Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Упругие неметаллические

Свернутые кассетные прокладки. Применяются в тех случаях, когда прокладка в замкнутой кассете должна иметь ширину, меньшую, чем у плоских двухэлементных кассетных прокладок. Изготовляются с внутренним диаметром не менее 25 мм. Для придания большей упругости неметаллический наполнитель может быть заменен сплетенной металлической проволокой  [c.277]

Седло 1 крана выполняется из пластмассы, резины или специальных составов с асбестовым, графитовым и другими на полнителями. Удельные давления в уплотнении обеспечиваются за счет натяга при посадке пробки в упругое неметаллическое гнездо. Краны обладают высокой герметичностью. Седло поджимается по мере износа втулкой 2 и при необходимости легко заменяется.  [c.39]


Второе направление — уменьшение высоты неровностей уплотнительных поверхностей в процессе работы путем их деформации (упругой, пластической или смешанной) за счет больших удельных давлений. Здесь ограничениями являются необходимость создания высоких усилий уплотнения, нагружающих конструкцию, а следовательно, необходимость увеличения ее прочности, габаритов и веса, понижение надежности и долговечности работы уплотнения с ростом удельных давлений. Для того чтобы обойти эти трудности, часто применяют материалы с низким модулем упругости (неметаллические). При этом усилия, необходимые для деформации микронеровностей, могут быть значительно снижены.  [c.95]

В машиностроении применяют большое количество разнообразных но конструкции упругих муфт. По материалу упругих элементов эти муфты делят на две группы муфты с металлическими и неметаллическими упругими элементами. В методике расчета муфт каждой из этих групп много общего, что позволяет ограничиться подробным изучением только некоторых типичных конструкций.  [c.312]

По сравнению с неметаллическими металлические упругие элементы более долговечны и позволяют изготовлять малогабаритные муфты с большой нагрузочной способностью. Поэтому их применяют  [c.313]

Неметаллические упругие элементы муфт. Основным материалом неметаллических упругих элементов является резина. Она обладает следующими положительными качествами 1) высокой эластичностью в пределах упругости резина допускает относительные деформации е 0,7.. . 0,8, а сталь только е 0,001.. . 0,002 ири таких деформациях единица массы резины может аккумулировать большое количество энергии (в 10 раз больше, чем сталь) 2) высокой  [c.315]

УПРУГИЕ ЭЛЕМЕНТЫ ИЗ НЕМЕТАЛЛИЧЕСКИХ МАТЕРИАЛОВ, ЛИСТОВЫЕ РЕССОРЫ  [c.416]

Муфты с неметаллическими упругими элементами являются основными для средних и малых моментов.  [c.430]

Широкое распространение в машиностроении имеют упругие муфты с неметаллическими упругими элементами из них особенно часто применяется для соединения валов электродвигателей с валами передач упругая вту л очно -пальцевая муфта (рис. 388). Эти муфты по нормали машиностроения изготовляют для валов диаметром 164-150 мм.  [c.391]

Широкое распространение в машиностроении имеют муфты с неметаллическими упругими элементами из них особенно часто  [c.437]

Все другие механические свойства в большей или меньшей степени структурно, чувствительны и анизотропны. Резкая анизотропия упругих и других механических характеристик присуща многим неметаллическим материалам, что определяется их ориентированным строением. Некоторая анизотропия свойственна и большинству металлических материалов. Уровень прочности, пластичности, выносливости и характеристик разрушения обычно в продольном направлении относительно оси деформации полуфабриката выше, чем в поперечном. Однако для некоторых, например титановых, сплавов характерна обратная анизотропия. Наблюдается значительная разница в пределах текучести при растяжении и сжатии у большинства магниевых деформируемых сплавов  [c.46]


Температурные зависимости механических свойств для каждого класса материалов достаточно близки. Наиболее чувствительны к влиянию температуры свойства, характеризующие сопротивление пластической деформации (твердость, пределы прочности и текучести), а также ударная вязкость. Упругие свойства металлов и сплавов изменяются с температурой в меньшей степени. Напротив, модуль упругости некоторых неметаллических материалов с понижением температуры до —60 °С может снижаться более чем в 2 раза.  [c.66]

В табл. 8.1 приведены перечисленные характеристики для трех групп конструкционных материалов. Первые две - металлы и полимеры. Третью группу образуют неорганические и неметаллические вещества, для обобщения часто называемые керамикой. С последней их роднит минеральное происхождение и высокая температура обработки. В последнем столбце таблицы приведена относительная жесткость, т.е. отношение модуля упругости к плотности вещества. Для наглядности удельная жесткость каждого вещества отнесена к удельной жесткости железа.  [c.376]

По конструкции упругие муфты разнообразны. По материалу упругих элементов они делятся на две группы муфты с неметаллическими упругими элементами и муфты с металлическими упругими элементами (различные стальные пружины, пластины или пакеты пластин).  [c.341]

Основной материал неметаллических упругих элементов— резина. Она обладает высокой эластичностью и демпфирующей способностью. Однако резиновые элементы менее долговечны и прочны, чем стальные, что приводит к увеличению габаритов муфт.  [c.341]

По сравнению с неметаллическими металлические упругие элементы более долговечны и позволяют изготовлять малогабаритные муфты с большой нагрузочной способностью. Поэтому их применяют в основном для передачи больших моментов.  [c.341]

Упругие элементы могут быть металлическими (стальные пружины и рессоры), неметаллическими (как правило, резиновые детали) и пневматическими с гибкой оболочкой (шины и др.), теория которых составляет особую область и здесь не рассматривается.  [c.388]

Характерными дефектами многослойных конструкций являются нарушения или ослабления соединений между элементами, а также дефекты (особенно расслоения) в неметаллических слоях. Особенности этих конструкций (небольшая толщина обшивок, резкие различия в свойствах материалов, многие из которых не допускают контакта с жидкостями, большое затухание упругих колебаний в большинстве неметаллических материалов и др.) ограничивают использование традиционных методов неразрушающего контроля. Для их контроля используют  [c.289]

Возможность контроля изделий из материалов с низкими модулями Юнга и большим затуханием упругих колебаний. Контроль осуществляется преимущественно со стороны неметаллических слоев  [c.292]

У большинства металлов при комнатных и более низких температурах за достижимое в опыте время наблюдения заметить ползучесть не удается. В этих условиях их поведение с достаточной точностью описывается моделью упруго-пластического тела. При более высоких (сходственных) температурах ползучесть может проявиться весьма заметно. Например, у малоуглеродистой стали временные эффекты становятся существенными при температурах выше 400 °С. При таких температурах зависимость между напряжениями и деформациями существенно меняется с изменением скорости деформирования (нагружения), так что кривая а — е без указания условий эксперимента утрачивает смысл. Важно заметить, что ползучесть металлов при высоких температурах наблюдается при любых, даже весьма небольших напряжениях, что отличает это явление от холодной пластичности, которая проявляется только по достижении определенного уровня напряжений. Ползучесть других, неметаллических материалов (цементный камень, бетон, дерево, пластмассы) можно обнаружить уже при комнатной температуре.  [c.752]

Предполагается, что, кроме названных выше основных эффектов, связанных с наличием окалины, на свойства материала подложки вблизи поверхности могут влиять и другие поверхностные факторы. В частности, модуль упругости и параметры решетки очень тонкого ( 30 А) приповерхностного слоя могут изменяться в результате адсорбции атомов газовой фазы [114]. На подобные эффекты ссылаются при объяснении ухудшения механических свойств поверхностных слоев некоторых неметаллических твердых материалов под влиянием адсорбции во влажных средах [136]. Наглядной иллюстрацией служит рис. И, где представлены данные об уменьшении временного сопротивления серебряной проволоки при высоких температурах в атмосферах различных газов (изменения наиболее велики в случае более тонкой проволоки) [137].  [c.31]


Усталостное поведение композита зависит от его типа, т. е. от вида дисперсной фазы. Усталостное поведение материалов, армированных волокном, существенно отличается от поведения материалов, в которых для армирования использованы частицы. Тип материала также оказывает влияние на усталостное поведение металлы отличаются от неметаллических материалов. При изучении усталостного поведения композитов обращают внимание на отрыв по границе раздела матрица — волокно, на возникновение и развитие трещин в матрице, на разрушение дисперсной фазы и др. До того как произойдет полное разрушение материала, последовательность указанных повреждений может быть самой разнообразной. В процессе действия усталостных нагрузок могут происходить значительные изменения модулей упругости и повышение температуры. В рассматриваемом случае процесс усталости носит сложный характер. На рис. 6.31 в общем плане приведены взаимосвязи между структурой материала и процессом усталости.  [c.175]

Развитие и оптимизация конструкций упругих муфт в первую очередь сводится к расширению применения муфт с неметаллическими упругими элементами, испытывающими равномерное напрян енное состояние, работающими на кручение или сдвиг и занимающими в объеме муфты возможно большое место 1175].  [c.62]

Исследование динамических процессов в машинных агрегатах с упругими звеньями на основе линейной (линеаризованной) модели является приближенным. Упруго-диссипативные свойства реальных звеньев, как указывалось выше (см. п. 9), нелинейны. Нелинейности одних видов возникают вследствие неизбежных погрешностей изготовления и монтажа сопряжений (например, зазоры Б кинематических парах). Нелинейности других видов вводятся специально в целях получения специфических свойств машинных агрегатов. В механизмах рабочих машин, например, широко применяются самотормозящиеся передачи (планетарные, червячные, винтовые и др.), муфты с упругими элементами (металлическими и неметаллическими) и пр.  [c.97]

Анализ механизмов реальных машин показывает, что в качестве элементарных звеньев с кусочно-линейными характеристиками можно принять а) звенья с зазорами в кинематических парах (зубчатые и другие передачи с зацеплением, шпоночные и шлицевые соединения, кулачковые и зубчатые муфты и пр.) б) упругие муфты (пружинные и с неметаллическими элементами) в) само-тормозящиеся передачи (червячные, планетарные, винтовые и пр.).  [c.99]

В ряде приводов машин степень влияния нелинейности оказывается незначительной, что позволяет ограничиться при исследовании линейным приближением. Если, например, для нелинейности, связанной с проявлением зазоров в кинематических парах, амплитуда упругого момента в соединении от крутильных колебаний не превосходит величины среднего момента, передаваемого этим соединением, то нелинейные свойства не проявляются. Для различных соединений типа упругих муфт с металлическими и неметаллическими элементами, шлицевых и зубчатых соединений, всегда можно указать условия, в пределах которых можно ограничиться линейной характеристикой [2Э 811.  [c.220]

Переменной жесткостью обладают муфгы с неметаллическими упругими элементами, материалы которых (резина, кожа и т. д.) но  [c.307]

Усы получают также из неметаллических материалов (графитд, окиси бериллия, карбида кремния, окиси алюминия, окиси магния [12]). Прочность многих керамических усов значительно превышает прочность металлических усов (рис. 84). Упругое удлинение керамических усов 1,5—6% модуль нормальной упругости = (30 -н 50) 10 кгс/мм . Исключительно высокий модуль упругости имеют графитные усы ( = 100-10 кгс/мм ). V.,.  [c.173]

Упругая муфта состоит из двух полу-муфт и упругих ьлемент ов, кото )ые могут быть металлическими (стальные пружины) или неметаллическими (обычно из резииы или полиуретана).  [c.428]

Муфты с упругими элементами из эластомеров технологичнее, чем со стальными. Зато ресурс неметаллических упругих элементов меньще, чем стальных. Резина вследствие структурных изменений, ускоряемых внешними воздействиями, постепенно меняет свои упругие свойства.  [c.430]

Неметаллические упругие элементы выполняют однородными резиновыми (или полиуретаповыми), резиноволокнистыми с короткими волокнами и резинокордными. Резиновые элементы обладают повышенной податливостью, но меньшей несущей способностью, применяются при меньших моментах. Хорошо работают на сжатие.  [c.430]

Эти муфты характеризуются большим сроком службы уг.ругнх члементов, чем муфты с неметаллическими упругими. элементами. Зато они дороже. Основная область их применения - передача больших враи ающих моментов.  [c.434]

Эта наиболее распространенная муфта имеет неметаллические упругие элементы из резины, которая обладает хорошей демпфирующей способностью и электроизоляни-онными свойствами. Муфта состоит из двух дисковых иолумуфт, в одной из которых в конических отверстиях закреплены пальцы 1 с надетыми на них резиновыми втулками или кольцами 2. Кольца имеют трапециевидное сечение, что выравнивает напряжения в них. Число пальцев составляет 3. .. 12. ГОСТ 21423—75 предусматривает несколько типоразмеров. муфт для диаметров валов 9. .. 160 мм. Пальцы проверяютна прочность при изгибе, а резиновые элементы — на с.мятие в местах их соприкосновения с пальцем по формуле  [c.342]

Решеточные волны ). Теплопроводность в неметаллических твердых телах осуществляется движением атомов, колеблющихся около своих положений равновесия в решетке. Это тепловое движение можно представить в виде плоских упругих волн. Для идеально решетки гармоничес1 их меж-дуатомных сил вол1 ы соответствуют нормальным колебаниям. В реальном кристалле между упругими волнами происходит обмен энергией, который.  [c.227]


Материалы тел качения фрикционных передач должны обладать высокой износостойкостью и прочностью рабочих поверхностей, возможно большим коэффициентом трения скольжения, высоким модулем упругости (для уменьшения упругого скольжения). Максимальную нагрузочную способность имеют катки из закаленной стали типа 1ПХ15, которые могут работать в масляной ванне и всухую. Применяются в силовых передачах также чугунные катки и сочетания текстолитовых и стальных или чугунных катков. Кроме того, для изготовления катков или их облицовки (для повышения коэффициента трения) применяют кожу, резину, прорезиненную ткань, дерево, фибру и другие материалы. Катки из неметаллических материалов работают всухую.  [c.67]

Первая группа содержит комплекс характеристик, определяемых при однократном кратковременном нагружении. К ним относятся упругие свойства модуль нормальной упругости Е, модуль сдвига G и коэффициент Пуассона ц. Сопротивление малым упругопластическим деформациям определяется пределами упругости Яупр, пропорциональности Опц и текучести Оо,2. Предел прочности Св, сопротивление срезу Тср и сдвигу Тсдв, твердость вдавливанием (по Бринеллю) НВ и царапанием (по шкале Мооса), а также разрывная длина Lp являются характеристиками материалов в области больших деформаций вплоть до разрушения. Пластичность характеризуется относительным удлинением б и относительным сужением ф после разрыва, способность к деформации ряда неметаллических материалов — удлинением при разрыве бр. Кроме того, при ударном изгибе определяется ударная вязкость образца с надрезом K U.  [c.46]

Материалы фрикционных катков должны иметь высокий коэффициент трения /, что уменьшает требуемую силу прижатия F/, высокий модуль упругости Е, что уменьшает потери на трение высокую износостойкость контактную прочность и теплопроводность. Наиболее распространенное сочетание материалов катков закаленная сталь по закаленной стали чугун по чугуну текстолит, фибра или гетинакс по стали (в малонагруженных передачах). Иногда для повышения коэффициента трения один из катков облицовывают прессованным асбестом, прорезиненной тканью и т. п. Как правило, рекомендуется ведомый каток делать из более твердого материала, чтобы избежать образования на нем лысок, появляющихся при буксовании передачи. Буксование наступает при перегрузках, когда не соблюдается условие (7,1), При буксовании ведомый каток останавливается, а ведущий скользиг но нему, вызывая местный износ (лыски). Передачи с неметаллическими рабочими поверхностями могут работать только  [c.112]

Односторонним вариантам метода первому и третьему) присущи интерференционные помехи, затрудняющие контроль небольших (менее 500 X Х500 мм) изделий и конструкций, не содержащих сильно поглощающих упругие колебания неметаллических слоев. По этой же причине обычно не удается обнаруживать дефекты вблизи краев и зон резкого изменения  [c.302]

В общем случае под анизотропией акустических свойств металла понимают изменение скорости распространения и коэффициента затухания в зависимости от кристаллографического направления. Она обусловлена анизотропией механических свойств (модуля упругости, пределов прочности и пластичности и др.). Рассмотрим причины анизотропии акустических свойств. Одна из них — это структура материала. Она наиболее ярко проявляется в металлах с крупнозернистой структурой, имеющих транскри-сталлитное строение, т. е. когда кристаллиты имеют упорядоченное строение и их продольные размеры больше поперечных. Примером могут служить титан, аустенитные швы, медь. Вторая причина —термомеханическое воздействие в процессе изготовления проката, которое делает его структуру слоистой, так как волокна металла и неметаллические включения в процессе деформирования оказываются вытянутыми вдоль плоскости листа. Третья —локальная термическая обработка материала, которая обусловливает возникновение напряжений и, как следствие, изменение механических свойств материала.  [c.317]


Смотреть страницы где упоминается термин Упругие неметаллические : [c.157]    [c.36]    [c.130]    [c.429]    [c.490]    [c.305]    [c.541]    [c.303]    [c.40]   
Полимеры в узлах трения машин и приборов (1988) -- [ c.293 ]



ПОИСК



Шта неметаллические



© 2025 Mash-xxl.info Реклама на сайте