Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Ползучесть и разрушение металлов при высоких 1 температурах

Деформация и разрушение при ползучести. При достаточно высоких температурах в поликристаллическом металле границы зерен становятся более слабыми, чем сами зерна, и значительная часть деформации ползучести происходит за счет скольжения зерен относительно друг друга. Это скольжение носит характер вязкого течения, оно затруднено кинематически, так как зерна имеют неправильную форму и каждое зерно встречает сопротивление со стороны соседних. Скольжение становится возможным за счет пластической деформации зерен и сопровождается появлением меж-зеренных трещин, приводящих к разрущению.  [c.320]


Разрушение металла в результате ползучести может происходить по телу зерна или по границам зерен часто наблюдается смешанное разрушение. В одном и том же металле могут наблюдаться разные виды разрушения. При высоких температурах, малых напряжениях и малых скоростях деформации разрушение происходит по границам кристаллитов. Если рабочая температура для данной стали относительно невелика, а напряжение и скорости деформации относительно велики, материал разрушается по телу кристаллитов. Смешанное разрушение происходит при промежуточных значениях перечисленных величин [47, 92,  [c.15]

Жаропрочностью называется способность материала сопротивляться пластическим деформациям и разрушению при высоких температурах. Оценивается жаропрочность испытанием материала на растяжение при высоких температурах. Так как напряжение, вызывающее разрушение металла в условиях повышенных температур, сильно зависит от продолжительности приложения нагрузки, при тестировании материала учитывается время действия нагрузки. По сопротивлению пластической деформации определяется предел ползучести, а по сопротивлению разрушения — предел длительной прочности.  [c.97]

Разрушение металла при высоких температурах недостаточно изучено. Однако установлено, что деформация и разрушение при высоких температурах происходят по границам зерен. Это объясняется тем, что по границам зерен, содержащих большое количество дефектов (вакансий, дислокаций и т. д.), легко протекают диффузионные процессы. Когда напряжения отсутствуют, диффузионные перемещения пограничных атомов не имеют направленного характера. При наличии даже небольших напряжений передвижение атомов на границах зерен способствует ползучести металла и приводит к остаточной деформации вследствие перемещения одного зерна относительно другого вдоль поверхности их раздела. Такой механизм пластической деформации называется диффузионной пластичностью, в отличие от сдвиговой, по объему зерна, описанной нами ранее.  [c.60]

Способность материала сопротивляться пластической деформации и разрушению при высоких температурах называется жаропрочностью. При температурах, близких к началу рекристаллизации, приложение нагрузки, даже меньшей предела текучести, приводит к медленной пластической деформации, металл как бы ползет . Это явление называется ползучестью или крипом. Учитывая, что развитие высокотемпературной ползучести совпадает с началом рекристаллизации, роста жаропрочности сплава может быть достигнут при повышении температуры его рекристаллизации.  [c.215]


Поэтому оценка способности металлов и сплавов противостоять ползучести и разрушению при высоких температурах — их жаропрочность — очень важная характеристика материала.  [c.147]

Явление ползучести металлов при высокой температуре порядка 500 °С наблюдается в деталях паровых турбин — трубопроводах, дисках, лопатках. Паровые турбины до сих пор производят значительную долю электрической энергии. Другим примером могут служить газотурбинные самолетные двигатели, температура газа в которых достигает 1300°С Основной причиной выхода из строя турбин является ползучесть рабочих лопаток. Высокие рабочие температуры применяются также в различных высокотемпературных технологических процессах, например нефтехимических и при переработке нефти. С проблемой учета ползучести металлических панелей мы встречаемся в системе термической защиты космических аппаратов, атомной энергетике и др. К конструкциям, работающим в условиях высоких температур, должны быть предъявлены следующие требования деформация не должна превышать допустимую в соответствии с выполняемыми конструктивными функциями изделия не должно произойти разрушения конструкции вследствие ползучести.  [c.304]

Путь разрушения при длительном воздействии высокой температуры и нагрузок (испытания на ползучесть) проходит вдоль границ зерен, а не по телу кристаллитов. Такое разрушение вызвано не наличием примесей или пленок хрупких соединений на границах зерен (так как оно характерно не только для технических сплавов, но и для чистых металлов), а процессом, который характерен только для малых скоростей деформации при высоких температурах (см. гл. XVI), т. е. скольжением по границам зерен. Как было отмечено (ск. гл V), зернограничная деформация не может быть значительной,  [c.434]

Жаропрочность — способность металлов выдерживать механические нагрузки без существенной деформации и разрушения при повышенной температуре. Основные критерии оценки жаропрочности (например, на срок 100 тыс. ч) предел длительной. прочности Одп— напряжение, при котором металл разрушается через 100 тыс. ч работы (испытания) при высокой (выше 450 °С) температуре условный предел ползучести % — напряжение, которое при рабочей температуре вызывает скорость ползучести металла Уд = Ю %/ч, что соответствует 1 %-ной суммарной деформации за 100 тыс. ч или Va = Ю мм/ч. Окалиностойкость (жаростойкость) — характеризует способность стали сопротивляться окисляющему воздействию газовой среды или перегретого пара при температуре 500—800 °С и выше без заметного снижения ее механических свойств в течение расчетного срока службы. Критерием окалиностойкости служит удельная потеря массы при окислении металла за определенный период времени, например за 100 тыс. ч.  [c.222]

Глава начинается с достаточно элементарного анализа проблемы ползучести и разрушения конструкционных сплавов под напряжением при высоких температурах и описания различных эффектов, наблюдаемых при воздействии внешней среды. Затем следует краткий обзор высокотемпературной коррозии и обсуждение многочисленных путей ее влияния на механические свойства сплавов, после чего уже непосредственно рассмотрены коррозионная ползучесть и разрушение материалов вследствие коррозии под напряжением. Следует отметить, что в данной главе рассматриваются процессы, протекающие при высоких температурах, как правило выше 0,5 Тт, где Тт — абсолютная температура плавления рассматриваемого сплава. Поэтому в круг обсуждаемых вопросов не входят такие сложные явления, как коррозионное растрескивание под напряжением, охрупчивание при контакте с жидким металлом или понижение сопротивления излому, вызванное поверхностно-активными веществами. По этим вопросам имеются авторитетные обзоры [8, 9].  [c.9]

Ползучесть (крип) — свойство металла медленно и непрерывно пластически деформироваться при постоянной нагрузке (особенно при высоких температурах). Деформация постепенно (по истечении многих дней, недель и месяцев) может совершенно прекратиться или, наоборот, продолжаться вплоть до разрушения (фиг. 122) в зависимости от нагрузки  [c.53]


В результате длительной работы в условиях ползучести металл разрушается. Напряжения, вызывающие разрушения, могут быть существенно меньше временного сопротивления при данной температуре- Способность металла сопротивляться разрушению при воздействии высокой температуры и напряжений характеризуется пределом длительной прочности — напряжением, приводящим металл к разрушению при данной температуре через определенный промежуток времени.  [c.75]

При повышении начальных параметров пара основные затруднения в работе металла обуславливаются высокими температурами перегретого пара, 480 — 500 С и выше, при которых механическая прочность сталей обычно применяемых марок значительно понижается п толщина стенок деталей возрастает, в особенности при высоком давлении. Уже при температуре 350 — 400° С начинает проявляться ползучесть металла (крип), т. е. непрерывная деформация материала под влиянием нагрузки, приводящая к медленному увеличению размеров напряженных частей в направлении действующих усилий, а при продолжительной работе в этих условиях и к разрушению детали. Это явление становится особенно опасным при температуре около 500° С и выше.  [c.86]

Жаропрочность — способность материала выдерживать механические нагрузки без существенной деформации и разрушения при повышенных температурах. Жаропрочность определяется комплексом свойств, включающих сопротивление ползучести и длительному разрушению и жаростойкость. Жаропрочность характеризуют пределом длительной прочности, пределом ползучести и временем до разрушения при заданных напряжении, температуре и рабочей атмосфере. Жаропрочность отражает свойство стали сохранять прочность, пластичность и стабильность структуры при высоких температурах в условиях ползучести металла в течение расчетного срока службы в сочетании с высокой коррозионной стойкостью (при температурах эксплуатации не выше 585 °С и умеренном коррозионном воздействии среды)н  [c.279]

Если при высокой температуре нагрузить металл постоянно действующим напряжением даже ниже предела текучести при этой температуре и оставить его под нагрузкой длительное время, то он в течение всего времени действия температуры и нагрузки будет деформироваться с определенной скоростью. Это явление получило название ползучести. Развитие ползучести может в конечном счете привести к разрушению металла.  [c.300]

Сопротивление металла ползучести и разрушению в области высоких температур при длительном действии нагрузки называют жаропрочностью. Чаще жаропрочность характеризуется условным пределом ползучести и пределом длительной прочности.  [c.300]

Жаропрочность — весьма сложное свойство. Определяющими,, как и в прочности вообще, являются процессы деформации (ползучести) и разрушения. Однако в поведении металлов под нагрузкой при высоких температурах (Т 0,4 Гцл) имеется специфика, связанная с возрастанием роли температурного фактора. Особое значение приобретает стабильность заданной структуры. При высоких температурах возрастает интенсивность диффузионных процессов, что способствует изменению структуры и свойств. В условиях высокотемпературной деформации в дислокационных моделях, описывающих ползучесть и разрушение металла, необходимо учитывать и диффузионные процессы.  [c.379]

Давно установлено, что предел прочности металла при разрыве в условиях ползучести является функцией времени. Предполагается, что в основе этого процесса лежит зарождение и постепенный рост микротрещин (при низких и средних температурах) или микропор (при высоких температурах) задолго до того, как ускоренный, лавинообразный рост их приведет материал к полному разрушению.  [c.399]

Диаграмма ползучести состоит из трех участков, адекватных трем стадиям ползучести. На участке I ползучесть протекает с постепенно уменьшающейся скоростью (кривая постепенно становится пологой). Здесь металл больше упрочняется от наклепа вследствие растяжения, чем разупрочняется от действия высокой температуры. На участке II (прямая линия) ползучесть происходит с постоянной скоростью — разупрочнение уравновешивается упрочнением. На участке III (кривая круто поднимается вверх) разупрочнение начинает преобладать над упрочнением, ползучесть происходит со все более увеличивающейся скоростью, что приводит к разрушению металла. При высокой температуре детали машин должны работать в условиях, соответствующих участку II. Длитель- Рис. 2.6. Диаграмма ползучести  [c.22]

Охрупчивание вследствие потери пластичности или вязкости, или и того и другого, материалом, обычно металлом или сплавом. Много форм хрупкости могут вести к хрупкому разрушению. Много форм могут встречаться при термической обработке или использования при высокой температуре (термическая хрупкость). Некоторые из видов хрупкости, которые действуют на сталь, — это синеломкость, 475 °С (885 °F), хрупкость, хрупкость старения, сигма-фазовая хрупкость, хрупкость деформационного старения, хрупкость при закалке, хрупкость закаленного мартенсита. Кроме того, сталь и другие металлы могут охрупчиваться под воздействием окружающей среды. Формы такой хрупкости включают кислотную хрупкость, щелочную хрупкость, охрупчивание при ползучести, коррозионную хрупкость, водородную хруп-  [c.949]

Под жаропрочностью понимают свойство металлов при высоких температурах сопротивляться деформации и разрушению при действии приложенных напряжений [4]. Как и обычная прочность, жаропрочность должна быть обеспечена в условиях самых разнообразных схем напряженного состояния, обусловленных эксплуатацией котельного оборудования статического приложения растягивающей или изгибающей нагрузки, динамического воздействия внешних сил, приложения перемещенной нагрузки и т. д. Жаропрочность котельных материалов оценивают по результатам длительные испытаний на растяжение или изгиб при высоких температурах. Основными характеристиками жаропрочности являются предел ползучести и предел длительной прочности. Жаропрочность зависит от химического состава и структуры. Структура, в свою очередь, зависит от технологии изготовления детали и обработки.  [c.45]


Длительная прочность — сопротивление металла разрушению от длительно приложенной статической нагрузки при высоких температурах, характеризуется пределом длительной прочности Од.п (рис. 2.14). Предел длительной прочности представляет собой напряжение, которое в условиях ползучести, создаваемой постоянными напряжением и температурой, приводит к разрушению в течение заданного промежутка времени. Обозначение предела длительной прочности сопровождается двумя индексами вверху записывается  [c.46]

Механические свойства металла или сплава определяются такими параметрами, как прочность при растяжении, предел упругости и предел пластичности. Для высоких температур необходимо считаться еще с одним параметром — сопротивлением ползучести. Ползучестью называется непрерывная пластическая деформация материала под действием приложенного напряжения, ведущая к разрыву (разрушению) материала. Ползучесть, проявляющаяся у стали при температурах выше 400 °С, имеет особое значение для лопаток и других важных элементов газовых турбин, для частей реакторов, для находящихся под нагрузкой элементов печей.  [c.74]

При растяжении стержня под действием постоянного напряжения а, вообще говоря, возникают необратимые деформации ползучести (наиболее существенные для металлов при высоких температурах и полимеров). При этом большую часть времени до разрушения т стержень ползет с постоянной скоростью деформации ёс (установившаяся ползучесть). Таким образом, имеем  [c.15]

Причиной значительных пластических деформаций и разрушений деталей машин, работающих при высоких температурах, как, например, лопаток и направляющих аппаратов газовых турбин, оболочек реактивных двигателей и др., является ползучесть металлов. Это свойство подобно свойству текучести воскового стержня, к которому подвешен груз в зависимости от температуры такой стержень будет удлиняться с большей или меньшей скоростью при неизменной нагрузке и, наконец, разорвется.  [c.9]

Влияние вакансий на свойства при высоких темцературах прежде всего связано с той ролью, какую они играют в диффузионных процессах (см. гл. П1). Отметим здесь, что вакансии могут облегчать преодоление препятствий при движении дислокаций в плоскости скольжения. При этом уменьшается сопротивление ползучести. Этот эффект проявляется при достаточно большой плотности вакансий. Вакансии играют значительную роль в разрушении металла в процессе ползучести. Разрушение при высокой температуре металлов, пластичных при комнатной температуре, часто происходит при небольшой пластической деформации. При этом в процессе деформации возникают и постепенно развиваются мельчайшие трещинки и полости. Высказывалось предположение, что такие поры образуются вследствие коагуляции вакансий, избыточную концентрацию которых вызывает пластическая деформация (подробнее см. гл. IX).  [c.71]

Розенберг В. М., Ползучесть металлов, Металлургия , М., 1969 Джифки НС Р. К-, Механизм межкристаллитного разрушения при повышенных температурах, в сборнике Атомный механизм разрушения>. Материалы Международной конференции по вопросам разрушения, состоявшейся в апреле (12—16) 1959 г. в Свампскотте (США), пер. с англ. под ред. М. А. Штремеля, Металлургиздат, 1963, стр. 593—647. Грант Н. Цж., Межкристаллитное разрушение при высоких температурах, в том же сборнике, стр. 575—592.  [c.593]

В поликристаллических металлах процесс ползучести осложняется наличием границ между зернами и блоками, которые могут влиять на нее двояко. При температуре ниже равнопрочной благодаря наличию на этих границах несовершенств решетки и примесей, они препятствуют перемещению дислокаций. Наоборот, при температуре выше равнопрочной границы между зернами и блоками оказываются наиболее слабыми местами, по которым легче протекает пластическая деформация, облегчается протекание диффузии и самодиффузии благодаря перемещению сосредоточенных на них вакансий. Поэтому разрушение при высоких температурах, как правило, происходит по границам зерен, при более низких температурах и комнатной обычно трещины идут через зерно. В связи с этим крупнозернистые металлы и сплавы при более высокой температуре более прочны, чем мелкозернистые при менее высокой и комнатной температуре, наоборот, выгоднее мелкозтнистые.  [c.398]

Жаропрочность - сопротивление стали разрушению при высокой температуре, зависящее не только от температуры, но и от времени. Механизм разрушения металла при высокотемпературном длительном нагружении имеет диффузионную природу и состоит в развитии дислокационной ползучести. Под действием температуры, времени, напряжений дислокации у барьеров, создавшие упрочнение, приходят в движение (совместно с облаком легирующих элементов и примесей) в результате взаимодействия с созданными нагревом подвижными вакансиями, которые обеспечивают их переползание в другие плоскости кристаллической решетки на границы зерен. Это приводит к разупрочнению, развитию локальной пластической деформации и охрупчиванию. Дислокации, выходящие на границы зерен, создают микроступеньки и вызывают из-за соответствующего изменения размеров контактирующих зерен межзеренное проскальзывание, раскрывающее микроступеньки в поры и трещины, чему способствуют потоки вакансий. В этих условиях прочность и пластичность металла зависят от температуры и времени, т.е. от длительности нагружения. Для предотвращения ползучести жаропрочность повышают двумя основными способами  [c.50]

Теория длительного разрушения или длительной прочности металлов при высоких температурах является в известной меро контрастной по сравнению с описанно11 выше теорией распространения трещин в хрупких или упругопластических телах. При длительном действии нагрузок при повышенной температуре, металл ползет, явление ползучести было описано и проанализировано в гл. 18. Там было отмечено, что если уровень напряжений достаточно высок, то, начиная с некоторого момента, скорость ползучести начинает возрастать (третья фаза ползучести) и процесс ползучести заканчивается разрушением образца.  [c.672]

Практика эксплуатации современных машин и сооружений при экстремальных условиях их работы, происходящих зачастую при высоких уровнях напряжений и температуры, свидетельствует о наличии ярко вырая енной временной зависимости процесса разрушения. Во многих случаях полному разрушению тела предшествует длительное устойчивое развитие трещины, причем величина этого периода может составлять значительную часть долговечности элемента конструкции. Такое длительное разрушение, происходящее нередко при постоянных внешних нагрузках, особенно характерно для полимеров, композитных материалов и металлов при высоких температурах. Причиной медленного роста трещины в таких случаях обычно являются ползучесть материала и накопление рассеянных поврея дений.  [c.299]

В начальный период развития промышленности титановых сплавов при горячей формовке листового материала п при лабораторных испытаниях на ползучесть иногда наблюдалась неожиданная потеря прочности материала. Удалось выяснить, что эти разрушения вызывались наличием на поверхности металла солевых загрязнений, после чего явление получило название горячего солевого растрескивания (hot-salt ra king). В дальнейшем такое разрушение часто воспроизводилось в лабораторных экспериментах. На поверхность нагреваемого образца наносят тонкий слой соли, и образец выдерживают при высокой температуре и большом приложенном напряжении. Продолжительность экспозиции, необходимая для разрушения, может составлять от нескольких часов до нескольких тысяч часов [79].  [c.129]


При установленных по уравнению (1.8) значениях Ка и по уравнению (1.7) определяются местные напряжения и деформации д.чя исходного (статического) и циклического нагружений эти данные позволяют охарактеризовать амплитуды ёц местных упругопластических деформаций и соответствующие им значения коэффициентов асимметрии цикла. Для заданной формы цикла с использованием деформационных критериев разрушения определяется число циклов Мд до образования макротрещины (рис. 1.3, а). При нормальных и умеренных температурах, когда температурно-временные эффекты не проявляются (кривая Тд на рис. 1.3, а, соответствующая кратковременным испытаниям со временем т ), разрушающие амплитуды деформаций ёа получаются выше, чем при возникновении статических и циклических деформаций ползучести при высоких температурах (кривая т на рис. 1.3, а, соответствующая эксплуатационному времени нагружения т ). Введение запасов по числу циклов и по разручнаю-щим амплитудам деформаций позволяет построить кривые допускаемых амплитуд деформаций [ва] и чисел циклов [Л ц]. Для построения кривых на рис. 1.3, а в первом приближении молено использовать результаты базовых экспериментов (см. рис. 1.2) при длительном статическом нагружении — предельные разрушающие напряжения a(,t и пластичность (определяемую через относительное сужение ф(,т)- При этолг следует учитывать (рис. 1.3, в), что изменение во времени величины о т зависит от типа металла и степени его легирования (например, никелем, хромом, молибденом и другими элементами) в меньшей степени, чем величины ё г-  [c.14]

Жаропрочность — способность сталей н сплавов противостоять деформации (ползучести) и сохранять прочность при длитатьном воздействии мехаиических нагрузок в условиях высоких температур. Прочность сталей и сплавов при обычных температурах мало зависит от длительности воздействия нагрузки, а при температурах свыше 350° С прочность уменьшается с увеличением времени воздействия нагрузки. В этих условиях разрушение металла происходит при напряжениях ниже предела прочности. Разрушению предшествует ползучесть.  [c.420]

В первой части гл. 8 последовательно описаны закономерности упругих и Прочностных. свойств, а также процессы деформации и разрушения. Подчеркнута такая характерная черта аморфных сплавов, как высокая вязкость разрушения в сочетании с высокой прочностью. Рассмотрена также зависимость механических свойств от температуры и скорости. деформирования. В аморфных сплавах ниже некоторой температуры Гр пластическая деформация протекает крайне неоднородно — она сосредоточена в полосах деформации, которые на стадии разрушения служат источником трещин. Выше Тр пластическая деформация становится однородной. На первом температурном участке прочность сравнительно слабо зависит от скорости деформирования, на втором эта зависимость выражена ярко. Темп уменьшения прочности с повышением температуры резко возрастает при Т>Тр, а разрушение при этом происходит после образования шейкн. Кривые ползучести аморфных сплавов имеют вид, идентичный кривым ползучести кристаллических металлов, но природа их специфического вида совершенно разная, поскольку дислокационный механизм развития ползучести для аморфных сплавов не приемлем. В стности, процесс установившейся ползучести в аморфных металлах связан с механизмом вязкого течения и осуществляется путем диффузии.  [c.20]

При таких высоких температурах эксплуатации определяющую роль в разрушении играет не дислокационная структура, а диффузионные процессы, имеющие даже при небольших напряжениях направленный характер и способствующие развитию диффузионной ползучести. Так как диффузионные процессы легче всего протекают по границам зерен, имеющих повышенное количество дефектов строения, то кроме химического состава на жаропрочность существенное влияние оказьгеает структура металла. Обьи-но добиваются получения легированного твердого раствора с вкраплениями по границам зерен или внутри них дисперсных карбидных или интерметал-лидных фаз. Более крупное зерно способствует повышению жаропрочности, хотя при этом снижается пластичность. Чрезвычайно важный фактор стабильность структуры, так как перемещение атомов ведет к увеличению ползучести.  [c.175]

Механизм разрушения металлов при высоких температурах И. А. Одинг и В. С. Иванова объясняют образованием и перемещением вакансий. Имеющегося количества ваканаий в металле недостаточно для массового образования трещин. Взаимодействие и перемещение дислокаций во время пластической деформации при ползучести вызывает возникновение вакансий. Для уменьшения свободной энергии металла необходимо, чтобы вакансии перемещались в упруго-сжатые участки его решетки. Образование трещин,  [c.394]

В "высокочистых металлах, например в алюминии, даже при высоких температурах происходит заметное смещение по границам зерен, поэтому наблюдается только транскристаллитное разрушение. Во многих металлах и сплавах, содержащих незначительные количества примесей, в результате ползучести происходит межзеренное разрушение. На рис. 3.15 показаны интеркристаллитный и транскристаллитный изломы стали 18Сг— 8Ni при ползучести (650 °С). В отличие от вязкого транскристаллитного интеркристаллитный излом является хрупким, подобным излому, возникающему при коррозионном растрескивании под напряжением. Хорошо известно, что если происходит интеркристаллитное разрушение, то удлинение и сужение после разрушения падают. Известно также, что при ползучести при высоких температурах и низких скоростях деформации или низких напряжениях легко возникает интеркристаллитное разрушение.  [c.83]

Регулируя объемную долю и расстояние между волокнами (пластинами) мягкой или жесткой упрочняющей фазы, можно менять характеристики низкотемпературной пластичности или вязкости разрушения и длительной прочности, сопротивления ползучести. Так, уменьшение расстояния между пластинами вязкой у-фазы (Fe—Ni) в случае направленной кристаллизации композита NiAl/y с 12...15 до 2,2 мкм при одинаковом напряжении 30 МПа при 825 °С приводит к понижению скорости ползучести композита приблизительно на три порядка. Волокно или пластины ОЦК-тугоплавких металлов (твердых растворов на основе хрома, молибдена сечением 0,2...1,0 мкм) обеспечивают высокую жаропрочность при удовлетворительной низкотемпературной вязкости разрушения, а включения фазы Лавеса NiAlMe со структурой типа С14 сечением < 0,5 мкм увеличивают прочность при высоких температурах.  [c.222]


Смотреть страницы где упоминается термин Ползучесть и разрушение металлов при высоких 1 температурах : [c.8]    [c.299]    [c.33]    [c.302]    [c.101]    [c.297]    [c.144]    [c.66]    [c.35]   
Смотреть главы в:

Введение в механику разрушения  -> Ползучесть и разрушение металлов при высоких 1 температурах



ПОИСК



Ползучесть металлов и при высоких температурах

Разрушение в температуры

Разрушение металла

Разрушение при высоких температурах

Разрушение при ползучести

Температура высокая



© 2025 Mash-xxl.info Реклама на сайте