Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Виды сварки и сварных соединений

Глава I. ВИДЫ СВАРКИ И СВАРНЫХ СОЕДИНЕНИИ  [c.5]

Она применяется главным образом для нахлесточных соединений. Схема холодной сварки приведена на рис. 374, е, /. В начальный период пуансоны 2 давят на свариваемые детали, зажатые в кондукторе 3. На рис. 374, е, II к III показаны окончание процесса сварки и сварное соединение. Неразъемное соединение получается в виде точки, диаметр которой обычно больше диаметра пуансона d (рис. 374, е, III). Этим способом можно осуществлять сварку меди, алюминия и других металлов, обладающих высокой пластичностью.  [c.388]


Буквенно-цифровые, применяемые в текстах, поясняющих вид сварки и тип соединения. В этом случае буквы характеризуют тип сварного соединения, а цифры — тип шва. Например Т1 — обозначение шва таврового соединения, изображенного на фиг. 103.  [c.60]

По виду сварки швы сварных соединений разделяют на швы дуговой сварки (ГОСТ 5264—80) швы автоматической и полуавтоматической сварки под флюсом (ГОСТ 8713-79)  [c.13]

Рассмотрены основные виды сварки, различные сварные соединения и швы, а также оборудование, применяемое при сварке и резке. Приведены сведения о сварочных материалах, условиях их хранения и транспортировки, а также об особенностях сварки различных металлов и сплавов. Изложены методы неразрушающего контроля сварных соединений.  [c.2]

ВИДЫ и СПОСОБЫ СВАРКИ И СВАРНЫЕ СОЕДИНЕНИЯ  [c.7]

Соединения сварные (ГОСТ 2601—84 ). Сварка —один из наиболее прогрессивных способов соединения составных частей изделия — имеет значительные преимущества перед литьем и соединением заклепками. Существует много видов сварки и способов их осуществления, напрнмер ручная дуговая (ГОСТ 5264—80 ), автоматическая и полуавтоматическая сварка под флюсом (ГОСТ 11533—75), дуговая сварка в защитном газе (ГОСТ 14771—76 ), контактная сварка (ГОСТ 15878—79) и др. (Подробнее см. ГОСТ 19521—74. Сварка металлов. Классификация.)  [c.272]

Гл 1а 1. КЛАССИФИКАЦИЯ ВИДОВ СВАРКИ. НАПЛАВКИ, ТЕРМИЧЕСКОЙ РЕЗКИ МЕТАЛЛОВ И СВАРНЫЕ СОЕДИНЕНИЯ  [c.4]

Чувствительность металла к тепловому воздействию сварки оценивают по свойствам различных зон соединений и сварных соединений в целом при статических, динамических и вибрационных испытаниях (растяжение, изгиб, определение твердости, определение перехода металла в хрупкое состояние и др.), а также по результатам металлографических исследований в зависимости от применяемых видов и режимов сварки.  [c.41]

Монолитность сварных соединений. В технике широко используют различные виды разъемных и неразъемных соединений. Неразъемные соединения, в свою очередь, могут быть монолитными (сплошными) и немонолитными (например, заклепочные). Монолитные соединения получают сваркой, пайкой или склеиванием.  [c.8]


Сварка. В настоящее время существует чрезвычайно большое число видов сварки и способов их осуществления (интересующихся отсылаем к ГОСТ 19521—74 Сварка металлов. Классификация и к ГОСТ 2601—74 Сварка металлов. Основные понятия. Термины и определения ). Столь же многочисленны и условные обозначения швов сварных соединений и способов сварки, поэтому, изучая эту тему, студент-заочник должен ознакомиться только с основными понятиями этого вида неразъемного соединения, основными правилами изображения сварных соединений и некоторыми их условными обозначениями.  [c.62]

Технологичность обеспечивается выбором материала заготовки, типа сварного соединения, конструкции свариваемых элементов, вида сварки и технологии сварки.  [c.159]

Сварка нагретой проволокой. Этот вид сварки применяют для соединения труб в различных трубопроводах и для соединения особо сложных деталей. Прочность таких сварных соединений зависит от правильности прогрева свариваемых мест деталей, т. е.  [c.160]

Использованные сварочные материалы и технология сварки обеспечивали в условиях статистического нагружения равнопрочность сварных соединений основному металлу. Полученные результаты (рис. 3) свидетельствуют о том, что ири применении многослойного металла сопротивление усталости стыковых соединений практически не изменяется в зависимости от вида сварки и класса прочности стали. Данные результатов испытаний образцов, выполненных из углеродистой и легированной стали, а также сваренных ручной и автоматической сваркой, располагаются в одной области рассеяния, свойственной усталостным испытаниям однотипных сварных соединений из отдельной марки стали.  [c.260]

Основным видом образцов сварных соединений для испытания на длительную прочность, как и при кратковременных испытаниях, являются образцы с поперечным швом. При этом, в зависимости от типа свариваемых изделий, форма образцов может изменяться. В большинстве случаев испытания ведутся на круглых десяти- или пятикратных образцах диаметром 8 или 10 мм. В случае сварки тонколистового материала используются плоские образцы, а для оценки свойств сварных стыков труб малого диаметра—трубчатые образцы. В пп. 2, 3 и 4 приведены значения пределов длительной прочности большинства используемых в сварных конструкциях энергоустановок сталей там же приведены указанные характеристики для металла швов и сварных соединений.  [c.22]

Применяемые типы сварных швов зависят от конструкции деталей, толщины стенки и способа сварки. Большинство сварных соединений в передвижных паровых котлах выполняют в виде односторонних швов встык, получаемых в результате расплавления двух примыкающих кромок с прибавкой наплавляемого металла с одной стороны. Допускаемое напряжение при расчете сварных швов устанавливают в зависимости от предела прочности наплавленного металла шва. Коэффициент прочности принимают согласно указаниям, сделанным выше.  [c.259]

Надежность и долговечность гидротурбин во многом зависят от правильности выбора технологических процессов их изготовления (литья, ковки, различных видов сварки, электродов, термообработки и т. п.). Установление влияния технологических процессов на сопротивление усталости сталей и сварных соединений позволяет оценить преимущества и недостатки различных технологических процессов.  [c.5]

Визуальный и измерительный контроль проводят невооруженным глазом или с помощью лупы 4...7-кратного увеличения с обязательным применением источника света и шаблонов или мерительного инструмента. Перед визуальным контролем сварные швы и прилегающие к ним с двух сторон поверхности основного металла шириной не менее 20 мм должны быть очищены от шлака, брызг расплавленного металла, окалины и других загрязнений. При проведении контроля определяют соответствие геометрических параметров сварного соединения стандартам на тот или иной вид сварки и размеры поверхностных нарушений сплошности металла. После этого их сравнивают с нормативными значениями. Если превышения нет, то сварное соединение считается прошедшим данный вид контроля.  [c.374]


Есть еще один вид хрупкого разрушения сварных соединений аустенитных сталей и сплавов — термические трещины. Чтобы уменьшить вероятность появления этих трещин, характерных для дисперсионно-твердеющих жаропрочных сталей и сплавов, нужно уменьшить сварочные напряжения, не допустить, чтобы во время термической обработки они могли превысить предел длительной прочности основного металла. А для этого нужно ослабить или полностью исключить неравномерность сварочного нагрева конструкции, исключить литейную усадку шва. Минимальные сварочные напряжения могут быть созданы при отказе от высокотемпературного нагрева, в пределе —- при отказе от сварки плавлением.  [c.365]

Технологическая свариваемость — это комплексная характеристика металлов и сплавов, отражающая их реакцию на процесс сварки и определяющая относительную техническую пригодность материалов для выполнения заданных сварных соединений, удовлетворяющих условиям их последующей эксплуатации [6, 10]. Понятие технологической свариваемости часто используют на практике при сравнительной оценке существующих и разработке новых материалов без их прямой привязки к конкретному виду сварных изделий. Чем больше применимых к данному металлу видов сварки и шире для каждого вида сварки пределы  [c.94]

Условия термической обработки сварных соединений хромоникелевых сталей (табл. 8.25) во многом зависят от вида сварки и назначения сварной конструкции.  [c.461]

В последнее время обнаружен новый вид локальной коррозии сварных соединений аустенитных нержавеющих сталей, который получил название ножевой коррозии. В узкой зоне, прилегающей к сварному шву, происходит линейное разрушение стали, а основная поверхность при этом характеризуется высокой коррозионной стойкостью и сохраняется в пассивном состоянии. Этот эффект связан с режимом нагрева и охлаждения стали при сварке. Даже нержавеющие стали, стабилизированные титаном или ниобием, склонны к ножевой коррозии.  [c.59]

Точечная контактная сварка является наиболее производительным и механизированным видом сварки и применяется в массовом производстве сварных изделий, не требующих плотных соединений, при толщинах металла до 8 мм. Этот вид сварки получил наиболее широкое применение при изготовлении каркасов и различных конструкций в самолетостроении, автомобилестроении, вагоностроении, сельхозмашиностроении и др.  [c.264]

Изложены основные сведения о видах сварки и сварных соединений, о возможных дефектах и способах их устранения. Рассмотрены вопросы контроля качесчва сварных соединений металлических конструкций и трубопроводов неразрушающнми (внешним осмотром, тече-исканием, капиллярным, магнитным, ультразвуковым и радиационным) и разрушающими (механическими) методами. Даны основы управления качеством сварки конструкций и организации контроля.  [c.2]

Правильньи выбор метода и аппаратуры для контроля качества сварных соединений связан с особенностями различных видов сварки и сварных соединений со спецификой возникающих при этом дефектов. Название видов сварки и их классификация даются в ГОСТ 2601 — 74 и 19521—74.19232—73.  [c.5]

Сталь 03Х13АГ19 достаточно технологична. Она хорошо деформируется в горячем и удовлетворительно в холодном состоянии. Термическая обработка представляет собой закалку начиная с температуры 980 °С и охлаждение в воде. Сталь удовлетворительно обрабатывается резанием и хорошо сваривается всеми видами сварки. Вязкость сварных соединений удовлетворяет требованиям криогенной техники.  [c.130]

М а г н и т н о-и мпульсная свар-ка-вид сварки давлением. Сварное соединение получается в результате соударения соединяемых частей, вызванного воздействием импульсного магнитного поля. Ею  [c.15]

Вязкость разрушения сварных соединений приведена в табл. 2 и на рис. 5. Независимо от вида сварки, вязкость разрушения соединений (с трещиной в зоне термического влияния) всех сплавов, кроме стали 0Х13АГ19, меньше вязкости разрушения основного материала Кс составляет в среднем 80 %, а /с и бс- бб % от соответствующих свойств  [c.54]

Свариваемость — свойство металлов и сплавов в нормированных условиях сварочных процессов (газовой, кузнечной, дуговой, электроконтактной, злек-трошлаковой и других видов сварки) образовывать сварное неразъемное соединение, соответствующее качеству основного металла, подвергнутого сварке. О свариваемости судят путем испытания натурных сварочных образцов и по поведению основного металла в окопошовной зоне по ГОСТ 13585-68, ГОСТ 6996-66, ГОСТ 3242-69, ГОСТ 7512—75, ГОСТ 10145—62.  [c.17]

Для сварных соединений, выполненных угледуговой сваркой, допускаемые напряжения аналогичны напряжениям при дуговой сварке электродами Э34 при условии, что механические свойства наплавленного металла и сварных соединений, выполненных угледуговой сваркой, соответствуют требованиям, приведённым в табл 16 и 17 для ручной сварки электродами Э34. Для сварных соединений, выполненных полуавтоматической сваркой наклонным и лежачим электродами и газовой сваркой, допускаемые напряжения такие же, как при дуговой сварке электродами Э42, при условии, что механические свойства наплавленного металла и сварных соединений, выполненных этими видами сварки, удовлетворяют требованиям, приведённым в табл. 17 и 18 для ручной сварки электродами Э42. При несоответствии качества указанным требованиям допускаемые напряжения назначают, как для ручной сварки электродами Э34  [c.153]


Соаротивление усталости стыковых соединений многослойного металла в зависимости от вида сварки и класса прочности стали. Как было установлено ранее [6], сопротивление усталости однотипных сварных соединений монолитного металла в многоцикловой области практически не зависит от класса прочности конструкцион-  [c.259]

Работы при сборке и сварке швов барабана выполняются с применением видов сварки п сварочных материалов в соответствии с п. 2.5 настоящих MPTV с обеспечением свойств металла шва и сварного соединения не ниже значений, указанных в этом пункте.  [c.230]

Стали 12Х18Н9Т, 12Х18Н10Т, 03Х18Н11 используют для создания широкой номенклатуры изделий, работающих при температуре от 800 ДО —269 G, изготовляемых методами горячей и холодной пластической деформации с использованием различных видов сварки и пайки. Термическую обработку сварных и паяиых соединений, как правило, не применяют.  [c.499]

Обычно, если сплавы типа Ren6 41 термически обработаны на твердый раствор, тщательно очищены и защищены специальными мерами от загрязнения кислородом, они свариваются без растрескивания. Но если вслед за сваркой подвергнуть сварные соединения упрочнению в режиме старения, сплавы интенсивно трещат. Чтобы это явление предотвратить, перед старением со сварных соединений снимают остаточные напряжения посредством повторного нагрева до температуры гомогенизации. После такой обработки соединения можно термически упрочнять без каких-либо затруднений. Однако в некоторых случаях сплавы трещат в процессе нагрева до температуры отжига. Такой вид растрескивания характерен для крупногабаритных медленно охлаждающихся деталей. Сплавы или отдельные плавки сплавов, которые при повторном нагреве до температуры отжига более, чем другие сплавы или плавки, склонны к растрескиванию, назвали "склонными к растрескиванию в условиях деформационного старения".  [c.282]

Здесь следует отметить, что в сварных соединениях прочность сцепления металлической основы и включений, расположенных в зоне термического влияния, может уменьшаться в результате высокотемпературного нагрева в процессе сварки, приводящего к изменению механических свойств матрицы. Это определяет пониженное сопротивление листового проката и сварного соединения к СР, что послужило основанием для отнесения СТ к дефектам сварных соединений типа холодных трещин. В условиях низкой пластичности формирование слоистой макротрещины проходит без макропластиче-ских деформаций (рис. 4.3, а) с образованием слоисто-хрупкого разрушения [15]. В более пластичной основе включение деформируется в форму линзы, а затем происходит разрушение основы (рис. 4.3, б). Очевидно, что во втором случае поверхность разрушения при движении СТ будет иметь вязкий вид, что означает повышенное сопротивление СР (слоисто-вязкое разрушение).  [c.94]

В зонах сварки или в местах концентрации напряжений разрушение вызывается ростом одной трещины. На рис. 5.34 показана трещина (табл. 5.1), образовавшаяся в зоне термического влияния сварки, в сварном соединении паропровода. На некоторых границах зерен возникают вторичные трещины, однако отчетливо видна одна магистральная трешдна. Картина разрушения при ползучести зажимного болта по основанию стержня и вид трещины, распространявшейся в материале болта, приведены на рис. 5.35. Видно, что клиновидная трещина распространялась вдоль границы зерен.  [c.162]

Сталь 25-25-Ti хорошо сваривается всеми видами сварки и имеет следующие характеристики прочности сварных соединений (Tft, кПмм  [c.385]

При изготовлении сварных конструкций ьфоме отпуска применяют и другие виды термической обработки — предварительный и сопутствующий подогревы. Необходимость их использования зависит от свариваемости стали, толщины стенки соединяемых элементов конструкции и температуры окружающей среды, при которой проводят сварку. Для низкоуглеродистых и низколегированных сталей, обладающих хорошей свариваемостью, подогрева обычно не требуется. Его применяют лишь при толщине материала более 30 мм и температуре окружающей среды ниже -10 °С. Для других классов сталей предварительный подогрев почти всегда является обязательной операцией при сварке. Условия и вид термической обработки сварных соединений приводятся в нормативно-техни-ческой документации на соответствующий вид технического устройства.  [c.369]

Надежность работы в значительной мере зависит от соответствия примененных материалов и их качества требованиям нормативнотехнологической документации. Действующие нормы и правила предусматривают механические испытания и металлографический анализ основного металла и сварных соединений котлов, трубопроводов пара и горячей воды и сосудов, работающих под давлением. Объемы и методы механических испытаний и металлографических исследований строго регламентированы [23, 24, 25]. Механические испытания ставят своей задачей определение механических свойств при комнатной и рабочей температуре, без знания которых нельзя правильно выбрать материал для изготовления детали и оценить состояние металла в процессе эксплуатации. Основными видами механических испытаний являются испытания на растяжение, твердость и на ударный изгиб (динамические испытания). Технологические испытания на загиб, раздачу и свариваемость служат для оценки возможности проведения технологических операций, необходимых для изготовления и монтажа оборудования (сварки, гибки, вальцовки и т. п.). Такие важнейшие для котельных материалов испытания, как испытания на ползучесть, длительную прочность, сопротивление усталости, релаксацию напряжений, не предусматриваются действующими правилами котлонадзора в качестве контрольных и служат в основном для выбора допускаемых напряжений и установления ресурса работы элементов, изготовленных из различных сталей.  [c.8]

При использовании твердости как критерия качества термической обработки следует иметь в виду, что твердость сварных соединений в значительной мере зависит от условий термообработки [12]. Например, при твердости металла шва типа Э-09ХМФ выше НВ 250 (2500 МПа) можно однозначно констатировать, что отпуск после сварки не проводился или его темле-ратура была заметно ниже регламентированной. В то же время если твердость ниже НВ 250, то это еще не говорит о качественном проведении термообработки, так как при чрезмерно высоком подогреве (450—500 °С) пониженная твердость может быть получена и в исходном состоянии. Твердость нялсе НВ 220 свидетельствует о качественном проведении отпуска по установленному режиму. На основании сказанного регламентированная твердость после отпуска должна быть ниже возможной в исходном состоянии при чрезмерно высоком подогреве, поэтому для наиболее ответственных и нагруженных сварных соединений предпочтительнее твердость не выше НВ 220 [12].  [c.171]


Смотреть страницы где упоминается термин Виды сварки и сварных соединений : [c.200]    [c.218]    [c.369]    [c.181]    [c.228]   
Смотреть главы в:

Контроль качества сварных соедиенеий и конструкций  -> Виды сварки и сварных соединений



ПОИСК



219 — Сварка и соединения

219 — Сварка и соединения сварные

Виды сварки и их классификация. Сварные соединения

Виды сварных соединений и швов при автоматической сварке

Виды соединений

ОБЩИЕ СВЕДЕНИЯ И ОСНОВЫ ТЕОРИИ СВАРКИ И РЕЗКИ МЕТАЛЛОВ Виды и способы сварки и сварные соединения

Основные виды сварных соединений и металлургические процессы при сварке

Основы теории сварки Классификация видов сварки, наплавки, термической резки металлов и сварные соединения

Сварка виды сварки

Сварка сварной шов

Сварка — виды

Сварные соединения. Виды сварки и их краткая характеристика

Техника и режимы сварки основных видов сварных соединений



© 2025 Mash-xxl.info Реклама на сайте