Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Структурные изменения при усталости

СТРУКТУРНЫЕ ИЗМЕНЕНИЯ ПРИ УСТАЛОСТИ  [c.196]

Проведение эксперимента. Анализ литературных данных свидетельствует о том, что процесс разрушения металлов и сплавов при объемном циклическом деформировании характеризуется однозначными закономерностями структурных изменений только в области малоцикловой усталости. На этом основании область контактных давлений, превышающих предел текучести материала, была выбрана для анализа закономерностей структурных изменений при трении. Малоцикловая усталость (область пластического контакта) реализуется преимущественно при сухом трении скольжения при больших контактных давлениях и температурах выше 100 °С. В этих условиях работают муфты, тормозные устройства, опорно-поворотные круги экскаваторов [20, 22, 51, 93]. Наиболее распространенным материалом в такого рода узлах являются стали и металлокерамики на железной основе. Выбор материала для исследования (сталь 45) обусловлен не только его практической применимостью в узлах трения, но и изученностью с точки зрения развития разрушения при объемном циклическом деформировании, что является необходимым условием для сопоставления механизма разрушения при объемной и фрикционной усталости.  [c.38]


Анализ многих исследований свидетельствует о том, что величина зерна (без попутных структурных изменений) может изменять предел выносливости на 20—30 %. При рассмотрении влияния различных факторов на процесс усталости следует учитывать две стадии до появления трещины и распространение трещины. Установлено, что создание мелкозернистой структуры влияет лишь на стадии до появления трещины. Следовательно, при испытании гладких образцов, когда длительность стадии распространения трещины относительно общей долговечности невелика, полученная мелкозернистая структура приводит к возрастанию предела  [c.151]

Изложенные данные дают основание для заключения, что основные структурные изменения в аустенитных сталях при малоцикловой усталости в исследованных режимах происходят на первых стадиях нагружения.  [c.79]

Характер сдвиговых процессов в материале плакирующего слоя показан на рис. 134, г—е, который иллюстрирует неравномерность раскрытия полос скольжения, имеющих вид прерывистых линий. В участках максимальной деформации и в зонах сосредоточения различных дефектов и несовершенств происходит наиболее интенсивное разрыхление поверхности материала, сопровождающееся появлением и накоплением необратимых структурных изменений и очагов разрушения, вызывающих возникновение микротрещин. Кроме того, накопление повреждений при усталости происходит и во внутренних микрообъемах биметалла.  [c.226]

Анализ приведенных работ показывает, что физические методы количественной оценки состояния поверхностны х слоев при трении в период предразрушения и разрушения представляют особый интерес. При их использовании для изучения усталостного механизма износа целесообразно принять во внимание основные закономерности структурных изменений металлов и сплавов, полученные для объемной усталости.  [c.32]

Наряду с развитием расчетных методов оценки долговечности деталей машин при циклическом нагружении [82—84] проводится широкое исследование структурных изменений металлов и сплавов, цель которого — не только выяснение физической природы усталости, но и поиск структурных критериев, позволяющих определить усталостные повреждения до наступления разрушения.  [c.32]

Преимущественное развитие усталостных трещин происходит в поверхностных слоях, что обусловлено более ранним по сравнению с остальным объемом металла повреждением поверхностных слоев из-за более раннего накопления в этих слоях критической плотности дислокаций [83]. Поскольку процесс усталости во всей массе протекает неоднородно, то для изучения изменения свойств в процессе циклического нагружения необходимы характеристики, которые позволяли бы судить о процессах, происходящих в локальных объемах металла. В связи с этим при изучении усталостного разрушения широкое применение нашли методы измерения твердости и микротвердости, рентгеновского анализа, оптической и электронной микроскопии. Результаты этих исследований представляют большой интерес для выявления сходства и различия кинетики накопления структурных повреждений и разрушения в условиях объемного циклического нагружения и при фрик-ционно-контактной усталости, поскольку аналогичные методы исследования широко применяются при трении. Методы интегральной оценки структурных изменений, такие, как измерение электросопротивления (проводимости), внутреннего трения, магнитных свойств, несмотря на то что требуют специальной подготовки образцов и соответственно испытательного оборудования, также могут быть полезны для исследования процессов трения.  [c.33]


Таким образом, результаты исследований, проведенных на модели фрикционного контакта при трении скольжения показали, что периодический характер структурных изменений связан с периодическим упрочнением и разрушением поверхностного слоя. Количественная оценка закономерностей структурных изменений выявила общность уравнений, описывающих разрушение металлов и сплавов при объемной и фрикционной усталости, что дает основание рассматривать периодический характер структурных изменений как физическое подтверждение усталостной природы износа.  [c.72]

Определение параметра фрикционной усталости t является важной задачей при количественной интерпретации усталостного механизма разрушения. Способы его прямой и косвенной оценки кратко рассматривались ранее. Результаты, приведенные выше, свидетельствуют о том, что метод количественного анализа структурных изменений может быть предложен в качестве нового прямого метода определения параметра t. Достоинство этого метода заключается в том, что структурные изменения являются комплексной характеристикой, отражающей воздействие на материал как условий трения, так и влияние окружающей среды. Полученные значения t показывают, что процесс трения осуществлялся в области пластического контакта, где его величина чаще всего равна 2—3. При испытании на модели фрикционного контакта для стали 45 другим методом получено приближенное значение f = 1,3 1511.  [c.73]

Существование такой общности подтверждается общими аналитическими зависимостями, которые описывают разрушение металлов и сплавов при фрикционной и объемной усталости. Уравнение Коффина, характеризующее разрушение металлов и сплавов в условиях объемной малоцикловой усталости, было получено для трения путем количественной оценки периодичности структурных изменений поверхностных слоев при испытании стали 45 на модели фрикционного контакта [121]. Эти же исследования позволили выявить особенности процесса трения, связанные с градиентом деформаций и напряжений по глубине. В целом они показывают, что, несмотря на своеобразие поведения поверхностных слоев материалов при пластическом деформировании и специфику нагружения при трении, связанную с локализацией изменений и разрушения в тонком поверхностном слое, дискретностью контакта, возможными локальными вспышками температуры, сложным напряженным состоянием, большими, близкими к предельным напряжениями на контакте, между разрушением металлов и сплавов при фрикционной и объемной усталости пет принципиального, качественного различия.  [c.105]

Исследования поверхностного слоя жаропрочных сталей и сплавов после ЭХО с различными плотностями тока показывают, что металл его не деформирован, технологические остаточные макронапряжения в нем отсутствуют, каких-либо структурных изменений не выявлено. Шероховатость поверхности после ЭХО с увеличением плотности тока уменьшается. Измерения профилограмм микронеровностей поверхности образцов после ЭХО показали, что с увеличением плотности тока уменьшается не только высота микронеровностей, но изменяется характер микронеровностей, их профиль. По сравнению с абразивной обработкой микронеровности имеют более плавное очертание, исключаются единичные острые впадины (царапины). С увеличением плотности тока уменьшается глубина растравливания границ зерен сплавов и сталей, а при плотностях тока 35 А/см и более на многих сплавах и сталях следы растравливания границ зерен практически не обнаруживаются. Приведенные экспериментальные данные дают основание считать, что повышение сопротивления усталости с увеличением плотности тока при ЭХО обусловливается в основном улучшением чистоты обработанной поверхности.  [c.214]

Размах напряжений Асг в цикле в условиях термической усталости оказывается наименее стабильным параметром. На величину A t влияют нестабильность физико-механических свойств и термо-циклического упрочнения материала и релаксация термических напряжений, особенно при максимальных температурах цикла. Если учесть еще структурные изменения материала для разных этапов термоциклического деформирования, то форма петли упругопластического гистерезиса существенно изменится. Например, для термической усталости наиболее характерна несимметричная по напряжениям в полуциклах нагрева и охлаждения петля гистерезиса.  [c.6]


Приводятся результаты исследования структурных изменений и их взаимосвязи с усталостью и неупругостью металлов при деформировании таких модельных материалов, как монокристаллы молибдена и крупнозернистый никель. Излагается статистический подход к описанию закономерностей неупругого деформирования металлов, основанный на учете неоднородного деформирования локальных объемов поликристалла. Анализируются общие закономерности неупругого деформирования большой группы сплавов на основе меди, железа, алюминия, никеля и т. д. в связи с влиянием числа циклов нагружения, напряжений, режима испытания, вида напряженного состояния, температуры и т. п.  [c.4]

Приведенные данные показывают, что характер изменения неупругой деформации за цикл хорошо соответствует структурным изменениям в металле в процессе второго и третьего периодов усталости, которые были названы периодами разупрочнения и разрушения. Что касается первого периода, то в этом случае не всегда наблюдается уменьшение неупругих деформаций с увеличением числа циклов нагружения, что должно иметь место при упрочнении металла. Это, очевидно, обусловлено тем, что приведенная классификация периодов усталости на основе исследования структурных превращений в металле не учитывает эффекта уменьшения сопротивления циклическим неупругим деформациям вследствие возникновения системы ориентированных остаточных напряжений в зернах поликристалла, влияние которых может быть весьма суш,ественным, а также влияние скорости деформирования.  [c.161]

В гл. II было показано, что для многих металлов (углеродистые конструкционные стали, теплоустойчивые стали, пластичные аустенитные стали, чугуны, сплавы на основе меди, некоторые сплавы алюминия и никеля и др.) в области многоцикловой кривой усталости, начиная с предела выносливости на базе 10 циклов, имеют место заметные неупругие циклические деформации, характеризующие структурные изменения в металлах при циклическом нагружении, непосредственно связанные с процессом накопления усталостного повреждения.  [c.225]

Известно [91 ], что после финишного шлифования титановых сплавов существенно снижается их сопротивление повторным нагрузкам как в малоцикловой области, так и при испытании на усталость с большим числом циклов. Различные технологические условия шлифования приводят к изменению долговечности до двух порядков и в несколько раз изменяют предел выносливости. Для выявления причин изменения эксплуатационных характеристик исследованы структурные изменения образцов наиболее типичной для титановых сплавов марки ВТ9, обработанных при различных условиях плоского врезного шлифования. Варьировали характеристики абразивного инструмента скорость резания Vp, глубину шлифования h, скорость продольного перемещения изделия.  [c.147]

И разрыв кривых усталости, и перегибы (ступеньки) на кривых усталости при переходе от малоцикловой усталости к многоцикловой являются, по-видимому, следствием одного и того же процесса интенсификации процессов пластической деформации и разрушения при достижении определенного напряжения, когда за каждый цикл нагрузки возникают трещины субмикроскопических и микроскопических размеров. Это должно, с одной стороны, сопровождаться интенсивным разогревом образца и интенсификацией процессов повреждаемости, а с другой стороны, интенсификацией процессов упрочнения (повышения плотности дислокации и их блокировки, например, в результате динамического деформационного старения). Кроме того, в металлических сплавах в процессе циклического деформирования могут интенсивно протекать фазовые превращения (например, мартенситное превращение в метастабильных аустенитных сталях или процессы возврата в алюминиевых сплавах). Эти фазовые превращения и структурные изменения могут существенно  [c.25]

С помощью термообработки можно в широких пределах изменять структурное состояние и механические свойства металлических материалов. При отсутствии четко выраженных аномалий, как правило, термообработка оказывает на усталостную прочность примерно такое же влияние, как на предел прочности и твердость, при этом отношение предела вьшосливости к пределу прочности имеет линейную зависимость и зависит от структуры. Отклонения от этого правила наблюдаются у высокопрочных материалов их можно, вероятно, объяснить влиянием остаточных напряжений, концентраторов напряжений, возникших при обработке поверхности, и неблагоприятными структурными изменениями. У углеродистой стали наиболее высокая усталостная прочность наблюдается у образцов со структурой мартенсита отпуска, а характеристики усталости мартенситной структуры с доэвтектоидным ферритом уступают характеристикам циклической прочности нормализованных образцов. Термическая обработка, изменяя  [c.228]

Серия микрофотографий, снятых с поверхности образца стали 0Х18Н10Ш в процессе нагружения и отражающих развитие структурных изменений при малоцикловой усталости, представлена на рис. 1. Четкие, легко различимые полосы скольжения появляются уже на ранних стадиях испытания (рис. 1, а, б). В дальнейшем число таких полос скольжения, полос сдвига и двойников увеличивается и они захватывают новые зерна образца (рис. 1, в), приводя к упрочнению материала, в связи с чем ширина петли гистерезиса уменьшается. Картина в общем аналогична наблюдаемой при статическом деформировании, когда увеличение действующего напряжения и деформации активизирует все большее число плоскостей скольжения, что приводит к заметному упрочнению стали. Возникающие полосы скольжения являются устойчивыми и не удаляются при слабой полировке поверхности образца. Карбидное травление образца стали 0Х18Н10Ш после разрушения показало, что в зоне магистральной трещины скапливаются карбидные частицы, которые служат локальными концентраторами напряжения (рис. 1, г) и тхриводят к появлению микротрещин.  [c.75]


В данном случае снижение концентрации алюминия пришрлит к росту коэффициента термического расширения покрытия. В результате несоответствие между КТР покрытия и защищаемого сплава постоянно растет. Из-за этого в покрытии при охлаждении возникают большие растягивающие напряжения, приводящие к образованию трещин термичес1 011 усталости. Разрушение претерпевшего структурные изменения покрытия усугубляется еще и тем, что после завершения процесса распада пнтерметаллидов по всей глубине слоя во внутренних его объемах наблюдается образование и рост включений сульфидов. Их образование обусловливает объемные изменения в покрытии и, как следствие, возникновение растягивающих структурных напряжений.  [c.186]

Описываемые ниже методика и аппаратура обеспечивают возможность регистрации диаграмм циклического деформирования с соответствующими измерениями деформаций, наблюдения за испытываемым объектом с целью анализа условий возникновения и развития трещин и за структурными изменениями материала, определяющими его сопротивление деформированию и разрушению. Для реализации методики к испытательной установке серии МИР [ 1 ] разработаны и изготовлены система двухчастотного силовозбужде-ния с низкочастотным нагружением в области малоцикловой усталости и регистрацией при этом диаграммы циклического деформирования и система нагрева образца для осуществления данных испытаний в области высоких температур. Внешний вид модернизированной установки с пультом управления ее системами представлен на рис. 1.  [c.15]

М. Г. Лозинскии, А. И. Романов, В. В. Малов. Структурные изменения аустенитной стали при изотермическом малоцикловом программном нагружении. Материалы Всесоюзного симпозиума по малоцикловой усталости при повышенных температурах. Челябинск, Челябинский политехнический институт, 1974.  [c.72]

Механизм разрушения металлов и сплавов в условиях циклической пластической деформации (область малоцикловой усталости) был раскрыт при сочетании изучения механики материала и его структурных изменений [87, 88J. Результаты исследования на алюминии, техническом железе и меди показали, что циклическая пластическая деформация представляет собой трехстадийный процесс, в котором каждая из стадий характеризуется присущими ей особенностями и структурными изменениями. Последовательные стадии циклического деформирования схематически отображены на рис. 15. Выбор осей координат обусловлен тем, что для целого ряда металлов справедливо следующее соотношение [87]  [c.34]

Под термической усталостью понимают появление в детали трещин вследствие действия циклических термических напряжений [4]. Эти напряжения возникают при отсутствии возможности свободного изменения геометрических размеров детали. Трещины термической усталости появляются после некоторого числа теплосмен. Исследования Ю. Ф. Баландина показали, что еще до образования трещин термической усталости в материале происходят необратимые структурные изменения, влияющие на кротковременные и длительные характеристики металла. Эти изменения могут также вызвать изменение размеров детали. Первые трещины термической усталости возникают на поверхности изделий и трудно различимы, особенно на литых необработанных поверхностях. При последующем увеличении числа циклов количество трещин и их размеры возрастают. Образуется сетка трещин, возникают разрывы стенок, и деталь разрушается. Следует учитывать, что действие теплосмен на деталь, как правило, происходит одновременно с действием механических нагрузок (от давления, центробежных сил и т. п.), остаточных напряжений, коррозионной среды, и т.д. Таким образом, повреждения детали определяются суммарным действием всех перечисленных выше факторов. Следует отметить, что при анизотропии свойств металла детали, т. е. при различных коэффициентах линейного расширения, могут появиться термические напряжения второго рода.  [c.22]

Исследование структурных изменений в материале nojf влиянием термической усталости находится на начальной стадии [2, 25, 72, 81, 115]. Первые серьезные упоминжия в литературе на эту тему относятся к пятидесятым годам, когда появились публикации Ко-нигера и Либмана В публикуемых работах [18, 781 приведены изменения механических свойств материала после их ударного нагрева, но без глубокого анализа структурных изменений. Исследования сводились к разработке нрвых методик для лабораторных условий и проводились они в основном на образцах из высоколегированной стали [2. 26, 75, 91, 142]. В этих работах описаны различные методики и определено количество циклов нагружения, при которых на поверхности материала образуются трещины.  [c.21]

Материалы для кокилей. В процессе эксплуатации в кокиле возникают значительные термические напряжения вследствие чередующихся резких нагревов (при заливке и затвердевании отливки) и охлаждений (при раскрытии кокиля и извлечении отливки), нанесения на рабочую поверхность огнеупорного покрытия). К тому же под действием переменных температур в материале кокиля могут протекать сложные структурные изменения и химические процессы. Поэтому материалы для кокиля, особенно для его частей, непосредственно соприкасающихся с расплавом, должны хорошо противостоять термической усталости, иметь высокие механические свойства и минимальные структурные превращения при температурах эксплуатации, обладать повышенной росто-устойчивостью и окалиностойкостью, иметь минимальную диффузию отдельных элементов при циклическом воздействии температур, хорошо обрабатываться, быть недефицитными и недорогими.  [c.261]

Установленные особенности поведения стали при реализации вязкого и вязкохрупкого отрыва позволяют резко повысить информативность результатов традиционных испытаний на усталость, представленных на рис. 118. Использование принципов синергетики позволило Якиревичу [237] разработать метод определения инвариантного предела усталости j i, соответствующего зарождению кластера критического размера, способного к самоподобному росту при а > a i. При а < a i этот рост невозможен. Как установлено в [237], структурные изменения, происходящие при  [c.190]

Существенное значение в проявлении эффекта градиента напряжений при испытаниях на усталость имеют стадии зарождения магистральной усталостной трещины (стадии рассеянного усталостного повреждения). Это показано как в работах, непосредственно посвященных исследованию структурных изменений на поверхности циклически нагружаемых образцов с различными градиентами напряжений 1247], так и в работах по исследованию неупругих деформаций на стадии стабилизации II58I,  [c.82]

Для непосредственного изучения структурных изменений, происходящих при нагреве и охлаждении материалов, применяют высокотемпературные микроскопы. С их помощью можно осуществлять прямое наблюдение процессов рекристаллизации, роста зерен, фазовых превращений, а также некоторых поверхностных явлений. С целью расширения исследовательских возможностей высокотемпературные микроскопы часто используют в комплекте с устройствами,. позволяющими одновременно подвергать образцы различным видам нагружения (растяжению, сжатию, изгибу, ползучести, усталости), измерять микротвердость и регулировать в широких пределах скорости деформации, нагрева и охлаждения. Такие Зютановки позволяют получать ценную информацию о механизмах пластической деформации и разрушения, взаимосвязи между структурой н свойствами исследуемых материалов.  [c.33]


Сопротивление усталости при повышенных температурах определяется, как и при нормальных, проц самй местного пластического деформирования, накопления повреждения и распространения трещин. На сопротивление так же влияют изменения свойств металла во времени в результате цагрева деформированного металла, они отра-жают старение, разупрочнение, возврат, охрупчивание и проявление других связанных со структурным изменением факторов.  [c.216]

Глава I монографии посвяш.ена изложению фундаментальных вопросов проблемы усталости металлов, в первую очередь при многоцикловом нагружении. Изучаются особенности деформирования и разрушения металлов при малоцикловом и многоцикловом нагружениях. Приводятся результаты исследования структурных изменений в металлах при циклическом нагружении. Анализируется влияние конструктивных, эксплуатационных и технологических факторов на величину предела выносливости конструкционных сплавов. Излагаются феноменологические теории усталостного разрушения металлов. Описываются обш,ие представления о кинетике развития усталостных треш.ин и критериях перехода от стабильного к нестабильному распространению треш ин. Приводятся некоторые данные о закономерностях усталостного разрушения металлов при комплексном воздействии различных повреждаюш их факторов.  [c.3]

Представляет интерес сравнение закономерностей изменения еличины неупругой деформации за цикл при увеличении числа циклов нагружения с периодами усталости, установленными рядом дсследователей на основе изучения структурных изменений в металлах в процессе повторно-переменного нагрул ения.  [c.160]

Лозинский М. Г., Романов А. Я., Малое В. В. Структурные изменения аустенитной стали при изотермическом малоцикловом программном нагружении. Материалы Всесоюзн симпоз. по малоцикловой усталости при повышенных температурах. Челябинск, политехнич. ин-т, 1974, с. 59—70.  [c.86]

Установленное в исследованиях С. Т. Кишкина выпадение карбидов при испытаниях на усталость аустенитных сталей типа 15% Сг— 15% N1 и 18% Сг — 8% N1 было вызвано именно деформацией. Это доказывается отсутствием структурных изменений вблизи нейтральной оси изгибаемого образца и наличием этих изменений при удалении от нейтрального слоя, где наблюдалась деформация порядка 0,2%).  [c.203]


Смотреть страницы где упоминается термин Структурные изменения при усталости : [c.21]    [c.185]    [c.187]    [c.36]    [c.198]    [c.142]    [c.145]    [c.246]    [c.113]   
Смотреть главы в:

Механические свойства металлов Издание 3  -> Структурные изменения при усталости



ПОИСК



Связь между структурными изменениями и повышением критической температуры хрупкости в процессе усталости

Усталость



© 2025 Mash-xxl.info Реклама на сайте