Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Вторая основная задача статики

Вторая основная задача статики. Совершенно аналогично можно определить (т, а)-корректность второй основной задачи, но тогда эта задача не будет корректной ни при каких условиях, наложенных на S.  [c.278]

Сложнее обстоит дело с доказательством существования второго тензора Грина или тензора Грина второй основной задачи статики в области  [c.283]

ПЕРВАЯ И ВТОРАЯ ОСНОВНЫЕ ЗАДАЧИ ТЕОРИИ УПРУГОСТИ (СТАТИКА) 501  [c.501]


Первая и вторая основные задачи теории упругости (статика)  [c.501]

Рамки и характер настоящей книги не позволяют нам остановиться на этих вопросах ). Позтому мы ограничимся указанием, что существование решения первой и второй основных задач доказано в настоящее время с полной математической строгостью при достаточно общих условиях. При этом для существования решения первой основной задачи должно быть соблюдено, очевидно, следующее условие главный вектор и главный момент совокупности объемных сил и (заданных) внешних напряжений, приложенных к поверхности, должны равняться нулю. Это условие вытекает йз основного принципа статики, а также может быть выведено из самих уравнений (1).  [c.75]

В зависимости от того, что именно задается на поверхности, различают три основные задачи статики упругого тела первую, вторую и смешанную (см. [26], стр. 70—72).  [c.73]

В гл. 4 основное внимание уделено многослойным оболочкам вращения, у которых упругие характеристики отдельных слоев примерно одинаковы. Для описания деформирования применяются два подхода. Первый основан на гипотезах Кирхгофа—Лява, второй — на обобщении гипотез С. П. Тимошенко. Рассмотрены способы решения с помощью МКЭ и численного интегрирования систем дифференциальных уравнений задач статики, устойчивости и колебаний, а также вопросы стыковки оболочек с кольцевыми подкрепляющими элементами. Приводится решение задач об осесимметричном деформировании тонкой многослойной оболочки, выполненной из композиционного материала с хрупкой полимерной матрицей, с учетом геометрической, физической и структурной нелинейностей.  [c.122]

В первой главе рассмотрены вопросы теории метода, построения основных расчетных соотношений, дано описание внешней нагрузки, введены понятия о граничных параметрах. Во второй главе показано применение предлагаемого алгоритма для решения задач статики  [c.8]

Основные положения статики вытекают из теоремы об изменении кинетической энергии системы. Такой прием позволяет, во-первых, исключить из курса ряд элементарных теорем статики, которые получаются в данном случае как следствия, и, во-вторых, получить условия равновесия сил, действующих на абсолютно твердое тело, именно в то время, когда они необходимы студентам для изучения сопротивления материалов. Этого нельзя добиться, если в основу статики положить принцип возможных перемещений, что потребовало бы предварительного рассмотрения таких понятий, как возможные перемещения, идеальные связи, а также свойств идеальных связей. Кроме того, энергетический подход к решению статических задач оправдывается тем, что кинетическая энергия является основополагающим понятием механики, о чем было сказано выше. С методологической точки зрения эту особенность трудно переоценить.  [c.71]


Эта задача является усложненным вариантом задачи из 1.1, где усилия в стержнях можно было легко определить только из уравнений проекций, не находя реакции опор и не привлекая понятие момента силы. Аналогично можно поступить и в этой задаче, однако порядок системы линейных уравнений, описывающей равновесие всех узлов, будет велик, поэтому, во-первых, надежно решить такую систему можно только с помощью компьютера ( 15.1, с. 350), во-вторых, таким образом будет проделана лишняя работа, так как система уравнений содержит усилия всех стержней, в том числе и тех, которые по условию задачи не требуется определять. Поэтому для решения сложных ферм, содержащих большое число стержней, применим метод Риттера, основная идея которого — независимое определение усилий в стержнях. Эту же идею можно с успехом применять и в других задачах статики.  [c.38]

Теоремы о простоте полюсов резольвенты. В 4 главы VI было доказано, что характеристические числа сингулярных интегральных урав нений основных задач (первой и второй) статики являются простыми полюсами резольвент.  [c.297]

Одно из следствий научно-технической революции заключается в резком повышении требований к точности расчетов, что, в свою очередь, требует более полного учета всех физических особенностей рассматриваемых задач. Как правило, прикладные задачи, связанные с исследованием колебаний стержней, требуют знания статического напряженно-деформированного состояния. Это существенно осложняет решение уравнений движения, так как требует решения уравнений равновесия — определения вектора состояния в статике, компоненты которого входят в качестве коэффициентов в уравнения малых колебаний. В консервативных задачах статическое напряженно-деформированное состояние влияет в основном только на спектр частот, изменяя их числовые значения. В неконсервативных задачах, например в задачах взаимодействия стержней с потоком воздуха или жидкости, статическое напряженно-деформированное состояние влияет не только на спектр частот (на мнимые части комплексных собственных значений), но и на критические состояния стержня (на действительные значения комплексных собственных значений), что, конечно, необходимо учитывать при расчетах. Во второй части книги, так же как и в первой, основные теоретические положения и методы решения иллюстрируются конкретными примерами, способствующими более глубокому пониманию излагаемого материала.  [c.3]

Работая ряд лет в области транспортного машиностроения, мы на практике убедились в неудобстве решения задач графической механики веревочно-силовым методом. Неудобство это заключается прежде всего в наличии двойного построения 1) полигона сил и 2) веревочного полигона, что требует и двойного ответа на один и тот же вопрос, в частности, о равновесии системы сил, а именно 1) замыкания полигона сил и 2) замыкания сторон веревочного полигона. По мнению крупнейшего ученого в области графостатики В. Л. Кирпичева [16], Такой дуализм или двойственность построения встречается во всех вопросах графической статики . Здесь уместно будет привести несколько замечаний о недостатках указанного выше метода, высказанных авторитетными специалистами в области графических расчетов П. А. Велиховым, С. А. Бернштейном и др. Так, С. А. Бернштейн в статье Комбинированный силовой и веревочный многоугольник говорит Построение веревочного многоугольника сопряжено с двумя неудобствами. Главным из них является параллельный поеное большого числа лучей, представляюш,ий основной источник накопления ошибок и отнимающий наибольшую часть времени при построении. Второе неудобство особенно сказывается при построении силового многоугольника для случая параллельных сил противоположного направления при этом начальные и концевые точки сил располагаются вперемежку, а лучи могут занять настолько близкое положение между собой, что разобраться в силовом многоугольнике может быть нелегким делом .  [c.5]


В работах Купрадзе [13, 8, 14] первая и вторая основные задачи впервые были изучены методом сингулярных интегральных уравнений. Изложение этих вопросов, приведенное в 2—5 (пп. 1, 2 и 6), имеется в работах Купрадзе [8, 13, 16, 14], Гегелиа [81, а также Михлина [11. Особо следует отметить позднюю работу Купрадзе (см. Купрадзе [18]), где применением результатов Фикера (см. Fi hera [4]) исследуется пятая задача статики классической теории упругости (см. 5, п. 7).  [c.279]

Рассмотреть в учебнике все возможные частные задачи, относящиеся к механике стержней, практически невозмолспо, поэтому изложение материала ограничено основными задачами, которые имеют наиболее широкое распространение в тех областях техники, для которых готовят специалистов в технических вузах. В данном учебнике такими основными задачами являются задачи статики (первая часть), динамики (вторая часть) физически линейных нерастяжимых элементов машин, приборов и конструкций, сводящихся к расчетной схеме стержня.  [c.268]

Во-вторых, результаты, полученные методом задачи Римана — Гильберта, охватывающим структуры из бесконечно тонких плоских экранов или экранов с осевой (центральной) симметрией, стимулировали поиск подходов, позволявших бы также эффективно анализировать электродинамические свойства решеток других типов. Эта проблема частично решена с появлением метода, в основе которого лежит аналитическое преобразование матричных уравнений типа свертки [25, 57, 58, 92, 93]. Методологическая основа у этих подходов общая — обращение части оператора некорректного исходного операторного уравнения. Отличает их техника выполнения процедуры полуобращения (решение задачи сопряжения теории аналитических функций и вычисление главных частей в разложении Миттаг — Леффлера мероморных функций), а также то, что в первом подходе выделяется и обращается статическая часть задачи (и = 0), а во втором — часть задачи, отвечающая определенной геометрии периодического рассеивателя. По существу при этом использовалась возможность явного аналитического решения задач статики и дифракции плоских волн на системе идеально проводящих полуплоскостей [38, 40]. Недавно полученные в [94—96] результаты, видимо, также могут послужить основой для создания новых вариантов метода полуобращения. Эффективность последнего подтверждается практическим решением проблемы дифракции волн в резонансной области частот на периодических решетках основных типов 124, 25, 58] идеально-проводящих эшелеттах, решетках жалюзи и ножевых, плоских ленточных и решетках из незамкнутых тонких экранов, решетках из брусьев металлических и диэлектрических с прямоуголь-  [c.8]

В течение XVII в,, в эпоху формирования классической механики, статические задачи, побуждавшие в той или иной мере заниматься проблемой устойчивости, были оттеснены на задний план задачами динамики. В новых задачах динамики вопрос об устойчивости, принципиально более сложный и гораздо менее наглядный, чем в задачах статики, поначалу вовсе не ставился. В результате в течение примерно столетия в проблему устойчивости не было внесено ничего существенно нового. Обновление приходит вместе с развитием в XVIII в. аналитических методов механики. Новыми существенными успехами учение об устойчивости обязано Л. Эйлеру Стимулом было, как и прежде, исследование проблемы плавания. В 1749 г. в Петербурге была издана двухтомная Корабельная наука (на латинском языке) Леонарда Эй- лера Этот труд был закончен в основном еще в 1740 г. Его третья глава — Об устойчивости, с которой тела, погруженные в воду, упорствуют в положении равновесия ,— начинается с утверждения, что устойчивость, с которой погруженное в воду тело упорствует в положении равновесия, должна определяться величиной момента восстанавливающей силы, когда тело будет наклонено из положения равновесия на данный бесконечно малый угол. Здесь дается обоснованная предыдупщм изложением мера устойчивости, четко введена устойчивость равновесия по отношению к бесконечно малым возмущениям, а в дальнейшем изложении устойчивость равновесия исследуется с помощью анализа малых колебаний плавающего тела около положения равновесия. Дифференциальное уравнение второго порядка, описывающее эти колебания, составляется в соответствии с введенной мерой устойчивости, путем отбрасывания малых величин порядка выше первого и поэтому оказывается линейным уравнением с постоянными коэффициентами (без слагаемого с первой производной, так как трение не учитывается, и без правой части). Это позволяет сопоставить его с хорошо изученным к тому времени уравнением малых колебаний математического маятника при отсутствии сопротивления среды. Качественная сторона дела тоже учитывается введенной Эйлером мерой момент восстанавливающей силы зависит от оси, относительно которой он берется, и для одних осей он может быть положителен (устойчивость равновесия), для других отрицателен (неустойчивость), для  [c.118]

В первой главе рассмотрены вопросы теории метода, построения основных расчетных соотношений, дано описание внешней нагрузки, введены по11ятия о граничных параметрах. Во второй главе показано применение предлагаемого алгоритма для решения задач статики стержневых систем, учета продольных перемещений и деформации сдвига. В третьей и четвертой главах описаны задачи динамики и устойчивости стержневых систем. Пятая глава посвящена выводам и анализу практического применения нового метода. В шестой главе рассмотрены отдельные задачи теории тонких пластин, которые могут быть решены предлагаемым методом.  [c.4]

В 1743 г. был опубликован основной труд Даламбера по механике — его знаменитый Трактат о динамике . Первая часть Трактата посвящена построению аналитической статики. Здесь Даламбер фор.мулирует основные принципы механики , которыми он считает принцип инерции , принцип сложения движений и принцип равновесия . Принцип инерции сформулирован отдельно для случая иокоя и для случая равномерного прямолинейного движения. Принцип сложения движений представляет собой закон сложения скоростей по правилу параллелограмм,а. Принцип равновесия сформулирован в виде следующей теоремы Если два тела, обладающие скоростями, обратно пронорциональными их массам, имеют противоположные направления, так что одно тело не может двигаться, не сдвигая с места другое тело, то между этими телами будет иметь мест равновесие . Во второй части трактата, называемой Общий иринциидля нахождения движения многих тел, произвольным образом действующих друг на друга, а также некоторые применения этого принципа , Даламбер предложил общий метод составления дифференциальных уравнешгй движения любых материальных систем, основанный на сведении задачи динамики К статике. Здесь для любой системы материальных точек формулируется правило, названное впоследствии принципом Даламбера , согласно которому приложенные к точкам системы силы мон<но разложить на действующие , т. е. вызывающие ускорение системы, и потерянные , необходимые для равновесия системы.  [c.195]


Xi/торянский Я. jM. Граничные интегральные и интегродифференциальные уравнения второго рода для основной смешанной задачи теории упругости // Прикладные проблемы прочности и пластичности Статика и динамика ла )ормируемых систем.— Горький, I98I.— С. 3—13.  [c.228]

Хуторянский Н. М. Граничные интегральные н интегро-дифферен-циальиые уравнения второго рода для основной смешанной задачи теории (упругости. — Прикладные проблемы прочности и пшастичност . Статика и динамика деформируемых систем. Всесоюз. межвуз. сб./Горьк. ун .т, 1 1, с. 3—13.  [c.290]


Смотреть страницы где упоминается термин Вторая основная задача статики : [c.279]    [c.503]    [c.123]    [c.224]   
Смотреть главы в:

Трехмерные задачи математической теории упругости и термоупругости Изд2  -> Вторая основная задача статики



ПОИСК



Вторая задача статики (П)

Вторая основная задача

Г лава XIII РЕШЕНИЯ В ОБОБЩЕННЫХ РЯДАХ ФУРЬЕ Первая и вторая основные задачи теории упругости (статика)

Задача основная

Задачи статики

Задачи статики основные

Основная задача статики

Основные задачи

Статика



© 2025 Mash-xxl.info Реклама на сайте