Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Марганец — Влияние на структуру

Кроме железа и углерода стали в своем составе, имеют некоторое количество так называемых постоянных примесей. Эти примеси оказывают различное влияние на структуру, а следовательно, и на свойства сталей. Неизбежными спутниками сталей являются сера, фосфор, марганец, кремний, а также углерод — необходимый компонент сталей, оказывающий основное влияние на их структуру и свойства. Чем больше содержание углерода, тем выше твердость и прочность стали, но тем ниже пластичность и вязкость (рис. 7.1). Наибольший предел прочности достигается при содержании углерода около 0,9 %. При дальнейшем увеличении количества углерода в структуре стали появляется вторичный цементит, располагающийся по границам зерен перлита в виде сетки. Из-за этого увеличивается твердость, но уменьшается прочность, так как цементит хрупок. Снижаются ударная вязкость КС (а ), относительное удлинение 5 и относительное сужение ф.  [c.98]


В указанных количествах марганец и кремний существенного влияния на структуру и свойства стали не оказывают. Фосфор и сера, как известно, вызывают повышенную хрупкость стали и поэтому их присутствие в стали нежелательно.  [c.88]

Марганец, хром, цирконий оказывают большое влияние на структуру, механические и коррозионные свойства алюминиевых сплавов, на их поведение при различных технологических обработках. Диаграмма состояния сплавов системы А1—Мп эвтектического типа, а сплавов А1—Сг, А1—Ът — перитектического типа. Указанные сплавы отличаются от других сплавов высокой температурой предельной растворимости марганца, хрома, циркония в алюминии и крутым подъемом линии ликвидуса [10].  [c.147]

Рассмотрим индивидуальные особенности влияния некоторых элементов (кремний,. марганец и другие) на структуру и свойства чугуна.  [c.110]

Марганец в незначительном количестве не оказывает заметного влияния на структуру и свойства латуней.  [c.44]

Углеродистыми называют стали, которые содержат марганец, кремний, хром, никель в количествах не более 0,3—0,5%, фосфор, серу — не более 0,05%, а кислорода — около 0,01%. Эти примеси в указанных количествах называются нормальными они обусловлены металлургическими процессами при выплавке стали в печах, а также составом шихты и обычно не оказывают существенного влияния на структуру и свойства стали.  [c.186]

Влияние легирующих элементов на коррозионную стойкость сплавов. Легирующие элементы, изменяя структуру сплава, оказывают влияние на повышение его механических свойств и коррозионной стойкости. Хром вводят как основной элемент, способствующий пассивации стали, марганец  [c.61]

Марганец (табл. 18). Влияние марганца на структуру металлической основы и механические свойства чугуна заключается в том, что при повышении его содержания уменьшается количество феррита и увеличивается количество перлита, в связи с этим соответственно повышается предел прочности при растяжений и уменьшается удлинение.  [c.153]

Марганец — Влияние на свойства и структуру чугуна 16—19, 84, 115— 117, 172, 205  [c.240]

Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. По характеру влияния на полиморфные превращения все элементы могут быть разделены на две группы. Элементы первой группы никель, марганец, медь, азот — расширяют область устойчивого состояния аустенита. При содержании этих легирующих элементов выше определенного количества сталь в интервале от комнатной температуры до перехода в жидкое состояние имеет структуры легированного аустенита. Такая сталь называется аустенитной.  [c.49]


На структуру и свойства серого чугуна существенное влияние оказывают его химический состав и скорость охлаждения отливок в форме. Углерод, кремний и марганец улучшают механические и литейные свойства чугуна. Сера вызывает отбел в тонких частях отливок и снижает жидко-текучесть. Фосфор придает чугуну хрупкость. Поэтому содержание серы и фосфора в сером чугуне должно быть минимальным. Увеличение скорости охлаждения достигается путем уменьшения толщины отливки и увеличения теплопроводности литейной формы. В тонких частях отливки образуется более мелкая структура с повышенным содержанием перлита и мелкими включениями графита, что обеспечивает высокие механические свойства. В толстых частях отливки образуется крупнозернистая структура с малым содержанием перлита и крупными включениями фафита. Механические свойства этих зон низкие.  [c.197]

Все элементы, растворяющиеся в железе, изменяют устойчивость феррита и аустенита. По характеру влияния на полиморфные превращения все элементы могут быть разделены на две группы. Элементы первой группы расширяют область устойчивого состояния аустенита. Они способствуют повышению критической точки Л4 и снижению точки A3. К этой группе относятся никель, марганец, медь, кобальт и азот. На рис. 82, а показана условная диаграмма состояния железа и одного из элементов первой группы. Левая ордината на диаграмме соответствует чистому железу. Содержание элемента, расширяющего область устойчивого аустенита, возрастает слева направо. По диаграмме состояния видно, что при содержании легирующего элемента свыше определенного процента сталь от комнатных температур до линии солидуса имеет структуру аустенита. Такая сталь называется аустенитной. Для придания аустенитной структуры сталь обычно легируют никелем или марганцем.  [c.160]

Цирконий и церий оказывают модифицирующее действие на структуру сплавов магния. Особенно эффективно модифицирует цирконий. Добавка 0,5 - 0,7 % Zr уменьшает размер зерна магния в 80 - 100 раз. Это объясняется структурным и размерным соответствием кристаллических решеток Mg и Ziq, (ГП с периодами а = 0,3223 нм, с = 0,5123 нм). Кроме того, цирконий и марганец способствуют устранению или значительному уменьшению влияния примесей железа и никеля на свойства сплавов. Они образуют с этими элементами промежуточные фазы большой плотности, которые при кристаллизации выпадают на дно тигля, очищая тем самым сплавы от вредных примесей.  [c.375]

Прокаливаемость (глубина закалки) определяется расстоянием от поверхности до слоя с полумартенситной структурой, т. е. до слоя, состоящего из 50% мартенсита и 50% троостита. Прокаливаемость стали зависит от ее химического состава, величины природного зерна, метода ее выплавки и других факторов. Например, такие легирующие элементы, как марганец, хром, оказывают большое влияние на прокаливаемость, а никель, кремний — незначительное. С увеличением природного зер-  [c.32]

Кроме углерода, на структуру и свойства стали оказывают влияние обычные примеси. Из них полезными являются марганец и кремний, которые вводят в сталь  [c.145]

Железо содержится в исходном алюминии, цинк, медь и марганец — в отходах производства (в сплавах, где они являются легирующими компонентами). Небольшие добавки железа (до 0,3%) практически не оказывают влияния на механические свойства сплавов А1—Mg—51. При больших содержаниях железа (0,5— 0,7%) заметно уменьшается склонность сплавов к горячим трещинам при литье, измельчается структура готовых полуфабрикатов благодаря повышению температуры рекристаллизации алюминия. Прочность и пластичность сплавов А1—Mg—51 с увеличением количества железа несколько снижается вследствие образования нерастворимых интерметаллических фаз грубой формы (типа А1—51—Ре, А1—Ре—Мп-51, А1—Сг-Ре—51, А1—Мп—Ре), в состав которых входят элементы, играющие положительную роль в упрочнении при термической обработке. Декоративные свойства сплавов А1—Mg—51 с ростом содержания железа в сплавах ухудшаются, поэтому в сплавах, к которым предъявляются повышенные требования в отношении декоративного вида изделий, 70  [c.70]

Кроме влияния на характер распада твердого раствора, медь увеличивает дисперсность частиц [20 ], скопления атомов меди могут дей- ствовать как центры зарождения т) -фазы [49 ], медь входит в твердый раствор выделений [ 19,20 ], облагораживая тем самым их электродный потенциал и уменьшая электрохимическую активность. Одновременно медь входит в состав окисных пленок, понижая их защитные свойства. Это является причиной уменьшения степени локальности поражений и существенного увеличения скорости коррозии (по потере массы) рассматриваемых сплавов. Отмечаемое на практике увеличение сопротивления коррозионному растрескиванию ряда полуфабрикатов (особенно прессованных изделий), изготовленных из А —2п—Mg сплавов с повышенным содержанием марганца ( = 0,8%), связано исключительно с наличием у них нерекристаллизованной волокнистой структуры [19, 50]. Для рекристаллизованных полуфабрикатов, а также для литого состояния марганец даже несколько понижает сопротивление коррозионному растрескиванию (рис. 236). Почти аналогичный эффект наблюдается и при легировании сплавов цирконием.  [c.537]


Чугунные изделия, подвергаемые эмалированию, отливают из серого чугуна, представляющего собой сплав железа с углеродом, содержащий в виде обычных примесей следующие элементы кремний, марганец, фосфор и серу. Эти примеси оказывают большое влияние на физические и химические свойства и структуру отливки и определяют ее пригодность к эмалированию.  [c.353]

Марганец при его содержании до 0,75 /6 увеличивает химическую стойкость чугуна при содержании свыше 0,75% марганец способствует образованию зернистых структур и тем самым способствует уменьшению химической стойкости. На фиг. 121 представлено влияние марганца на коррозию чугуна.  [c.281]

Наплавленный металл отличается пониженным содержанием таких легко окисляющихся элементов, как, например, углерод, кремний и марганец, и повышенным содержанием водорода. Зона термического влияния сужена, структура металла шва указывает на ускоренное охлаждение. Металл шва имеет достаточно высокий предел прочности, но низкие угол изгиба, относительное удлинение и ударную вязкость.  [c.685]

Влияние примесей на структуру и свойства титана. При производстве титановых сплавов в технический титан вводят различные легирующие добавки. Титан способен вступать во взаимодействие почти со всеми элементами периодической системы. Современные титановые сплавы в качестве легирующих элементов содержат алюминий, хром, ванадий, ниобий, марганец, тантал, медь, железо, кремний, олово, молибден и др. Все перечисленные элементы образуют с титаном твердые растворы замещения.  [c.17]

Остаточный аустенит может перейти в мартенсит или другие структуры при от-п ске или обработке холодом . При обработке холодом остаточный аустенит превращается только в мартенсит и это не сопровождается изменением концентрации и разложением самого мартенсита. При такой обработке, а по последним данным, и при отпуске следует учитывать явление стабилизации аустенита (при остановке охлаждения). Легирующие элементы по их влиянию на устойчивость аустенита при отпуске располагаются в основном в том же порядке, что и при закалке наиболее сильно влияет марганец, затем идут хром, никель и др. Кремний также значительно увеличивает устойчивость аустенита при отпуске.  [c.564]

Большое влияние на свариваемость металлов и сплавов оказывает их химический состав. Это особенно наглядно видно на примере железоуглеродистых сплавов. Свариваемость углеродистой стали изменяется в зависимости от содержания основных примесей. Углерод является наиболее важным элементом в составе стали, определяющим почти все основные свойства стали в процессе обработки, в том числе и свариваемость. Низкоуглеродистые стали (С<0,25%) свариваются хорошо. Среднеуглеродистые стали (С <0,35%) также свариваются хорошо. Стали с содержанием С>0,35% свариваются хуже. С увеличением содержания углерода в стали свариваемость ухудшается. В околошовных зонах появляются закалочные структуры и трещины, а шов получается пористым. Поэтому для получения качественного сварного соединения возникает необходимость применять различные технологические приемы. Марганец не затрудняет сварку стали при содержании его 0,3...0,8%. Однако при повышенном содержании марганца (1,8...2,5%) прочность, твердость и закаливаемость стали возрастают, и это спо-  [c.38]

Марганец — Влияние на структуру хромомарганцовоникелевых сталей 34  [c.434]

Марганец при содержании до 0,5—0,8% благоприятно влияет на коррозионную стойкость, так как способствует уплотнению отливки При больших содержаниях сказывается его сорбитизирующее влияние на структуру металлической основы, что уменьшает химическую стойкость  [c.324]

Качественное и количественное непостоянство влияния компонентов чугуна на его склонность к графитизации затрудняет возможность их классификации по признаку интенсивности этого влияния. Такая классификация затрудняется также и тем, что в многокомпонентных сплавах возникают самые неожиданные побочные реакции между элементами, в корне из.меняющие поведение последних них влияние на структуру чугуна. Так, например, марганец и сера в отдельности относятся к элементам, скапливающимся в эвтектике и поэтому способствующи.м связыванию в ней углерода в виде цементита (марганец, кроме того, будучи карбидообразующим элементом, понижает активность углерода в растворе). При их совместном присутствии в чугуне они образуют сульфид Мп5, выделяющийся из расплава при 1600° и служащий изоморфной подкладкой для центров кристаллизации графита. Поэтому добавка марганца к сернисто.му чугуну и серы к марганцовистому приводит не к усилению отбела чугуна, а к его уменьшению.  [c.19]

В. II и я н и е с п 0 ц и а л ь н ы X э л е м е н т о в. Всо специальные элементы по их влиянию на структуру С. можно разбить на следующие три группы 1) элементы, образующие с а-железом твердые растворы (никель и кремний) 2) эле-менты,образуюпще и твердые растворы и устойчивые карбиды с углеродом (ванадий, марганец, молибден и вольфрам) 3) элементы, обро,-  [c.401]

Легирующие элементы оказывают большое влияние на точку Л,, соответствующую температуре перехода перлита в аустенит (рис. 93, а). Никель и марганец снижают температуру А , а Т1, Мо, 31, У и другие элементы повышают температуру Л1 (см. рис, 93, а). Легирующие элементы уменьшают эвтектондную концентрацию углерода (рис. 93, б) к предельную растворимость углерода в аустените, сдвигая точки 5 к на диаграмме состояния Ре—С влево. Как видно из рис. 94, где приведены вертикальные разрезы тройной диаграммы состояния Ре—Мп—С и Ре—Сг—С, перитектическое, эвтектическое и эвтектоидное превращения протекают не при постоянной температуре, как в двойных системах, а в некотором интервале температур. В системе р е—Мп.—С у-фаза с увеличением содержания марганца существует и в области более низких температур. В системе Ре—Сг—С с возрастанием концентрации хрома область существования у-ф>ззь( сужается. Состав карбидной фазы (К) в марганцовистых сталях соответствует соединению (РеМп)8С, в котором часть атомов железа. замещена атомами марганца. В хромистых сталях образуются (Ре, Сг)зС и специальные хромистые карбиды, состав и структура которых зависят от содержания углерода и хро.ма. При низком содержании углерода и высоком содержании хрома образуются ферритные стали, не претерпевающие полиморфного превращения (рис. 94, б).  [c.137]


Влияние легирующих элементов на структуру и свойства стали. По влиянию на устойчивость аустенита все легирующие элементы делятся на две группы расширяющие область существования аустенита и сужающие ее (соответственно, расширяющие область существования феррита). К цервой группе относятся никель, марганец, кобальт и др. Ко второй — хром, кремний, аллюминий, молибден, титан, ванадий, вольфрам и др. Элементы первой группы понижают критические точки A3 и А , второй — повышают. Соответственно, изменяются темпера-  [c.153]

Изменение свойств аустенитных сплавов при легировании может быть обусловлено как влиянием легирующих элементов на свойства собственно твердого раствора — аус тенита, так и их влиянием на стабилизацию аустенита к фа зовым переходам, т е легирование может вызывать пре вращение аустенита с образованием других фаз (например, а и е фаз в сплавах железо—марганец и а фазы в сплавах железо—никель) Легированный аустенит под разделяют на стабильный и нестабильный При температуре выше начала мартенситного превраще ния Мн нестабильный аустенит способен к фазовому прев ращению— образованию мартенсита в результате прило жения внешней нагрузки (деформации), т е деформация нестабильного аустенита вызывает мартенситное превраще ние, так же как и охлаждение его ниже Мн Стабильный аустенит не претерпевает фазового превращения под влия нием деформации, при этом изменяется лишь его структура В зависимости от того, какие легирующие элементы входят в состав аустенита и каково их количество, изменяется ус тойчивость аустенита к распаду при деформации, т е сте пень его нестабильности  [c.50]

С увеличением содержания углерода и легирующих элементов сопротивление резанию стали увеличивается. Сталь со структ фой пластинчатого перлита имеет наилучшую обрабатываемость. При обработке стали, в структуре которой содержится зернистый перлит, имеющий понРЕженную прочность и повьппенную пластичность, получается повышенная шероховатость. Феррит в виде широких полос также ухудшает качество поверхности. Наиболее плохо обрабатывается сталь со структурой феррит-зернистый цементит. Исключительно сильное влияние на обрабатываемость стали, имеющей ферритную основу, оказывает легирование ее углеродом до 0,5 %. При увеличении содержания углерода количество свободного феррита в отожженной стали постепенно уменьшается, а при содержании углерода, равном 0,5 %, свободного феррита в отожженной стали практически не остается, и поэтому дальнейшее увеличение содержания углерода не оказывает влияния на обрабатываемость, если благодаря отжигу обеспечивается получение зернистого перлита и предотвращается образование цементитной сетки. На обрабатываемость стали, имеющей ферритную основу, сильно влияет содержание кремния значительно слабее влияет на обрабатываемость стали содержание хрома, вольфрама, ванадия и молибдена марганец и никель практически не влияют на обрабатываемость стали. Присадки свинца 0,2-0,5 % улучшают условия резания сталей с высоким содержанием углерода благодаря смазывающему действию дисперсных частиц свинца, расположенных на границах зерен.  [c.262]

Введение азота в хромоникельмарган-цевые стали позволяет более чем в полтора раза поднять уровень предела текучести при комнатной температуре. С понижением температуры эффективность влияния азота, как элемента внедрения, блокирующего движение дислокаций, на величину предела текучести еще более возрастает. Хром, никель и марганец, как элементы замещения, оказывают меньшее влияние на прочностные свойства, их роль определяется необходимостью обеспечения заданной аустенитной структуры.  [c.611]

Легирующие элементы оказывают влияние на температурный интервал превращений, структуру стали и фазовые превращения при нагреве. Никель и марганец снижают критическую точку Лсь хром, вольфрам, титан, и кремний повышают ее никель и кобальт увеличивают скорость распада карбидов и ускоряют фазовые превращения при нагреве стали кремний не образует в стали карбидов, снижает коэффициент диффузии углерода в железе, повышает температуру фазовых превращений. Карбидообразующие легирующие элементы хром, вольфрам и йанадий замедляют процессы фазовых превращений. Марганец снижает температуру фазовых превращений и образует карбиды. Интервал оптимальных закалочных температур сталей, легированных карбидообразующими элементами, имеет узкие пределы.  [c.58]

Сравнительные исследования 26 марок углеродистых и низколегированных сталей в имитирующем условия газовой скважины растворе Na l-t- Hs OOH + HsS показали наибольшую стойкость у ферритной структуры с относительно мелкими равномерно распределенными сфероидальными карбидами, образующейся после отпуска мартенсита при высоких температурах [160]. С уменьшением величины зерна и переходом от закаленного состояния к улучшенному (т. е. после закалки с высоким отпуском) охрупчивание снижается, а с повышением количества пластинчатого перлита — возрастает. На стойкость к сероводородному растрескиванию при неизменной структуре стали практически заметное влияние оказывает изменение содержания серы (0,002—0,35%) и фосфора (0,004—0,59%). Остальные элементы марганец (0,76—2,5%), никель (0,2—3%), хром (0,03—6,25%), кремний (0,05—2,9%), молибден (0,01—1,85%) не оказывали существенного влияния (если структура не изменялась термической обработкой). Наиболее серьезное влияние оказывала сера — введение уже 0,03% S вызывало заметное усиление охрупчивания при коррозии в сероводородной среде. Это объяснено увеличением количества дефектных участков — сульфидных включений. Показано, что расслоение металла под действием водорода локализуется в местах скопления сульфидных включений.  [c.66]

В настоящее время серийно применяется довольно большое число титановых сплавов. Большой диапа.зон их структур и свойств обусловлен, в частности, полиморфизмом титана, хорошей растворимостью многих элементов (по крайпеп мере в одной из фаз), а также образованием химических соединений, обладающих переменной растворимостью в титане. В соответствии с приведенными выше диаграммами состояния все легирующие элементы по влиянию на полиморфизм титана можно разбить на три группы. Первая группа представлена а-стабилизаторами — элементами, повышающими стабильность а-фазы из металлов к числу а-стабилизаторов относится алюминий. Ко второй группе принадлежат -стабилизаторы — элементы, повышающие стабильность р-фазы эти элементы в свою очередь можно разбить на две подгруппы. В сплавах титана с элементами первой подгруппы при достаточно низкой тедшературе происходит эвтектоидный распад р-фазы к числу таких элементов относятся хром, марганец, железо, медь, никель, бериллий, вольфрам, кобальт. В сплавах титана с элементами второй подгруппы при достаточно высокой их концентрации Р-твердый растнор сохраняется до комнатной температуры, не претерпевая эвтектоидного распада. Такие элементы иногда называют изоморфными р-стабилизаторами. К ним пр1шадле-жат ванадий, молибден, ниобий, тантал. Третья группа прелстаклена нейтральными упрочнителями, т. е. легирующими элементами, мало  [c.402]

Добавка циркония практически не оказывает влияния на прочностные свойства холоднодеформированных полуфабрикатов из сплавов, содержащих марганец, и несколько повышает их у сплавов без марганца [16, с. 2511. Цирконий аналогично марганцу, но при значительно меньшем содержании, повышает температуру рекристаллизации сплава, что способствует получению нерекристаллизованной структуры и высокой прочности горячепрессованных полуфабрикатов [14 15, с. 78]. В отличие от марганца цирконий повышает устойчивость твердого раствора алюминиевых сплавов и улучшает прокаливаемость крупных полуфабрикатов. В сложнолегированных сплавах, содержащих марганец и примесь железа, добавка циркония способствует образованию крупных интерметаллидов.  [c.104]


При затвердевании чугуна белым 1—2% Мп не оказывают заметного влияния на первичную структуру. Как показано выше, в белом чугуне марганец концентрируется в карбидной фазе. Карбид марганца МпзС изоморфен с цементитом Ре С и образует с ним непрерывный ряд твердых растноров. Обычно полагают, что и в высокомарганцевых чугунах карбидная фаза представлена как (Ре, Мп)зС, хотя в работе [83] на основании морфологического анализа колоний карбидо-аустенитной эвтектики высказано предположение о возможности кристаллизации в чугунах, содержащих более 20% Мп, тригональ-ного карбида (Мп, Ре)7Сз. Однако и при меньших содержаниях марганца в первичной структуре отливок из белого чугуна наблюдаются некоторые особенности. Рентгенографические исследования цементита, выделенного из содержащих марганец сталей или чугунов [54, 84], выявили, например, сверхструктурные линии. Это позволяет сделать предположение, что атомы марганца вследствие большего сродства к углероду в первую очередь замещают в цементите те атомы железа, которые находятся на ближайших расстояниях от атомов углерода. Закономерное расположение атомов марганца, связанное с усилением гомеополярных связей в решетке марганцевого цементита, увеличивает анизотропию скорости роста и свойств его кристаллов. С этим следует  [c.120]

Химический состав. В чугуне, кроме углерода, имеются нормальные примеси, обусловленные выплавкой чугуна в доменной печи, а затем в вагранке. К нормальным примесям относятся Мп, 51, Mg, Р и 5. Влияние этих элементов на структуру чугуна в основном определяется их влиянием на графитизацию. По действию на графитизацию обычные примеси располагаются в следующий ряд С, 51, Р, Vg, 5, Мп, причем углерод и кремний усиливают этот процесс, фосфор не оказывает непосредственного влияния, а магний, сера и марганец производят антиграфитизирующее действие. Однако совместное действие всех элементов на графитизацию зависит не только от количества каждого из них, но и от сочетаний их при одновременном. присутствии. Например, сб-  [c.332]

Разнообразные требования, предъявляемые к нержавеющим сталям, привели к их интенсивному совершенствованию. Наряду с разработкой новых сплавов видоизменялись, иногда неоднократно, и традиционные стали. Эти изменения вносили с целью усовершенствования производства и внедрения новых методов. В результате появились многочисленные технические условия и патенты, назначение которых не всегда сразу понятно. Положение резко изменилось после принятия новых Британских стандартов, охватывающих основную номенклатуру используемых сталей. К ним относят В5 970 часть 4 1970 (болванки, заготовки, прутки, поковки и сортовой прокат), а также В5 1449 часть 4 1967 (плиты, листы, лента). Эти технические условия приведены в табл. 1.6—1.8 классификация сталей основана иа их структуре (мартенситиая, ферритная или аустенитная), определяющей основные физические свойства. Приведены данные лишь по тем легирующим элементам, которые наиболее важны. Другие элементы присутствуют либо как случайные примеси, либо как добавки, необходимые при производстве стали (например, кремний и марганец добавляют как раскислители), и существенного влияния на свойства стали не оказывают.  [c.23]

Марганец оказывает на структуру ВЧШГ влияние, противоположное влиянию кремния, уменьшая количество феррита и увеличивая количество перлита, в связи с чем повышается Ов и понижается б. Поэтому для получения высокой пластичности содержание марганца не должно превышать 0,4%, что сокращает, а иногда вовсе исключает ТО. Когда же некоторое количество перлита в литой структуре допустимо, как это имеет место в большинстве случаев на практике, количество Мп может находиться в пределах 0,4—0,8% но для снижения порога хладноломкости следует допускать содержание марганца не выше 0,3%.  [c.71]


Смотреть страницы где упоминается термин Марганец — Влияние на структуру : [c.91]    [c.56]    [c.85]    [c.84]    [c.66]    [c.117]    [c.175]    [c.30]    [c.164]   
Материалы в машиностроении Выбор и применение Том 3 (1969) -- [ c.0 ]



ПОИСК



Влияние марганца

Марганец

Марганец Влияние на свойства и структуру

Марганец — Влияние на свойства структуру чугуна

Марганец — Влияние на структуру хромомарганцовоникелевых стале



© 2025 Mash-xxl.info Реклама на сайте