Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Движение вязкой жидкости в круглой трубе

В настоящем параграфе изложено решение задачи об установившемся пульсирующем движении вязкой жидкости в круглой трубе под действием гармонически изменяющегося со временем перепада давления.  [c.400]

ДВИЖЕНИЕ ВЯЗКОЙ ЖИДКОСТИ В КРУГЛОЙ ТРУБЕ  [c.255]

Рассмотрим движение вязкой жидкости в круглой цилиндрической трубе радиусом Го- В данном случае при ламинарном режиме отдельные струйки движутся параллельно друг другу. Стенки, вдоль которых происходит движение, покрываются прилипшими к ним частицами жидкости скорость движения непосредственно на стенке равна нулю. Первый пристенный движущийся слой жидкости будет скользить по стенке, покрытой-прилипшими частицами, поэтому величина трения внутри трубы может быть определена по зависимости (4.2), подтвержденной теоретическими и лаборатор-  [c.109]


При ламинарном режиме движения вязкой жидкости в круглой цилиндрической трубе отдельные струйки движутся параллельно друг другу. Стенки, вдоль которых происходит движение,  [c.137]

Скорость движения несжимаемой вязкой жидкости в круглой трубе подчиняется уравнению Навье —Стокса в цилиндрической системе координат  [c.79]

Прямолинейное движение вязкой жидкости в круглой кольцевой трубе  [c.130]

Пример 1. Определение сопротивления движению несжимаемой жидкости в цилиндрических трубах. Рассмотрим течение вязкой несжимаемой жидкости в круглой цилиндрической гладкой трубе. Пусть задача состоит в нахождении структуры зависимости падения давления Ар на участке длиной I от параметров системы.  [c.130]

Задача о нестационарном движении вязкой жидкости по цилиндрической трубе круглого сечения уже давно привлекала внимание исследователей. Простейший случай этой задачи в 1879 г. рассмотрел еще Гельмгольц ). В общей постановке для любых начальных условий и заданного закона зависимости перепада давлений в трубе от времени задача была систематически исследована в сочинении казанского профессора И. С. Громека, относящемся к 1882 г. 2). Частные случаи той же задачи были разобраны различными авторами ).  [c.400]

Как уже отмечалось раньше, необходимые признаки ламинарного течения в круглой трубе установлены не только на основании результатов опытов, но и на основании результатов решения дифференциальных уравнений движения вязкой несжимаемой жидкости с удовлетворением граничным условиям прилипания частиц жидкости к стенкам. Что же касается перечисленных необходимых признаков турбулентного движения в трубе, то они пока установлены только на основании экспериментальных наблюдений и измерений. Среди исследователей, занимающихся вопросами течений жидкости, широко распространено мнение, что указанные признаки турбулентного режима течения в трубе нельзя получить в результате решения краевой задачи на базе общих дифференциальных уравнений движения вязкой жидкости, в основе которых лежит гипотеза Ньютона о силе вязкости и гипотеза о сплошности среды и непрерывности изменений скоростей частиц. Извилистый и неупорядоченный характер траекторий отдельных частиц побудил ряд исследователей отказаться от непосредственного использования дифференциальных уравнений движения вязкой жидкости для изучения турбулентных течений и стать на путь видоизменения этих уравнений с помощью математического метода осреднения ряда величин и введения в связи с этим методом новых неизвестных величин.  [c.435]


Полученные в этой главе общие дифференциальные уравнения движения вязкой несжимаемой жидкости (9.11) интегрируются только в некоторых частных случаях, к числу которых, в частности, принадлежит так называемое ламинарное течение вязкой жидкости в круглой цилиндрической трубе.  [c.220]

Перейдем теперь к решению задачи о ламинарном, установившемся течении жидкости в круглой трубе, используя для этой цели основные уравнения движения вязкой несжимаемой жидкости (9.11).  [c.221]

К вопросу об устойчивости движения вязкой жидкости в прямой круглой трубе. Прикл. матем. мех., 14, № 1, 105—110.  [c.603]

Рассмотрим ламинарное течение вязкой (ньютоновской) жидкости в круглой трубе радиуса К При таком течении цилиндрические слои жидкости (которые должны мыслиться бесконечно тонкими) перемещаются в направлении оси трубы совершая "телескопическое" движение (рис. 8.2, а). Так как жидкость несжимаема, то скорость V остается постоянной по длине трубы и зависит только от расстояния г до центральной оси. Для определения  [c.89]

II. УСТАНОВИВШЕЕСЯ ДВИЖЕНИЕ ВЯЗКОЙ НЕСЖИМАЕМОЙ ЖИДКОСТИ В КРУГЛОЙ ЦИЛИНДРИЧЕСКОЙ ТРУБЕ  [c.561]

Начнем с изучения внутренней задачи. Рассмотрим движение вязкой несжимаемой жидкости в круглой прямолинейной трубе.  [c.336]

При движении вязкой ньютоновской жидкости по круглой трубе в соответствии с законом вязкого трения Ньютона (1.9) касательное напряжение т пропорционально градиенту скорости и г ), т.е.  [c.203]

Выполненное исследование указывает на большое влияние рассеяния механической энергии как на качественную, так и на количественную оценки теплообмена при ламинарном движении вязкой несжимаемой жидкости в круглой цилиндрической трубе.  [c.64]

Необходимо также отметить применение уравнений медленного течения в гидродинамической теории смазки. Исследование относительного движения двух близко расположенных параллельных поверхностей было начато Рейнольдсом [25]. Развитые им методы применялись с тех пор в разнообразных задачах теории смазки [14]. В дополнение к пренебрежению инерцией принимается, что течение жидкости существенно одномерно. Такие же упрощения применялись также, например, к исследованию аксиального движения сферы в круглой трубе, заполненной вязкой жидкостью, в случае, когда диаметр трубы ненамного больше диаметра сферы [8], и для вязкого течения в зазоре между параллельными круговыми цилиндрами в случае, когда зазор между ними мал по сравнению с их диаметром [17]. В первом случае наблюдается хорошее согласие эксперимента с теорией. Имеется также много других аналогичных применений данной теории.  [c.76]

При некоторых движениях вязкой жидкости ее слои скользят один по другому, не перемешиваясь между собой. Такие движения называются ламинарными . Для исследования нескольких простых случаев ламинарного движения вполне достаточно соотношения (1). Одним из таких случаев является движение в прямолинейной трубе с круглым поперечным сечением. Выделим между сечениями трубы 1 и 2 жидкий цилиндр радиуса у (рис. 91). Пусть давление в сечении 1 равно рх, а в сечении 2 оно равно рг- Тогда на жидкий цилиндр действует сила (р1 -Р2) -  [c.143]

В IV главе работы Навье рассматривается прямолинейное неустановившееся движение вязкой несжимаемой жидкости в трубе прямоугольного сечения и в цилиндрической трубе круглого сечения пол действием силы тяжести. Навье указывает на аналогию последней задачи с задачей теплопроводности для круглого цилиндра и даёт полное решение этой задачи в виде ряда по цилиндрическим функциям нулевого порядка. Из этого решения Навье получает как предельный случай и решение задачи о прямолинейном установившемся течении вязкой несжимаемой жидкости в круглой цилиндрической трубе под действием силы тяжести. Полагая в этом решении радиус трубки очень малым, Навье получает следующее выражение для средней скорости течения  [c.16]


Дифференциальные уравнения (8.1) главы И движения вязкой несжимаемой жидкости преобразуем к безразмерным величинам. Для этого все входящие в эти уравнения величины выразим через величины той же размерности, но являющиеся характерными для рассматриваемого течения. Так, например, при движении жидкости в круглой цилиндрической трубе за характерный геометрический размер можно взять диаметр трубы, а за характерную скорость — среднюю скорость по течению. При обтекании жидкостью шара за характерный размер можно взять диаметр шара, эа характерную скорость — скорость потока на бесконечности и за характерное давление—давление на бесконечности. Аналогично обстоит дело и в других случаях течений.  [c.106]

Рассмотрим неустановившееся движение вязкой несжимаемой жидкости в круглой цилиндрической трубе в предположении, что  [c.322]

Задача о нестационарном движении вязкой жидкости по цилиндри-. ческой трубе круглого сечения уже давно привлекала внимание исследователей. Простейший случай этой задачи в 1879 г. рассмотрел еще Гельмгольц 2). В общей постановке для любых начальных условий и заданного закона зависимости перепада давлений в трубе от времени задача была систематически исследована в сочинении казанского  [c.493]

Рассмотрим движение вязкой несжимаемой жидкости в кольцевом канале, образованном двумя соосными круглыми цилиндрическими трубами. Плотность теплового потока на внутренней стенке кольцевого канала (с радиусом R ) обозначим qu а на внешней (с радиусом R2) q .  [c.225]

В качестве простой иллюстрации рассмотрим задачу об аксиальном движении без вращения твердой сферической частицы в круглой цилиндрической трубе, в которой течет вязкая жидкость. Полагаем, что радиус цилиндра много. больше радиуса сферы, а за ось z == Z выбираем ось цилиндра. Сферическая частица движется с постоянной скоростью и = кС/ параллельно оси, в то время как внешний поток жидкости направлен в том же направлении со средней скоростью = kf/o/2, где к — единичный вектор в направлении оси 2 и — невозмущенная скорость на оси трубы. Радиус трубы есть Rq радиальное расстояние от продольной оси трубы до точки в жидкости есть R, а центр сферы расположен на расстоянии R = Ь от оси.  [c.86]

Рассмотренные в предыдущих двух главах движения вязкой жидкости относились к числу ламинарных движений. Траектории частиц, линии тока, поля скоростей и давлений в этих движениях имели совершенно определенный, регулярный характер. Выражением этой регулярности ламинарного движения служил тот факт, что общая картина наблюдающихся в действительности ламинарных движений и многие их детали достаточно хорошо описывались решениями уравнений Стокса при соответствующих, также регулярных , начальных и граничных условиях. Можно, например, вспомнить пуазейлево движение вязкой жидкости по круглой трубе, соответствие теоретически рассчитанных характеристик которого (парабола скоростей, формулы расхода и сопротивления) опытным данным уже давно блестяще подтверждено. То же относится к многочисленным другим примерам ламинарных движений вязкой жидкости движению смазки в узких зазорах между валом и цапфой подшипника, вполне удовлетворительно описываемому гидродинамической теорией смазки подшипников, движениям в ламинарных пограничных слоях, с достаточной точностью рассчитываемым по теории, изложенной в предыдущей главе, и др.  [c.522]

Наряду с движением вязкой жидкости в круглых цилиндрических трубах Д. Колзом были изучены также и переходные движения в пространстве между соосными вращающимися цилиндрами ). При переходе через некоторое значение рейнольдсова числа устойчивое вначале круговое движение частиц жидкости в плоскостях, перпендикулярных оси вращения, сменяется движением с ячеистой структурой замкнутых вторичных течений, расположенной периодически в направлении, параллельном оси вращения. Такое — его обычно называют тэйлоровским — движение образуется в случае доминирующего вращения внутреннего цилиндра. В случае же доминирующего значения вращения внешнего цилиндра устойчивое круговое движение частиц переходит в спиральное, смешанное ламинарно-турбулентное движение. Эти периодически расположенные в пространстве спирали, сохраняя свою форму и взаимное расположение, вращаются как одно целое вокруг общей оси цилиндров с угловой скоростью, близкой к среднему арифметическому угловых скоростей цилиндров.  [c.527]

Турбулентность, а) В 1 мы вывели закон Гагена-Пуа-зейля, согласно которому при течении вязкой жидкости в круглой трубе падение давления пропорционально расходу жидкости [формула (4)]. Там же мы упомянули, что закон Гагена-Пуазейля имеет место для движения в очень узких трубках при любых практически возможных скоростях, а для движения в широких трубах — только при малых  [c.156]

Будущим теоретическим исследованиям по устойчивости ламинарных движений предстоит отразить основные детали тех сложных, граничащих со случайными движений, которые возникают при потере устойчивости изучаемого начального движения, а пока внимание многих ученых привлекает гидродинамический эксперимент, на современном уровне развития позволяющий глубоко проникнуть в процессы перехода ламинарных движений в турбулентные. Появившиеся в последнее десятилетие исследования в этом направ-.тении показывают, что нелинейные эффекты в вязких потоках крайне своеобразны. Чрезвычайно характерны в этом смысле явления, возникающие в круглой трубе при переходе рейнольдсова числа через критическое значение. Явления эти аналогичны и другим случаям ламинарного движения вязкой жидкости, в частности куэттовскому движению между движущимися параллельными плоскостями, между поверхностями вращающихся соосных цилиндров и в пограничных слоях.  [c.525]


Сходство явлений дерехода ламинарных движений в турбулентные в круглой цилиндрической трубе и в куэттовском круговом движении распространяется и на движение вязкой жидкости в пограничных слоях на поверхности твердых тел, в струях и следах за телами. Если условиться при сравнительно грубом подходе количественно сопоставлять скорость на внешней границе пограничного слоя со скоростью на оси трубы, а толщину пограничного слоя с радиусом трубы, то следует ввести в рассмотрение рейнольдсово число пограничного слоя  [c.528]

Из новых работ о движении жидкостей в трубах следует упомянуть следующие Кона ков П. К., Новая формула для коэффициента сопротивления гладких труб. Доклады Акад. Наук СССР, т. Ы (1946), №7 Невзглядов В. Г., О турбулентном движении жидкостей в круглых трубах. Изв. Акад. Наук СССР, Отд. техн. наук, 1445, №9 Невзглядов В. Г., О турбулентном потоке в шероховатых трубах. Доклады Акад. Наук СССР, т. ЬУ (1947), №2 Якимов Л. К., Новый закон турбулентного движения вязкой жидкости. Доклады Акад. Наук СССР, т. Ь. (1945). [Прим. перев.)  [c.227]

Решение задачи о приведении в движение покояш ейся в круглой цилиндрической трубе вязкой жидкости под действием внезапно приложенного заданного постоянного перепада давления можно найти в монографии Н. А. Слезкина ).  [c.403]

Представлеиио об особенностях Л. т. даёт хорошо изученный случай движения в круглой цилиндрич. трубе. Для этого течения Йгкр—2200, где Re i pdfv (у,-р — средняя по расходу скорость жидкости, d — диаметр трубы, v= j,/p — кинематич. коэф. вязкости, JX — динамич. коэф. вязкости, р — плотность жидкости). Т. о., практически устойчивое Л. т. может иметь место или при сравнительно медленном течении достаточно вязкой жидкости или в очень тонких (капиллярных) трубках. Наир., дли воды (v = 10 м7с при 20° С) устойчивое Л. т. с Уср м/с возможно лишь в трубках диаметром не более 2,2 мм.  [c.567]

В качестве другого примера рассмотрим случай нестационарного движения вязкой несжимаемой жидкости, физические свойства которой характеризуются константами р и р, по бесконечно длинной круглой цилиндрической трубе диаметра й под действием перепада давления Ар, представляющего некоторую гармоническую функцию с периодом Т (или частотой N = ИТ) и амплитудой Р. В этом случае (опускаем действие объемных сил) никакой характерной скорости не задается и, таким образом, ни одно из чисел подобия ЗЬ, Ей и Ре не может быть критерием. Как и в предыдущем случае, поскольку задается перепад давления (за масштаб давлений можно принять, например, амплитуду колебаний давления Р) и частота N нестационарного движения (для простоты рассмотрим только установившиеся вынужденные колебания жидкости), то критерии подобия составим, комбинируя числа ЗН и Ей с числом Рейнольдса Ре так, чтобы скорость V исключилась. Будем иметь следующие два критерия подобия-.  [c.374]

Формула (5.9) показывает, что при прямолинейном установившемся движении вязкой несжимаемой жидкости в цилиндрической круглой Зсрубе расход прямо пропорционален перепаду давления на единицу длины трубы, четвёртой степени радиуса трубы и обратно пропорционален коэффициенту вязкости.  [c.127]


Смотреть страницы где упоминается термин Движение вязкой жидкости в круглой трубе : [c.400]    [c.326]    [c.494]    [c.109]    [c.282]    [c.24]    [c.24]    [c.425]    [c.382]   
Смотреть главы в:

Лекции по гидроаэромеханике  -> Движение вязкой жидкости в круглой трубе



ПОИСК



Вязкая жидкость в движении

Движение вязкой жидкости

Движение жидкости в трубах

Движение круглых тел

ЖИДКОСТИ ВЯЗКИЕ трубе

Жидкость вязкая

Прямолинейное движение вязкой жидкости в круглой кольцевой трубе

Пульсирующее ламинарное движение вязкой жидкости по круглой цилиндрической трубе

Установившееся движение вязкой несжимаемой жидкости в круглой цилиндрической трубе



© 2025 Mash-xxl.info Реклама на сайте