Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Легирующий элемент карбидообразующие

Причиной замедления распада переохлажденного легированного аустенита в области диффузионного превращения является то, что в процессе образования перлита принимают участие легирующие элементы. Образованию феррито-карбидной смеси предшествует диффузия в аустените не только углерода, но и легирующих элементов — карбидообразующие элементы концентрируются в основном в карбидной фазе с образованием легированного цементита или специальных карбидов, а некарбидообразующие элементы — в феррите. Скорость диффузии легирующих элементов во много раз меньше скорости диффузии углерода, поэтому замедление аустенито-перлитного распада определяется малой скоростью диффузии легирующих элементов.  [c.25]


Карбидообразующие элементы вносят не только количественные, но и качественные изменения в кинетику изотермического превращения. Та к, легирующие элементы, образующие растворимые в аустените карбиды, при разных температурах по-разному влияют на скорость распада аустенита 700—500°С (образование перлита)—замедляют превращение 500—400°С — весьма значительно замедляют превращение 400—300°С (образование бейнита) — ускоряют превращение.  [c.355]

Легирующие элементы, и особенно карбидообразующие легирующие элементы, задерживают процессы разупрочнения при  [c.391]

Легирующие элементы N1, Со, Мп и др., которые не образуют карбидов и находятся в твердом растворе феррита, почти не влияют на процессы отпуска, протекающие как и в углеродистой стали. 51, не являющийся карбидообразующим элементом и растворимый в а-фазе, хотя и не изменяет природы фазовых превращений при отпуске, однако смещает их вверх вследствие замедляющего влияния С на диффузию.  [c.169]

Карбидообразующие легирующие элементы Сг, Мо, У и др. в количествах, растворяющихся в цементите, но не образующих собственных карбидных фаз, не изменяя природы превращений, замедляют  [c.169]

Перераспределение легирующих элементов и примесей в сталях при высокотемпературном сварочном нагреве — сложный диффузионный процесс, который может приводить как к снижению, так и повышению МХН. После завершения аустенитизации внутри зерен аустенита существует неравномерное распределение легирующих элементов и примесей, особенно углерода и карбидообразующих. Углерод концентрируется в местах, где ранее располагались частицы цементита, а также на участках зерна, где находятся еще не полностью растворившиеся специальные карбиды. Для сталей обыкновенного качества и качественных после горячей обработки давлением (прокатки, ковки) характерна начальная химическая неоднородность, связанная с волокнистой макроструктурой и полосчатой микроструктурой. Волокнистая макроструктура образована строчками раздробленных и вытянутых вдоль направления деформации неметаллических включений (сульфидов, оксидов, фосфидов). В зоне строчек имеет место повышенное содержание S, Мп, О2, Si, Р, А1. Полосчатая микроструктура вызвана более высокой концентрацией углерода в осях  [c.514]

Присутствие бора в переходной зоне, обогащенной углеродом, и другие факторы приводят к значительному росту зерна в этой зоне. Карбидообразующие элементы (хром, вольфрам, молибден) в значительной мере устраняют это явление. Однако присутствие этих элементов (а также ванадия) способствует сглаживанию зубчатого контура в нижней части слоя, что ухудшает сцепление. Легирующие элементы, сужающие -у-область (хром, титан, ванадий), препятствуют диффузии бора и существенно уменьшают глубину борированного слоя.  [c.42]


С целью выявления характера распределения легирующих элементов (в основном, карбидообразующих — W, V,  [c.19]

Влияние легирующих элементов на кинетику распада мартенсита при температурах до 150° С — слабое в легированной стали распад при этих температурах протекает почти с теми же скоростями, что и в углеродистой стали. Наличие легирующих элементов существенно сказывается при температурах, превышающих 150° С, что связано с процессом коагуляции карбидных частиц. Установлено, что карбидообразующие элементы (хром, титан, ванадий, молибден, вольфрам), резко замедляющие диффузию углерода, замедляют коагуляцию карбидной фазы и процесс распада при температурах выще 150° С.  [c.16]

Легирующие элементы (ванадий, вольфрам, молибден) склонны образовывать карбиды и входить в твердые растворы, а другие легирующие элементы — никель, кобальт — входят только в твердые растворы. Некоторые элементы (хром, марганец) могут переходить в твердый раствор в феррите или образовывать комплексные карбиды. Карбидообразующие элементы не вызывают затруднений при отжиге, необходимом для улучшения обрабатываемости легированных сталей. Иначе обстоит дело с легирующими  [c.328]

Все легирующие элементы, за исключением марганца, уменьшают склонность аустенитного зерна к росту. Некарбидообразующие элементы N1, Со, 51, Си относительно слабо влияют на эту склонность. Карбидообразующие элементы Сг, Мо, V/, V, Т1 сильно препятствуют росту зерна аустенита причём степень их влияния определяется устойчивостью их карбидов (и оксидов).  [c.342]

Мо, V, Т)). Это объясняется наличием второй зоны изотермического распада аустенита, её положением и двояким действием карбидообразующих элементов на превращение аустенита. С одной стороны, карбидообразующие элементы, как и большинство легирующих элементов, задерживают превращение аустенита с другой стороны, они, образуя карбиды, обедняют аустенит углеродом и тем самым ускоряют превращение аустенита. Сталь с карбидообразующими элементами при достаточна высоком содержании углерода и легирующих элементов может быть выделена в особый четвёртый класс — карбидный. Структура стали  [c.361]

Легирующие элементы, увеличивая прочность и вязкость стали, как правило, ухудшают её обрабатываемость. Неблагоприятное действие карбидообразующих элементов может быть уменьшено термообработкой но действие элементов, образующих твёрдые растворы с ферритом (например, никеля), оказывается более значительным, и термообработка в этом случае менее эффективна.  [c.433]

Если остаточная деформация паропровода достигала 1%, необходимо тщательно его исследовать. Для этого вырезают куски трубы длиной не менее 300 мм. На образцах, изготовленных из вырезанного куска трубы, исследуют микроструктуру и механические свойства стали и производят карбидный анализ, который позволяет определить количество карбидообразующих легирующих элементов, оставшихся в твердом растворе и перешедших в карбиды.  [c.275]

Наиболее удовлетворительной свариваемостью обладают 12-процентные хромистые стали с содержанием углерода в пределах 0,10- 0,20%. В зависимости от соотношения легирующих элементов они могут иметь либо однородную сорбитную структуру, либо содержать до 10—15% свободного феррита. Обладая замедленной кинетикой структурных превращений, указанные стали даже при наличии высокого подогрева при сварке имеют в околошовной зоне закаленные мартенситные прослойки, для устранения которых необходим отпуск конструкции. Поэтому обязательным условием их сварки является высокий подогрев при температурах 300—450° с медленным охлаждением и последующим отпуском. Легирование 12-процентных хромистых сталей такими карбидообразующими элементами как вольфрам, ванадий,  [c.31]

Прогрессивно применение покрытия литейной формы для поверхностного легирования отливок. Так, карбидообразующие легирующие элементы (теллур, углерод, марганец) повышают износостойкость формы и устраняют рыхлость отливок графитизирующие легирующие элементы (кремний, титан, алюминий) устраняют отбел, уменьшают остаточные напряжения и улучшают обрабатываемость отливок. Применение жидкоподвижных смесей при литье в песчаные формы повышает производительность труда, снижает трудоемкость  [c.116]


В табл. 4.1 легирующие элементы разделены по трем основным классам и, кроме того, предусмотрены два подкласса. К первому подклассу отнесены карбидообразующие элементы Сг, Мо, W, Nb, Та и Ti, а ко второму - элементы, образующие оксиды, - А1 и Сг. Оксиды этих элементов прочно связаны с основой, диффузионно-плотны и, таким образом, защищают сплавы от воздействия среды.  [c.130]

Покрытие состоит из трех слоев. Первый слой - это термодиффузионная зона покрытия и основного металла. Второй, нетравящийся (белый) слой представляет собой твердый раствор легирующих или карбидообразующих элементов, входящих в состав электродного материала. Третий слой, подобный газотермическим покрытиям, сформирован из фрагментов застывшего металла и оксидов. Структура упрочненного наружного слоя напоминает строение антифрикционного сплава частицы мелкодисперсных карбидов включены в сравнительно мягкую основу. Перенесенный материал анода легирует материал детали и, соединяясь с диссоциированным атомарным азотом воздуха и углеродом материала детали, образует диффузионный износостойкий слой. При этом в слое имеются сложные химические соединения, нитриды и карбонитриды, а также закалочные структуры.  [c.382]

Карбидообразующие элементы Fe — Мп — Сг — Мо — W — Nb — V — Zr — Ti (расположены по возрастающей степени сродства к углероду и устойчивости карбидных фаз) при малом их содержании растворяются в цементите, замещая в нем атомы железа. Состав карбида в этом случае может быть выражен формулой (Fe, М) С , где М — символ суммы легирующих элементов, т, п — коэффициенты, определяемые химической формулой карбида. При повыщении содержания карбидообразующих элементов могут образовываться самостоятельные карбиды.  [c.162]

В сплавах первой группы содержание легирующих элементов (Ti, Nb, Zr, Mo, W, Та, Re) выбирают таким, чтобы при увеличении прочности не снизить пластичность и не ухудшить другие свойства. Сплавы второй группы содержат повышенное количество углерода и карбидообразующие элементы. При старении этой группы сплавов упрочняющей фазой являются карбиды, которые вьщеляются внутри зерен.  [c.198]

Все легирующие элементы (за исключением кобальта) увеличивают устойчивость переохлажденного аустенита в области перлитного и бейнитного превращений и на диаграмме изотермического превращения сдвигают вправо, т. е. в сторону большего времени выдержки, кривые начала и конца распада. Причины высокой устойчивости переохлажденного аустенита в области перлитного превращения многие исследователи связывают с тем, что в результате распада легированного аустенита в перлитной области образуются феррит и легированный цементит или специальный карбид. Для образования такой ферритно-карбидной структуры между у-твердым раствором и карбидом должно пройти диффузионное перераспределение не только углерода, но и легирующих элементов. Карбидообразующие элементы переходят в карбиды, а элементы, не образующие карбидов, — в феррит. Замедление распада аустенита в перлитной зоне объясняется малой скоростью диффузии легирующих элементов в аустените и уменьшением скорости диффузии углерода под влиянием карбидообразующих элементов. Кроме того, легирующие элементы уменьшают скорость полиморфного превращения у а, которое находится в основе распада азютенита.  [c.179]

Ни колегированные стали -(соответствующие сплавам I) при комнатной температуре состоят из двух фаз феррита (альфа-раствора) и карбида (цементита, если легирующий элемент не образует карбидов, или сложного карбида типа Fe ,Me , если легирующий элемент карбидообразующий). В зависимости от содержания углерода эти стали в отожженном состоянии при комнатной температуре могут быть доэвтектоидными (феррит —  [c.31]

Однако в сталях в чистом виде перечисленные карбиды н существуют. Карбиды всех легирующих элементов содержат растворе железо, а при наличии нескольких карбидообразую щих элементов — и эти элементы. Так, в хромомарганцовисто стали вместо чистого карбида хрома СггзСе образуется карбид (Сг, Мп, Ре)2зСб, содержащий в растворе железо и марганец.  [c.354]

Легирующие элементы, особенно карбидообразующие (наиболее сильно действуют Ti, V, Zf, Nb, W и Mo) задерживают рост зерна аустенита, так как образуют труднорастворимые в аустенпте карбиды, которые служат барьером.  [c.157]

Легирующие элементы, присутствующие в стали, оказывают влияние на структуру цементуемого слоя, механизм его образования и скорость диффузии. В случае цементации сталей, легированных карбидообразующими элементами, при температуре диффузии возможно образование двухфазного слоя из аустенита и карбидов глобулярной формы. При этом аустенит обедняется углеродом и карбидообразующнми элементами (Сг, Мп, Ti) и на поверхности после закалки образуются пемартенситные структуры, способствующие снижению твердости и особенно предела выносливости. Суммарная концентрация углерода на поверхности цементированного слоя сталей, легированных карбидообразующими элементами, может достигать 1,5—2,0 % и более. Карбидообразующие элементы (Сг, Мп, Мо, W и др.) увеличивают энергию активации Q, уменьшают коэффициент диффузии углерода в аустените. Никель и кобальт повышают коэффициент диффузии углерода в аустените. Однако на толщину слоя, легирующие элементы в том количестве, в котором они присутствуют в цементуемых сталях, практически не влияют.  [c.233]

Легирующие элементы, кроме Мп, тормозят рост аустенитного зерна при нагреве. Карбидообразующие элементы У, Мо, V, Сг и Т1 существенно препятствуют росту зерна аустенита, причем степень этого влияния пропорциональна устойчивости их карбидов (и окси-доп). При небольщом содержании А1 образуются труднорастворимые оксиды А Оз и нитриды АШ, препятствующие росту зерна.  [c.169]


Нержавеющие стали. Основной легирующий элемент нержавеющих сталей — хром, который повышает механические свойства стали и способствует образованию на ее поверхности тонкого слоя окислов, облагораживающего электродный потенциал стали и повышающего ее коррозионную стойкость. Она повышается не монотонно, а скачкообразно. Первый порог коррозионной стойкости достигается при концентрации хрома, равной 12,8 %. При увеличении содержания хрома до 18 или до 25—28 % достигается второй порог коррозионной стойкости и наблюдается дальнейшее повышение коррозионной стойкости стали. Однако повышение содержания хрома приводит к понижению механических свойств стали, особенно ударной вязкости, а также затрудняет сварку, вызывая хрупкость сварного шва. Стали с высоким содержанием хрома после сварки требуют термической обработки. Повышение содержания углерода в нержавеющих сталях понижает их коррозионную стойкость, что связано с уменьшением содержания хрома в твердом растворе вследствие образования карбидов. Поэтому повышение содержания углерода в стали вызывает сдвиг порога коррозионной стойкости в область более высокой концентрации хрома. Понижение содержания углерода ниже 0,02% делает сталь стойкой против карбидообразо-вания.  [c.31]

Легирование стали существенно влияет на толщину переходной зоны карбидообразующие элементы способствуют ее уменьшению, а некарбидообразующие — либо ее не изменяют (никель, алюминий), либо увеличивают (кремний, медь при содержании 0,657о ) При борировании в порощках целесообразно применение сталей, содержащих 1—3% легирующих элементов.  [c.42]

Таким образом, хотя при нагружении с нагревом до 450° С в большинстве случаев не наблюдалось интенсивного карбидообразо-вания, перераспределение легирующих и карбидообразующих элементов имело место при всех режимах нагружения (рис. 3, а, в). При этом, как и при 650°С [3], углерод мигрировал к границам зерен и карбиды, как правило, залегали в основном по границам и в приграничных участках зерен, охрупчивая последние. Характер распределения титана и хрома также видоизменялся под действием циклической нагрузки и нагрева титан, сравнительно равномерно распределенный в исходном состоянии материала, в процессе упруго-пластического деформирования скапливался в отдельных зонах, наблюдаемых на рис. 3, б, з в виде продолговатых полос, образующих своеобразную сетку концентрация хрома в отдельных зонах также видоизменялась и к моменту разрушения в структуре наблюдались участки с пониженным и повышенным содержанием хрома.  [c.70]

Стали мартенсйтного класса, легированные большим количеством карбидообразующих легирующих элементов, характеризуются более сложной карбидной структурой.  [c.73]

Легирующие элементы, особенно карбидообразующие (нитрн-дообразующие) задерживают рост зерна аустенита. Наиболее сильно действуют Ti, V, Nb, Zr, Al и N, образующие трудно рас-  [c.160]

В случае доэвтектондной или заэвтектоидной легированных сталей на диаграмме изотермического распада переохлажденного аустенита, так же как и углеродистой стали, появляется добавочная линия, соответствующая началу выделения избыточного легированного феррита или карбида. Перлитное превращение в сталях, легированных карбидообразующими элементами, сводится к полиморфному превращению у а и диффузионному перераспределению углерода и легирующих элементов, что приводит к образованию перлита (легированный феррит Ь легированный цементит). Особенность промежуточного превращения в легированных сталях заключается в том, что оно не идет до конца. Часть аустенита, обогащенного угеро-  [c.178]

Легирующие элементы Мо, У, V, Сг замедляют процесс коагуляции, поэтому после отпуска при одинаковой температуре сталь, легированная этими элементами, сохраняет более высокую дисперсность карбидных частиц, соответственно большую прочность. При указанных высоких температурах становится возможной диффузия и легирующих элементов, которая приводит к их перераспределению между ферритом и цементитом. Карбидообразующие элементы (Мо, Сг) диффундируют из феррита в цементит, некарбидообразующие (N1, Со, 81) — из цементита в феррит. Обогащение цементита легирующими элементами до предела насыщения приводит к его превращению в специальный карбид (М зСе, М7С3), который образуется в тех самых местах, где ранее были частицы цементита (превращение на месте ). Карбиды типа МС и М3С образуются путем зарождения карбида в твердом растворе с последующим выделением. Это требует перераспределения углерода между твердым раствором и карбидной фазой. Выделение из твердого раствора карбидов МС, М С нередко вызывает повышение твердости — дисперсное упрочнение.  [c.187]

В случае цементаиии сталей, легированных карбидообразующими элементами, при температуре диффузии возможно образование двухфазного слоя из аустенита и карбидов глобулярной формы. На толщину слоя легирующие элементы в том количестве, в котором они присутствуют в цементуемых сталях, практически не влияют.  [c.233]

Наличие в стальной связке сильных карбидообразующих элементов, таких как вольфрам, молибден, хром, задерживает рост зерна аустени-та при нагреве выше критических точек (Ас = 839 °С Ас = 788 °С), что позволяет проводить закалку с повышенных температур. При росте температуры закалки аустенит обогащается легирующими элементами за счет растворения интерметаллидных фаз и карбидных частиц, вследствие чего достигается максимальная прочность при изгибе для карбидо-сталей. С другой стороны,при повьпиении температуры закалки выше 950 °С твердость карбидостали падает вследствие протекания собирательной рекристаллизации и роста содержания остаточного аустенита. Вследствие вьшгеизложенного дня каждого состава карбидостали должна выбираться своя температура закалки (табл. 45).  [c.110]

Чтобы улучшить свойства железоникелевых суперсплавов, к ним целенаправленно добавляют ряд других, вполне определенных элементов. Весьма важным легирующим элементом является В его вводят в количестве 0,003-0,030 %, чтобы улучшить характеристики длительной прочности и горячую деформируемость [14]. По тем же соображениям, а также в качестве карбидообразующей добавки, вводят Zr. Исследования [15] показывают, что влияние В и Zr связано с изменением энергии поверхностей раздела, способствующим коалес-ценции и сфероидизации выделений второй фазы по границам зерен. Если зернограничные частицы этой фазы компактны и имеют округлую, сфероидизированную форму, сплав обладает пластичностью, в отличие от состояния повышенной чувствительности к надрезу, связанной с непрерывными пленочными зернограничными выделениями. Было показано [16], что В тормозит переход метастабильной у -фазы в т)-фазу, так как замедляет зарождение выделений по границам зерен.  [c.218]

Легирующие элементы, расположенные в периодической системе левее железа, образуют в стали карбиды более стойкие, чем карбид железа — цементит. При легировании стали карбн-дообразующими элементами в ее структуре образуются включения карбидов. Легирующие карбидообразующие элементы могут образовывать самостоятельные карбиды или - замещать железо в карбиде железа — цементите. При избытке карбидообразующих элементов по отношению к углероду эти элементы входят в твердый раствор. В качестве карбидообразующих элементов часто применяют хром, вольфрам, ванадий, молибден, титан, ниобий. Карбидные включения упрочняют сталь и повышают ер твердость.  [c.161]



Смотреть страницы где упоминается термин Легирующий элемент карбидообразующие : [c.49]    [c.9]    [c.183]    [c.205]    [c.177]    [c.179]    [c.188]    [c.528]    [c.153]    [c.174]    [c.51]    [c.83]    [c.139]    [c.152]   
Специальные стали (1985) -- [ c.9 ]



ПОИСК



Легирующие карбидообразующие

Легирующие элементы

Легирующие элементы графитизирующие карбидообразующие



© 2025 Mash-xxl.info Реклама на сайте