Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Напряжения в соединениях сварных — Влияние

Для того чтобы исследовать влияние остаточных напряжений на прочность сварного соединения при различных видах нагружения, необходимо знать распределение этих напряжений в соединении. Наибольшее распространение получили методы А. В. Калакуцкого, Г. Закса и Н. Н. Давиденкова, которые позволяют установить не только величину остаточных напряжений, но и характер их распределения по сечению детали.  [c.18]


Как правило, остаточные напряжения в зоне сварного шва являются двух- или трехосными с резким градиентом и сложным характером распределения по отдельным направлениям. Механические свойства металла в зоне шва также неоднородны, поэтому и влияние остаточных напряжений на сопротивление усталости будет различным для разных участков зоны шва. Эти обстоятельства весьма затрудняют применение расчетных методов для количественного определения влияния остаточных напряжений на сопротивление усталости сварных соединений.  [c.34]

Прочность сварного соединения зависит от свариваемости материала, совершенства технологического процесса и характера действующих нагрузок (постоянные или переменные). Сварочные температурные деформации вызывают остаточные напряжения в соединениях, которые не оказывают заметного влияния на статическую прочность, если основной и наплавленный металл сохраняют пластические свойства. Поэтому стремятся подбирать такие материалы, которые обладали бы повышенной пластичностью и не теряли ее после сварки.  [c.369]

Замедленное разрушение присуще многим высокопрочным материалам и является в известной мере препятствием на пути их использования в конструкциях. Склонность к замедленному разрушению проявляется в деталях из высокопрочных материалов сложной формы и крупных размеров с неблагоприятным расположением волокна относительно направления действия растягивающих напряжений, в жестких сварных соединениях под действием остаточных напряжений от монтажа и сварки, а также под влиянием различных сред. Несмотря на то, что случаи замедленного разрушения при эксплуатации изделий нередки, воспроизведение их в лабораторных условиях затруднительно.  [c.210]

Можно предполагать, что при устранении концентраторов напряжений в районе сварных швов и повышении вибрационной прочности сварных соединений до прочности образца из основного металла (что может быть достигнуто соответствующей механической обработкой) опасное сечение не будет совпадать с упрочняемой при сварке зоной. При этом можно ожидать, что вне упрочняемой зоны поперечные остаточные напряжения смогут оказать некоторое влияние. Однако следует иметь в виду, что величина поперечных остаточных напряже-126  [c.126]

Таким образом, водород в одних случаях существенно влияет на стойкость околошовной зоны против образования трещин, в других же, например при сварке среднелегированных сталей аустенитной проволокой, его роль второстепенна. Это позволяет заключить, что водород не является главным и тем более единственным фактором, определяющим образование холодных трещин в сварных соединениях. Его влияние на их образование необходимо рассматривать совместно с действием других факторов, обусловленных преимущественно закалочными явлениями в околошовной зоне и сварочными напряжениями. В соединениях с аустенитным швом положительное действие других факторов значительно преобладает над отрицательным действием водорода.  [c.245]


На рис. 1.32 даны примеры экспериментально полученных эпюр продольных остаточных напряжений в однородных сварных соединениях из металлов, не испытывающих влияния структурных превращений. Структурные превращения, сопровождающиеся изменением объема, а также сварка присадочным металлом, отличающимся от основного, приводит к более сложной картине с чередованием ряда растянутых и сжатых зон (рис. 1.33).  [c.54]

В описанном опыте обращали внимание на то, чтобы механические свойства и структура металла у отверстия в местах наибольшей концентрации была такая же, как и вдали от нагрева. Выносливость образцов изменялась под влиянием только одного фактора — остаточных напряжений. В реальных сварных соединениях места концентрации рабочих и остаточных напряжений совмещаются с зоной термического влияния сварки. Возникающие в этой зоне пластические деформации могут упрочнить металл, повысив его предел текучести.  [c.65]

Чем больше концентрация напряжений в соединениях, тем значительнее отрицательное влияние уменьшения величины характеристики циклов нагружения на усталостную прочность сварных соединений.  [c.244]

С целью исследования влияния собственных и реактивных сварочных напряжений на долговечных сварных узлах были проведены расчетные исследования по кинетике усталостной трещины в трех типах сварных узлов, образованных стыковым, тавровым и штуцерным соединениями [28, 86].  [c.317]

Результаты сопоставления экспериментальных и расчетных зависимостей длины усталостной трещины от числа циклов нагружения в исследуемых тавровых и стыковых соединениях показаны на рис. 5.28. Максимальная относительная погрешность по долговечности составляет около 25 %, что свидетельствует о достаточно хорошей сходимости результатов расчетов по разработанным методикам с экспериментальными данными. Для сравнения был проведен расчет долговечности исследуемых соединений без учета ОСН (рис. 5.28,6). Из рис. 5.28,6 видно, что ОСН оказывают существенное влияние на долговечность сварных соединений, причем это влияние тем больше, чем меньше уровень максимальных растягивающих напряжений в цикле.  [c.324]

Экспериментальная проверка, предпринятая в [215], показала, что при значениях отношения высоты выступа шва к ширине выступа шва сИ <0, 35 точность предложенной формулы для расчета коэффициента концентрации напряжений в сварных стыковых соединениях является вполне достаточной. Наиболее существенное влияние на коэффициент концентрации напряжений aсварных соединений может изменяться от 1 до 3 (рис. 3.3.9, а), оказывают радиус перехода наплавленного металла к основному, высота и ширина выступа сварного шва. Изменение толщины стенки труб мало влияет на величину о [145].  [c.171]

Различие в поведении указанных сварных соединений можно предположительно объяснить различиями в химическом составе швов швы, выполненные электродами с рутиловым покрытием, содержат в 4—5 раз меньше кремния и имеют весьма мелкозернистую структуру. Пластичность ферритной составляюш,ей материала этих швов выше, что должно благоприятствовать релаксации остаточных напряжений. В некоторой мере может проявляться легирующее действие титана, который был в незначительном количестве обнаружен только в швах, выполненных электродами с рутиловым покрытием. Действие отжига, в значительной степени снимающего остаточные напряжения и укрупняющего зерно (причем с ростом температуры увеличивался эффект), показывает преимущественную роль выравнивания структуры металла шва и зоны термического влияния.  [c.224]

Результаты исследований показали, что длительное влияние статических напряжений и среды не вызывает существенных изменений механических свойств и коррозионного растрескивания. В то же время циклическими испытаниями установлено, что у образцов сварных соединений значение условного предела выносливости значительно меньше, а интенсивность снижения коррозионноусталостной прочности больше, чем у основного металла. Металлографические исследования свидетельствовали о том, что разрыхления и трещины возникают главным образом по границам зон термического влияния. Это обусловлено тем, что циклическая нагрузка интенсифицирует коррозию под напряжением по сравнению со статической, в большей степени приводя к неоднородности физикомеханических и электрохимических свойств в металле сварного соединения. Трещины распространяются преимущественно внутрикристаллитно, что говорит  [c.236]


Для установления возможности создания благоприятных физико-механических свойств металла и повышения работоспособности сварного соединения проводили исследование влияния различных вариантов сочетаний видов сварки, сварочных материалов и свариваемых сталей, технологических режимов сварки, термообработки, дополнительных напряжений на распределение электродных потенциалов в зонах сварного соединения, а также на изменение микро- и макронапряжений, структуру, микротвердость.  [c.237]

Влияние остаточных сварочных напряжений. Распределение остаточных сварочных напряжений в продольных, тавровых и пересекающихся сварных швах замеряли с помощью пружинных датчиков деформации полученные результаты графически представлены на рис. 6, а — в. Максимальное растягивающее напряжение было почти равным Сто,2 основного металла независимо от типа сварного соединения [5].  [c.133]

Таким образом, поведение сварного соединения различно в зависимости от места расположения трещины и температуры испытания. Эти различия в поведении являются результатом влияния большого числа металлургических факторов, включая разницу в химическом составе основного материала и присадочной проволоки и термический цикл в зоне термического влияния. Эти факторы изменяют микроструктуру и влияют на устойчивость аустенита. В результате усадки при затвердевании металла сварного шва в сварных соединениях создается сложная система остаточных напряжений и возникает местная пластическая деформация зоны термического влияния. Подробное объяснение этих факторов выходит за рамки данного исследования.  [c.231]

Предварительное нагружение вызывает изменение сопротивления усталости из-за перераспределения остаточных напряжений и упрочнения материала у мест концентрации напряжений. Степень влияния предварительного растяжения на сопротивление усталости сварных соединений зависит главным образом от отношения напряжения предварительного растяжения к пределу текучести, от величины и знака остаточных напряжений в местах развития усталостной трещины, от концентрации напряжений, материала и типа соединений. Максимальное повышение предела усталости в результате предварительного растяжения получается тогда, когда остаточные напряжения растяжения в местах развития усталостной трещины заменяются сжимающими. В частности, последнее имело место у образцов с односторонним продольным ребром, у которых вследствие  [c.155]

Наличие участков металла с резко пониженными пластическими свойствами сильно снижает качество сварного соединения. В некоторых случаях под влиянием возникающих при сварке внутренних напряжений в около-шовных зонах и в швах появляются трещины.  [c.355]

Серьезным производственным дефектом являются трещины, образовавшиеся при сварке. Их проявление происходит в интервалах температур 1100-1300 и 100-300 С. Первые назьшаются "горячими , вторые - холодными . Швы сталей, склонных к закалке, более подвержены трещинообразованию, так как при сварке происходит закалка части металла с понижением его пластических характеристик в зоне термического влияния. Особая опасность трещин объясняется несколькими обстоятельствами. Во-первых, трещина уменьшает сечение сварного стыка, ослабляя прочность. Во-вторых, она служит концентратором напряжений. В-третьих, не все трещины выходят на поверхность сварного соединения и в таких случаях их невозможно выявить визуально. В-четвертых, нельзя определить скорость их развития при работе котла. Производственные трещины располагаются в основном металле, в зоне термического влияния и в сварных швах свариваемых деталей. Трещины, выходящие на поверхность шва, выявляются визуально или с помощью диагностических приборов. Внутренние трещины, не выходящие на поверхность, в основном находятся с помощью ультразвуковых дефектоскопов или иными методами.  [c.194]

В результате резкой химической неоднородности или локализации внутренних напряжений к этому виду коррозии можно отнести и ножевую коррозию, возникающую в сварных соединениях при концентрации напряжений в зоне термического влияния  [c.17]

Сварное соединение диафрагмы с лопаткой имеет податливость, которая в определенной степени оказывает влияние на напряжения в диафрагме и лопатках, однако теоретическая оценка величины этой податливости пока не представляется возможной.  [c.368]

Для выявления влияния размеров сварных плит на остаточные напряжения для некоторых сварных соединений дополнительно замерялись остаточные напряжения в сварных образцах размером 75 X 500 X 55 мм.  [c.24]

Рис. IL Влияние скорости охлаждения при отпуске на остаточные напряжения в сварном шве разнородного сварного соединения Рис. IL <a href="/info/468430">Влияние скорости охлаждения</a> при отпуске на <a href="/info/6996">остаточные напряжения</a> в сварном шве разнородного сварного соединения
Более резкое проявление масштабного фактора в сопротивлении усталости разнородных сварных соединений по сравнению с основным металлом, по-видимому, может быть объяснено влиянием остаточных напряжений, возникаюш,их после термообработки в разнородных сварных соединениях.  [c.40]


Наиболее распространенным и опасным дефектом сварных соединений сталей являются хо юдные трещины в зоне термического влияния и металле шва, возникающие в закаленной структуре под влиянием водорода и сварочных напряжений.  [c.292]

Работа указанных конструкций в широком диапазоне температур от комнатной до 900—1000°-С требует всесторонней оценки жаропрочности входящих в них сварных соединений — основной характеристики, определяющей эксплуатационную надежность изделия в данных условиях. При ее определении должны быть учтены особенности сварных соединений и прежде всего неоднородность строения и свойств отдельных зон соединения, а также наличие в районе стыка концентраторов напряжений различного характера и происхождения, оказывающих заметное влияние на условия их работы. Пренебрежение этими факторами и определение свойств сварных соединений лишь с помощью классических методов оценки жаропрочности сталей и сплавов  [c.3]

Однако не во всех случаях термическая обработка приносит пользу. Например, термическая обработка (650° С) для снятия напряжений в сварных стыковых соединениях (рис. 34, е) из мягкой стали не оказала влияния на усталостную прочность независимо от того, снималось ли усиление шва или нет. Неправильное проведение термической обработки может вызвать снижение прочности, если поверхность металла обезуглероживается. При  [c.78]

Наиболее надежным методом снижения остаточных напряжений в сварных изделиях является высокий отпуск. Отпуск может оказывать как положительное, так и отрицательное воздействие на сопротивление усталости соединений, поскольку эффективность определяется результирующим влиянием двух факторов снижением вызванных сваркой остаточных напряжений и разупрочнением металла шва и околошовной зоны. Поэтому отпуск не во всех случаях может являться средством повышения прочности соединений 130, 31, 127].  [c.228]

В сварочной лаборатории МВТУ им. Баумана разработан метод определения объемных остаточных напряжений в стыковых сварных соединениях большой толщины. Метод позволяет определять напряжения как в глубине сварного соединения (объемные напряжения), так и на его поверхности (двухосные напряжения). Сущность его состоит в следующем в сварном соединении большой толщины сверлят специальные ступенчатые отверстия, ориентированные по главным осям поля напряжений или под некоторым углом к ним. В эти отверстия помещают специальные цилиндрические вставки с наклеенными на их поверхность тензодатчиками сопротивления. Перед установкой в образец вставки тарируют на машине для испытаний на растяжение. Коме того, перед проведением измерения напряжений вставке сообщают определенный предварительный натяг, который дает возможность регистрировать его деформации обоих знаков. После установки вставки и снятия прибором показания соответствующего напряжения предварительного натяга из образца вырезают столбик с отверстием и вставкой. Затем снимают повторное показание прибора. Практика измерений показала, что оптимальными размерами вырезаемого столбика является размер АОХА мм. Увеличение этого размера ведет к увеличению степени осреднения искомого компонента напряжения, а его уменьшение — к усилению влияния отверстия на результат измерения деформации. По разности произведенных замеров определяют величину упругой деформации, вызванной снятием остаточных напряжений, и подсчитывают величину этих напряжений.  [c.215]

Во всех исследуемых соединениях — тавровом, стыковом, штуцерном — распределение собственных ОСН крайне неоднородно по толщине листа, что обусловлено спецификой температурных полей, возникающих при многопроходной сварке. В случае применения многопроходной сварки, выполняемой по методу отжигающего валика, структурные превращения практически не оказывают существенного влияния на ОСН в области сопряжения шва с основным металлом собственные ОСН для всех сварных узлов практически одинаковы и составляют примерно 0,8ат Е поперечном и (0,8-Ь 1,0) а в продольном направлениях. На основании исследования собственных ОСН в различных сварных узлах установлено, что источниками реактивных напряжений являюся те узлы, швы которых перерезают несущий элемент и образуют замкнутый контур.  [c.326]

Наличие дефектов в сварных соединениях угрожает их прочности, снижает надежность. Их отрицательное влияние может проявляться даже в случае статического приложепия нагрузок, при неблагоприятном сочетании с собственными напряжениями в условиях понижения пластичности, под действием ни.зких температур и агрессивных сред.  [c.111]

В плане применения экспериментальных методов и моделирутощих образцов, использу елгых дтя исследования влияния различных параметров конструкций и их сварных соединений на напряженно-деформиро-ванное состояние и характер пластического течения, нужно отметить следующее В отличие от тонкостенных констру кций, кривизной поверхности которых пренебрегали (в вид> ее малости), и благодаря допу щению об отсутствии напряжений в направлении стенки конструкции (Оз = 0) силовая схема нагружения моделирующих образцов была сведена к растяжению—сжатию плоских образцов (см. рис. 3.42), для толстостенных данные допущения на сгадии экспериментального изу чения с применением. метода муара являются неприемлемыми. Это связано, с одной стороны, с тем что кривизна толстостенных оболочек является доминирующим параметром, существенным образом определяющим напряженное состояние оболочек и, с другой стороны, напряжения в направлении стенки конструкции сопоставимы по своим значениям O HGfp (а,), что не позволяет при использовании модельных образцов свести силовую схему к растяжению (сжатию).  [c.206]

Приведены результаты измерений скорости развития усталостных трещин в сплаве титана ТП,5А11Мп и его сварных соединениях. Показано большое влияние коэффициента асимметрии цикла на эту скорость. Определены предельная величина коэффициента интенсивности напряжения и скорость разрушения  [c.428]

Исследования коррозионной усталости металлов проводят с использованием образцов различных геометрических форм, а во многих случаях— моделей или реальных деталей или узлов машин и i аппаратов. Для получения сравнительной оценки влйяния структуры, химического состава металла, агрессивности среды,окружающей температуры, параметров циклического нагружения и других факторов используют обычно образцы диаметром или толщиной 5—12 мм. Влияние масштабного и геометрического факторов изучают на нестандартных образцах диам- тром или толщиной поперечного сечения от 0,1 до 200 мм и более — гладких цилиндрических, призматических, плоских с различным отношением сечения к длине рабочей части, а также с концентраторами напряжений в виде выточек, отверстий, уступов и пр. Оценку влияния прессовых, шпоночных, резьбовых, сварных, клеевых и тому подобных соединений металлов на их сопротивление усталости проводят на моделях таких соединений уменьшенных размеров, реже — на натурных соединениях (элементы судовых ва-лопроводов, бурильной колонны, сосудов высокого давления, лопатки турбин, колеса насосов и вентиляторов, стальные канаты, цепи, глубиннонасосные штанги и др.).  [c.22]


Трещины, причины образования их и методы борьбы с ними. При сварке сталей с повышенным содержанием углерода в низколегированных конструкционных сталях часто появляются трещины в шве и в зоне термического влияния. К основным причинам, вызывающим появление трещин, относятся а) образование вследствие больших скоростей охлаждения закалочных зон со структурой мартенсита, обладающих низкими пластическими свойствами и повышенной твёрдостью б) повышенное содержание серы в наплавленном металле при малом содержании марганца (Липецкий) [20] в) повышенное содержание в наплавленном металле кремния (Шеверницкий и Слуцкая) [40] г) различие коэфициента усадки малоуглеродистого наплавленного металла и высокоуглеродистого или легированного основного д) неравномерность остывания валика в соединениях внахлёстку и втавр, в которых корень валика охлаждается медленнее, чем концы катетов, прилегающих к гипотенузе е) усадочные напряжения, возникающие при сварке ж) дефекты сварного шва — наличие непроваров, шлаковых включений и пористости.  [c.428]

При этом указанные расчетные параметры необходимо брать для той зоны сварного соединения, в которой находится наиболее опасный концентратор напряжений. Влияние остаточных сварочных напряжений в малоцикловой области в связи с их перераспределением при упругопластическом деформировании будет сказываться в меньшей степени, чем при многоцикловой усталости. Снижение предела выносливости сварного соединения мол ет быть осуш ествлено на основе соответствующих уравнений гл. 7 и 11.  [c.190]

Рис. 12. Влияние скоростей охлаждения в процессе отпуска на остаточные напряжения в шве и околошовной зоне разнородного сварного соединения сталей 0Х12НДЛ и 15Г2ВЛ Рис. 12. <a href="/info/468430">Влияние скоростей охлаждения</a> в <a href="/info/644742">процессе отпуска</a> на <a href="/info/6996">остаточные напряжения</a> в шве и <a href="/info/7202">околошовной зоне</a> разнородного <a href="/info/2408">сварного соединения</a> сталей 0Х12НДЛ и 15Г2ВЛ
Данные для предельного состояния, вычисленные по приведенной схеме, совп ь дают с результатами испытаний. Применение этой схе лы для определения разрушающих нагрузок приводит в случае преобладающей доли изгибающего момента с существенным отклонениям от опытных данных, полученных как при кратковременных испытаниях при комнатной температуре, так и длительных в условиях ползучести. Изгибающая нагрузка мало сказывается (при принятых методах расчета) на величине разрушающего давления. Чувствительными к изгибным напряжениям оказались поперечные сварные соединения, имеющие пониженную пластичность. В связи с изложенным для оценки влияния дополнительных напряжений в нормах приняты формулы, выведенные для предельного состояния. Пониженная сопротивляемость сварных стыков изгибу учтена при определении изгибных напряжений введением коэффициента прочности сварных соединений при изгибе ф . Рекомендуемые значения коэффициента приняты по опытным данным и подлежат в дальнейшем уточнению.  [c.301]

Оценка склонности сварных соединений к развитию трещин при термической обработке производится с помощью жестких проб и испытаний образцов, подвергнутых нагреву по имитированному термическому циклу сварки (п. 15). Пробы и испытания, а также опыт изготовления сварных конструкций показали, что образование трещин при термической обработке наиболее вероятно при высокой жесткости соединения и наличии концентраторов напряжений в районе усиления швов, а также несплавле-ний и других дефектов на границе сплавления. При исследовании с помощью жестких проб и релаксационных испытаний установлено, что вероятность появления трещин при отпуске или стабилизации заметно снижается, если перед нагревом проведена зачистка наружной поверхности швов до плавного сопряжения с основным металлом, или если испытываются гладкие образцы. Поэтому фактор концентрации является одним из основных, способствующих появлению рассматриваемого типа трещин. С позиций межзеренного разрушения такое влияние концентрации обусловлено тем, что за счет объемности напряженного состояния подавляются сдвиговые деформации и развиваются процессы, способствующие межзеренному разрушению.  [c.99]

Анализируя результаты проведенных релаксационных испытаний, а также испытаний жестких технологических проб, следует учитывать, что при их приложении к реальным условиям нужно дополнительно принимать во внимание влияние большого числа факторов и прежде всего жесткости сварного соединения, особенностей термодеформационного цикла при принятом методе сварки, концентраторов напряжений в районе околошовной зоны, их остроты и так далее. Поэтому разрушение надрезанных релаксационных образцов само по себе еще не говорит об обязательном появлении трещин при термической обработке. Так, например, хотя по результатам испытаний образцов стали типа 2,25Сг-1Мо она оказалась склонной к околошовному растрескиванию, много-  [c.102]


Смотреть страницы где упоминается термин Напряжения в соединениях сварных — Влияние : [c.7]    [c.45]    [c.187]    [c.185]    [c.54]    [c.83]    [c.11]    [c.4]    [c.227]    [c.286]   
Материалы в машиностроении Выбор и применение Том 2 (1968) -- [ c.0 ]



ПОИСК



Влияние Соединения

Влияние внутренних напряжений на сварное соединение

Влияние напряжений

Методы повышения прочности сварных соединений при переменных нагрузках, влияние остаточных напряжений

Напряжения сварные

Прочность усталостная сварных соединений Влияние стыковых 114—117 — Механическая обработка шва 116 — Напряжения в стыковом соединении 115 Остаточные напряжения от сварки

Соединения сварные — Влияние механической обработки на прочность концентрации напряжения

Сопротивление усталости сварных соединений — Влияние конструктивных ные напряжения от сварки 116 — Состояние поверхности основного металла в зоне шва 115, 116 — Форма

Сопротивление усталости сварных соединений — Влияние конструктивных обработка шва 117 — Напряжения



© 2025 Mash-xxl.info Реклама на сайте