с и более. При работе резины в условиях многократных механических напряжений часть энергии, воспринимаемой изделием, теряется на внутреннее трение (в самом каучуке и между молекулами каучука и частицами добавок) это трение преобразуется в теплоту и является причиной гистерезисных потерь. При эксплуатации толстостенных деталей (например, шин) вследствие низкой теплопроводности материала нарастание температуры в массе резины снижает ее работоспособность.  [c.482]


Неметаллические упругие элементы муфт. Основным материалом неметаллических упругих элементов является резина. Она обладает следующими положительными качествами 1) высокой эластичностью в пределах упругости резина допускает относительные деформации е 0,7.... ..0,8, а сталь — только Е 0,001...0,002 при таких деформациях единица массы резины может аккумулировать большое количество энергии (в 10 раз больше, чем сталь) 2) высокой демпфирующей способностью вследствие внутреннего трения относительное рассеяние энергии в муфтах с резиновыми элементами достигает 0,3...0,5 3) электроизоляционной способностью. Муфты с резиновыми упругими элементами проще и дешевле, чем со стальными.  [c.386]

Кинематические пары с жесткими звеньями для относительно небольших линейных, угловых или их совместных перемещений в ряде случаев могут быть заменены неподвижными соединениями с промежуточным элементом высокой упругости, что имеет ряд преимуществ, как будет показано далее. Взаимное смещение звеньев в процессе их работы достигается за счет деформации специальной эластичной детали при этом внешнее трение скольжения или качения заменяется внутренним трением упругого элемента из резины. Это соединение выполняется в виде резинометаллического шарнира.  [c.334]

В каждом цикле деформации резины часть работы переходит в тепло (явление гистерезиса). Т. к. теплопроводность резины мала, то при многократных деформациях теплообразование за счет гистерезиса приводит к значительному разогреву материала. Это особенно опасно в связи с тем, что скорость процессов старения с увеличением темп-ры быстро возрастает. Повышение темп-ры при многократных деформациях резко снижает усталостную прочность. Внутреннее трение почти всегда  [c.389]

Материалы всех тел обладают внутренним трением которое для абсолютного большинства тел зависит от скорости относительного движения частиц тела и возрастает с увеличением скорости. Понятие внутреннего трения объединяет совокупность внутренних диссипативных сил различной природы. Вследствие наличия внутреннего трения, а также вследствие всегда имеющегося трения между телом и окружающей средой возникающие в телах колебания после прекращения действия периодических возмущающих сил быстро затухают. Сопротивление тел деформированию всегда в большей или меньшей степени зависит от скорости деформации, связанной со скоростью приложения внешних нагрузок. При очень больших скоростях деформирования, возникающих, например, при ударных нагрузках, сопротивление металлов переходу в пластическое состояние при нормальной температуре может возрастать в два-три раза, сопротивление же деформированию полимеров (например, резины) значительно возрастает и в пределах упругих деформаций.  [c.10]

На рнс. 51 показана стальная пластина, соединенная со слоем поглощающего звук вещества, например со слоем синтетической резины. Пластина может излучать звук, колеблясь как целое, однако чаще излучение обусловлено изгибными колебаниями пластины. При изгибании пластины резиновый слой также изгибается и, как следует из геометрических соображений, наружная поверхность резины растягивается при изгибании пластины в одну сторону и сжимается при изгибании в противоположную сторону. Рассеяние или поглощение энергии происходит в результате потерь на внутреннее трение при продольных растяжениях и сжатиях резины. Представим теперь, что к наружной стороне резинового слоя приклеен тонкий металлический лист. При изгибании пластины резиновый слой не сможет растянуться или сжаться потому, что он  [c.236]

Относительный поворот валов на угол ф происходит с существенным поглощением энергии за счет внутреннего трения в неметаллических деформируемых деталях (из резины, пластмассы, кожи), трения скольжения между листами пакетов пружин или при-  [c.329]

В процессе качения колеса шина деформируется под воздействием различных непрерывно изменяющихся сил. Когда часть шины выходит из контакта с дорогой, часть энергии, затраченной на деформацию шины, теряется на внутреннее трение в резине, превращаясь в теплоту. Нагрев вредно отражается на свойствах шины, и ее изнашивание ускоряется. Потери энергии зависят от конструкции шины, внутреннего давления воздуха в ней, нагрузки, скорости движения и передаваемого крутящего момента. Чем больше деформация шины, тем больше потери на внутреннее трение и тем большая мощность затрачивается на движение автомобиля. Для уменьшения деформации и необратимых потерь давление воздуха в шине надо увеличивать.  [c.171]


При недостаточном давлении воздуха в шине повышаются внутреннее трение и теплообразование, особенно в боковинах покрышки. В результате этого нити отслаиваются от резины, быстро перетираются и рвутся — происходит кольцевой излом (расслоение) каркаса покрышки, не поддающийся ремонту.  [c.193]

При блокировке же колесо скользит по дорожному покрытию без вращения, корд каркаса шины пружинит, но не деформируется. Воздух в шине не циркулирует, поэтому поглощает лишь минимальное количество тепла, и в блокированном колесе вместо внутреннего трения происходит истирание резины протектора о дорожное покрытие.  [c.98]

Копер КМР-01 (рис. 89) с переменным запасом энергии предназначен для определения динамических свойств резины (коэффициента внутреннего трения и динамического модуля) при ударном нагружении и повышенных температурах.  [c.132]

Дополнительные факторы, способствующие гашению колебаний, следующие трение букс о направляющие внутреннее трение резиновых амортизаторов внутреннее трение в резино-металли-ческих втулках, установленных в буксах, которые связаны с рамой тележки поводками.  [c.125]

Успокоители с внутренним трением. В качестве таких успокоителей служат детали, входящие в подвижные системы приборов, обладающие большим внутренним (гистерезионным) трением. В большинстве случаев ими являются упругие элементы, покрыт1,1е для увеличения внутреннего трения резиной, пластмассой или оловом. Резина или пластмасса приклеивается к упругому элементу, а олово наносится горячим способом. Эти успокоители хорошо защи-  [c.390]

Модуль внутреннего трения резины — характеристика, определяющая гистерезисные свойства резины при многократных и знакопеременных динамических нагружениях, например, шин, ремней, рукавов, аморти-  [c.240]

Влагостойкость и влагопоглощаемость лакокрасочной пленки 188 Влажность и влагопрочность бумаги и картона 292 Влажность древесины 231 Внутреннее-трение резины 240 Внутренние напряжения покрытия 188 Внутренние трещины металлов 7 Вода дистиллированная 282 Вода полировочная 229 Водный аммиак 280 Водозапорная паста 225 Водонепроницаемая бумага и картон 298 Водопропускаемость лакокрасочных пленок 138  [c.336]

Особенностью муфты является привулканизированные металлические втулки для пальцев, вынуждающих работать два соседних сектора (один— па сжатие, а другой — на растяжение) в отличие от обычно применяемых, в которых секторы работают через один только на сжатие. Металлорезиновая муфта работает как беззазорное амортизирующее соединение, в котором внешнее трение, зависящее от абразивности среды, заменено внутренним трением резины.  [c.69]

Это соотношение было найдено [457] для областей гладкого раздира в более точном эксперименте на установке, изображенной на рис. 4.2.6, при испытании образцов иа наполненных резин на основе некристаллизующихся каучуков. Скорость раздира v увеличивается, а выносливость N понижается с повышением Н. При узловатом, а также толчкообразном раздире Н может сначала повышаться, а затем снижаться с повышением скорости, а с ней — времени, или числа циклов (выносливости), вызывающих увеличение надреза на определенную величину. Андрью [520] наблюдал растянутые образцы при растяжении и сокращении в поляризованном свете и нашел, что при сокращении декристаллизация замедлена, ориентация и кристаллизация увеличивают гистерезис (внутреннее трение) резин, повышая их прочность (в том числе — энергию раздира). Однако повышение скорости раздира приводит к тому, что замедленные ориентационные процессы, вызывающие упрочнение, не успевают происходить, и вместо повышения Н с увеличением v наблюдается его снижение. Оно происходит до тех пор, пока полностью не будет исключена кристаллизация. Дальнейшее повышение скорости, как и у полностью аморфных систем, связано с увеличением энергии раздира. Таким образом, зависимости у от Я или N от Н оказываются немонотонными для резин на основе кристаллизующихся каучуков. Наполнение, будучи в какой-то степени аналогичным кристаллизации, также приводит к немонотонным зависимостям N от Н.  [c.240]

Коэффициент трения х в сильной степени зависит от вида дорожного покрытия (его шероховатости), скорости качения, условий буксования. С повышением внутреннего трения резины коэффициент тренияГувеличивается. Однако чем выше эластичность по отскоку шинной резины, тем выше теплообразование в контакте шины. Коэф-  [c.286]

В и б р о и 3 о л я т о р, или ам(5ртизатор, — элемент виброзащит-ной системы, наиболее существенная часть которого — упругий элемент. В результате внутреннего трения в упругом элементе происходит демпфирование колебаний. Кроме того, в ряде конструкций амортизаторов применяют специальные демпфирующие устройства для рассеяния энергии колебаний. Динамические характеристики амортизатора существенно зависят от его статических характеристик, причем и те и другие являются нелинейными. Нелинейность характеристик амортизатора определяется рядом причин нелинейными свойствами упругого элемента (например, резины), внутренним трением в упругом элементе, наличием конструктивных особенностей амортизатора типа ограничительных упоров, демпферов сухого трения, нелинейных пружин и т. д. На  [c.275]

При работе резиновых изделий, например шин, приводных ремней, рукавов, в условиях много ад1 ц механических напряжений часть механической энергии, воспринимает й 1дем теряется на внутреннее, внутри- и межмолекулярное трение в самом ка шукё и трение между молекулами каучука и частицами ингредиентов. Это трение преобразуется в теплоJ причем потери энергии на внутреннее трение представляют собой явление механического гистерезиса или гистерезисных потерь. В толстостенных изделиях (шинах и др.) вследствие низкой теплопроводности резины аккумуляция тепла от внутреннего трения при многократных напряжениях приводит к значительному нарастанию температур в массе материала, что отрицательно сказывается на его работоспособности.  [c.157]


Замена трения скольжения внутренним трением упругого элемента. Кинематические пары с жесткими звеньями предназначены для относительно небольших линейных, угловых или их совместных перемещений, в ряде случаев могут быть заменены неподвижными соединениями с промежуточным элементом высокой упругости. Взаимное смещение звеньев в процессе их работы достигается за счет деформации эластичного слоя при этом внешнее трение заменяется внутренним трением упругого элемента. Такие соединения выполняются в виде резино-металлических шарниров в различных конструктивных вариантах. На рис. 5 показано крепление рессоры в резиновом башмаке. Резино-металлнческие шарниры обладают такими преимуществами отсутствует износ от внешнего трения отпадает необходимость в смазке и установке уплотняющих устройств упрощается уход уменьшается вес в узлах подвески амортизируются удары, что способствует бесшумности хода.  [c.154]

Диаграмма напряжений по циклу растяжение— сокращение резины (фиг. 43) показывает наличие некоторого остаточного удлинения резины АЕ и характерную петлю гистерезиса АВСОЕ. Площадь АВСЕЕА диаграммы определяет работу, затраченную на растяжение образца, площадь ЕОСЕЕ — работу, отданную резиной. Разность этих двух площадей определяет работу, поглощённую резиной за счёт внутреннего трения её частиц и структурных изменений. Процентное отношение от-  [c.316]

Разность работ нагружения и разгрузки количественно отражает амортизационные евойства резины (рие. 9.13). Площадь петли гистерезиса характеризует величину внутреннего трения и степень разогрева резины при циклическом нагружении (шины, муфты, амортизаторы). Число циклов нагружения, которое выдерживает резина, не разрушаясь, называется усталостной выносливостью. Часто для амортизаторов, камер, шин используют резины на основе СКИ и натурального каучука.  [c.249]

Максимум механич. потерь наблюдается при Tg (рис. 1). В высокоэластич. состоянии механич. потери (резин) зависят от частоты и скорости деформации. Динамич. модуль резин Е, так же, как и механич. потерн, зависит от частоты и скорости деформации. Это связано с тем, что при динамич. режимах работа внешних сил совершается не только против высокоэластич. сил, но и против сил трения. Соответственно этому, как показывает опыт, для статич. и динамич. режимов деформации высокоэластич. модуль состоит из двух частей Е=Е где Е , — равновесный модуль и ,— неравновесная часть модуля, соответственно дающие вклад высокоэластич. сил и сил внутреннего трения в сопротивление резины деформированию. Предельным значением высокоэластич. ди-памич. модуля является модуль Е .  [c.19]

Вдобавок к открытию существенной нелинейности при малых деформациях дерева, цементного раствора, штукатурки, кишок, тканей человеческого тела, мышц лягушки, костей, камня разных типов, резины, кожи, шелка, пробки и глины она была обнаружена при инфинитезимальных деформациях всех рассмотренных металлов. Явление упругого последействия при разгрузке в шелке, человеческих мышцах и металлах температурное последействие в металлах появление остаточной микродеформации в металлах при очень малых полных деформациях явление кратковременной и длительной ползучести в металлах изменение значений модулей упругости при различных значениях остаточной деформации связь между намагничиванием, остаточной деформацией, электрическим сопротивлением, температурой и постоянными упругости влияние на деформационное поведение анизотропии, неоднородности и предшествующей истории температур факторы, влияющие на внутреннее трение и характеристики затухания колебаний твердого тела явление деформационной неустойчивости, известное сейчас, после работы 1923 г., как эффект Портвена — Ле Шателье, и, наконец, существенные особенности пластических свойств металлов, обнаруженные в экспериментах, в том числе явление при кратковременном нагружении,— все эти свойства, отраженные в определяющих соотношениях, были предметом широкого и часто результативного экспериментирования, имевшего место до 1850 г.  [c.39]

Резино-металлические демпферы. Резииа отличается высоким внутренним трением, проявляющимся при циклическом деформировании в виде гистерезисных потерь. Они характеризуются коэф-  [c.102]

Муфты с неметаллическими упругими элементами отли-чают ся простотой конструкции, технологичностью и хорошими амортизирующими, демпфирующими и электроизолирующими свойствами. В качестве материала для упругих элементов используют резину с высокой эластичностью и большим внутренним трением. Однако резина подвержена старению (необратимым изменениям свойств под воздействием окружающей среды), приводящему к снижению прочности и эластичности. Долговечность упругих резиновых  [c.328]

Усталостно-прочностные свойства резин определяются их утомлением, когда под действием механических напряжений происходит разрушение. Утомлению способствуют также действие V света, тепла, агрессивных сред и т. п. Последние факторы вызывают старение. Число циклов нагружения, которое выдерживает, не разрушаясь, образец, называется усталостной выносливостью при динамическом утомлении. Усталостному разрушению сильно способствует действие озона, вызывающее растрескивание поверхностного слоя, особенно для резин на основе НК, СКИ, СКБ, СКС и др. Почти не подвержены озонному растрескиванию резины на основе бутилкаучука и хлоропренового каучука. По работоспособности при нагревании резины из НК вследствие пониженной химической сто11 кости даже не превосходят резин из СКБ. Для обеспечения высокой усталостной прочности необходимы высокая прочность, малое внутреннее трение и высокая химическая стойкость резины. При повышенных температурах (150° С) органические резины теряют прочность после 1—10 ч нагревания, резины на СКТ могут при этой температуре работать длительно. Прочность силоксановой резины при комнатной температуре меньше, чем у органических резин, однако при 200° С прочности одинаковы, а при температуре 250—300° С даже выше (рис. 237). Особенно ценны резины на СКТ при длительном нагревании.  [c.448]


Смотреть страницы где упоминается термин Внутреннее-трение резины : [c.189]    [c.57]    [c.22]    [c.34]    [c.509]    [c.213]    [c.20]    [c.313]    [c.98]    [c.41]    [c.97]    [c.448]   
Машиностроительные материалы Краткий справочник Изд.2 (1969) -- [ c.240 ]



ПОИСК



Резина

Резинен

Трение внутреннее

Трение резин



© 2025 Mash-xxl.info Реклама на сайте