Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Методы испытаний на усталость и обработка результатов

МЕТОДЫ ИСПЫТАНИИ НА УСТАЛОСТЬ И ОБРАБОТКА РЕЗУЛЬТАТОВ  [c.100]

Для изучения совместного влияния параметров качества поверхностного слоя на характеристики усталости использован многофакторный регрессионный анализ данных исследования качества поверхностного слоя и результатов испытания на усталость серий образцов после различных методов и режимов механической обработки.  [c.173]

Анализ результатов испытаний на усталость показывает, что влияние методов обработки на характеристики усталости при комнатной температуре с увеличением базы испытаний возрастает. При большой базе испытаний (Л = 10 циклов) усталость сплава при комнатной температуре зависит главным образом от упрочнения поверхностного слоя (наклеп). Наибольшее значение сопротивления усталости имеют образцы с глубиной наклепа до 100 мкм после электроэрозионной обработки с последующей виброгалтовкой. Сплав после литья и электрохимической обработки показал наименьшее значение усталости по сравнению с другими методами обработки. Это можно объяснить тем, что литые образцы  [c.225]


В книге обобщены результаты работ по созданию комплекса научного оборудования для программных испытаний на усталость. Приведены характеристики усталости, определяемые с помощью программных испытательных машин, дано обоснование основных требований, предъявляемых к таким машинам, а также методов составления испыта гельных программ по данным статистической обработки информации об эксплуатационной нагруженности деталей. Основное внимание уделено динамическому исследованию программных испытательных машин, программирующих и стабилизирующих устройств, командной и исполнительной аппаратуры.  [c.2]

В настоящее время при оценке долговечности элементов авиационных конструкций применяются методы расчета на усталость по номинальным и локальным напряжениям. При расчете по номинальным напряжениям исходными данными являются кривые усталости типовых элементов. Статистическая обработка результатов стендовых и эксплуатационных испытаний самолетов показывает, что форма кривых усталости различных элементов планера самолета близка к форме кривых усталости полосы с отверстием, которая принята в качестве основного типового элемента.  [c.104]

Долговечность материала растет с повышением его чистоты, уменьшением шероховатости поверхности, увеличением диаметра образца [24, 34, 35). Для металлов и сплавов, имеющих горизонтальный участок на кривой усталости, достаточна база испытаний 10 циклов если значения ординат кривых усталости непрерывно уменьшаются с ростом числа циклов, то база испытаний увеличивается до 10 циклов. Усталостные испытания дают значительный разброс результатов, поэтому при проведении испытаний и обработке результатов целесообразно применять статистические методы.  [c.42]

Вопросы методики статистической обработки результатов механически испытаний, в том числе и результатов испытания на усталость, подроби изложены в работах [925, 1030, 1117, 1153]. Там же описаны и методы по строения доверительных интервалов для функций распределения характе ристик механических свойств. Необходимые для статистического анализ опытных данных таблицы приведены в работах [98, 211, 378, 674, 1079].  [c.242]

В процессе работы над Методикой форсированных испытаний исследовалось поведение параметра формы k в распределении Вейбулла (3) в диапазоне нагрузок Отах от 25000 до 36000 кгс/см2. Оказалось, что коэффициенты формы k колеб-лятся в пределах Ьт 1,0 до 1,4 для подшипников с размером шара dm 25,4 мм и в пределах от 1,0 до 1,8 для подшипников с размером шара <25,4 мм (рис. 2). Как видно из рис. 2, параметр формы имеет некоторую тенденцию к снижению при увеличении нагрузки, прилагаемой к подшипнику. С помощью изложенного выше метода были подвергнуты статистической обработке результаты испытаний более 5000 подшипников с целью определения оптимальных режимов, при которых следует испытывать подшипники на усталость.  [c.49]


Ускоренные испытания автомобильных деталей по методу Локати были проведены на Московском автомобильном заводе им. И. А. Лихачева для полуосей автомобиля ЗИЛ-130, картеров ведущих мостов и шаровых пальцев автомобиля ЗИЛ-164, шатунных болтов, валов сошек. Эти детали предварительно были испытаны на усталость по методике, позволяющей получить полную характеристику усталости. С помощью статистической обработки результатов испытаний были получены корреляционные уравнения, соответствующие характеристикам усталости, и их доверительные границы, отвечающие вероятности Р = 0,001 и 0,999. При таком способе выражения исходных характеристик, используемых при определении предела выносливости путем ускоренных испытаний, снижается влияние субъективных ошибок при расчете накопленного повреждения.  [c.170]

Поскольку результаты испытания во всем интервале напряжений могут быть описаны единой формулой, при определении долговечности для одного какого-то уровня напряжений можно не ограничиваться результатами испытаний образцов только на этом уровне, а учитывать результаты испытаний всех образцов во всем интервале напряжений. Это позволяет более экономно испытывать образцы и подвергать их совместной статистической обработке методом корреляционного анализа с составлением линейного корреляционного уравнения. Уравнение кривой усталости в координатах Ig iV — Ig а (линия регрессии) с помощью этого метода определяется так  [c.55]

Результаты усталостных испытаний сплава при рабочей температуре показывают, что влияние методов обработки на характеристики усталости при 800° С, как и при комнатной температуре, с увеличением базы испытаний возрастает.  [c.228]

Дополнительные свидетельства о влиянии остаточных сжи.ма-ющих напряжений на снижение повреждений вследствие фреттинг-усталости приведены на рис. 14.7, на котором представлены результаты испытаний методом Про (см. разд. 10.6) стальных и титановых образцов при различных сочетаниях дробеструйной обработки и фреттинга или холодной прокатки и фреттинга. Эти результаты свидетельствуют о том, что остаточные сжимающие напряжения после дробеструйной обработки и холодной прокатки являются эффективным средством минимизации повреждений вследствие фреттинга. Уменьшение разброса фреттинг-усталостных характеристик титана имеет особо важное значение для расчетчика, поскольку расчетное напряжение непосредственно зависит от величины нижней границы полосы разброса.  [c.483]

Влияние технологических методов поверхностного упрочнения на кор-розионно-усталостную прочность деталей. Такие методы поверхностного упрочнения, как наклеп поверхности дробью или роликом, поверхностная закалка с нагрева т. в. ч., кратковременное азотирование и т. п. — весьма эффективные средства повышения сопротивления коррозионной усталости деталей машин. Причиной повышения пределов коррозионной выносливости в этих случаях являются значительные сжимающие остаточные напряжения в поверхностном слое, возникающие в процессе обработки. В табл. 16 представлены результаты усталостных испытаний образцов из стали марки 45, прошедших различную поверхностную обработку.  [c.169]

Металлы. Методы испытания на усталость. Стандарт нредусма-тривает общие указания, термины, определения и обозначения, условия испытаний, форму, размеры и изготовление образцов, проведение испытаний и обработку результатов, а также специальные испытания (при повышенной и пониженной температурах, в условиях агрессивной среды и т. д.).  [c.502]

Обработка результатов испытаний по методу Кордонского образцов и болтов И дополнительные исследования, проведенные с целью определения значений коэффициента 1(сГн,сГк), показали, что предположение о равенстве этих коэффициентов в двух уравнениях при рекомендованных значениях и не подтверждается. Это обстоятельство не позволяет исключать ц(ан, сгк) путем деления одного уравнения на другое и, по-видимому, является причиной больших погрешностей при определении усталостной долговечности этим методом. В настоящее время ведется обработка экспериментальных данных с целью нахождения эмпирической формулы для коэффициента р,(сгн, Ок). Такая формула позволила бы определить искомую долговечность по результатам только одного эксперимента. Кроме указанных трех методов ускоренных испытаний на усталость, на болтах М20 оценивали точность метода, основанного на использовании уравнения Одинга— Вейбулла  [c.79]


Результаты исследования выносливости жаропрочных сплавов в изотермических условиях и в условиях теплосмен приведены на рис. 57 в координатах Qa — IgTVp в виде сплошных линий, полученных обработкой экспериментальных данных по методу наименьших квадратов. Следует отметить, что имело место существенное рассеяние результатов испытаний [141]. Данные рис. 57 показывают, что термоциклирование по приведенным в табл. 8 режимам в процессе испытаний на усталость значительно снижает характеристики сопротивления усталостному разрушению. Особенно существенно это снижение при наличии статических напряжений растяжения.  [c.76]

Для получения достоверных сведений по усталостной прочности титановых сплавов конкретной структуры не(обходима количественная оценка разброса результатов циклических испытаний. При этом предел выносливости определяют с заданной вероятностью неразрушения, т.е. оценивают его надежность. Уже первьге статистические обработки результатов усталостных испытаний титановых сплавов показали высокие значения коэффициента вариации условного предела выносливости [96— 98]. Учитывая большой разброс, наиболее правильно для анализа усталостных свойств титановых сплавов применять методы математической статистики и теории вероятности. Для этого строят полные вероятностные диаграммы, например по системе, предложенной Институтом машиностроения АН СССР [99, 100]. Эта система основана ра разделении процесса усталостного разрушения на две стадии до появления макротрещины и развитие трещины до разделения образца на части. При анализе предела выносливости гладких образцов это разделение не имеет принципиального значения, так как долговечность до появления трещины Л/ и общая долговечность до разрушения образца Л/р близки. Часто Jртя построения полных вероятностных диаграмм усталости за основу берут наиболее простой метод, предложенный В. Вейбуллом [ 101 102, с. 58 — 64]. Для построения полной вероятностной кривой необходимо испытать достаточно большие партии образцов (30—70 шт.) на нескольких уровнях амплитуды напряжений, которые должны быть выше предела выносливости (см., например, рис. 92). На каждом из этих уровней по гистограмме определяют вероятность разрушения при данной амплитуде напряжений. Далее ст ят кривую Веллера по средним значениям долговечности. По гистограммам строят кривые равной вероятности в тех же координатах (а — 1дЛ/). Затем строят семейство кривых, определяющих не только зависимость долговечности от амплитуды напряжений, но и вероятности разрушения от заданных амплитуды напряженйй и долговечности. Далее, принимая математическую форму распределения вероятности, на данном уровне напряжений можно строить кривые зависимости либо от амплитуды напряжений при заданной базе испытаний Л/,  [c.141]

Методы испытаний (контрольных и при исследованиях) на контактную усталость образцов из черных и цветных металлов и сплавов с твердостью поверхности не менее НВ250 рассматриваются в работе [I l], Там же приведены способы обработки результатов этих испытаний.  [c.272]

Усталостные испытания проводились при кручении на y TaiHoiBiKe МУК-100, при круговом изгибе на установке МУИ-6000 и специальной установке, спроектировапной для испытания натурных деталей трактора 8]. Статистическая обработка результатов испытаний по первому методу проводилась по методике [9]. При использовании этой методики кривые усталости изображаются в виде двух прямых — наклонной и горизонтальной, пересекающихся между собой под тупым углом. Наклонная прямая характеризует связь между напряжением и долговечностью и при использовании логарифмических координат определяется корреляционным уравнением  [c.184]

Регулярные стандартизированные испытания агрегатов тем более необходимы, что теоретический расчет усталостной прочности деталей автомобиля является в значительной мере условным. Автомобиль эксплоатируется при переменном режиме, причем влияющие на срок службы факторы сочетаются в самых разнообразных комбинациях и создают громадный диапазон непрерывно меняющихся условий. Поэтому расчет деталей на усталость, произведенный как по максимальным, так и по приближенно выбранным средним действующим нагрузкам, имеет практическую ценность в том случае, если он подкреплен результатами соответствующих стендовых испытаний. Более того, известно, что даже весьма тщательный теоретический расчет конструкции при правильном выборе материала и термообработки отнюдь не обеспечивает высокого срока службы. Например, испытания более 400 задних мостов до разрушения от усталости показали, что концентрация напряжений, вызванная деформацией шестерен, подшипников и картера, искажением формы зубцов, штрихами от механической обработки и т. п., варьирует в столь широких пределах, что в значительной мере перекрывает влияние металла и термообработки. В упомянутой выше работе [4] описываются результаты испытания четырех одинаковых коробок передач, две из которых были выполнены одним заводом, две — другим, причем изготовление производилось по одинаковым чертежам и техническим условиям. Проверка изготовленных коробок обычными методами не выявила никакой разницы между ними. Тем не менее при испытании на стенде под полной нагрузкой коробки одного завода выдержали 2 часа, коробки другого завода—20 час. Следовательно, одни только, так сказать, технологические нюансы могут оказать громадное влияние на срок службы.  [c.223]


По результатам испытаний строят график зависимости между сгтах и N. Так как с уменьшением сгщах число циклов до разрушения N растет очень быстро, то по оси N удобно пользоваться логарифмической шкалой. График такой зависимости показан на рис. 15.7. Его называют кривой усталости (выносливости), или кривой Велера. В экспериментах на усталость обычно наблюдается значительный разброс результатов. Поэтому при построении кривой усталости используются методы статистической обработки экспериментов.  [c.468]

Штейер, Вильсон и Врихт доказали, что электролитическое полирование-—метод, пригодный для точнейщей обработки деталей моторов. Они пробО(Вали выяснить влияние значительного снятия металла в результате электролиза на предел усталости. Выбранные для этих опытов стали из сплавов типа 897 N25 (хромоникельмолибденовые) были термически улучшены до обычных показателей, принятых при применении шатунов. С образцов (диаметром 6,93 мм до шлифования) электролизом был снят слой 0,25 мм по диаметру. При последующих испытаниях на знакопеременный изгиб предел усталости снижался на 15— 18,5%, причем хорошее совпадение результатов было получено при равных нагрузках образцов из разных марок стали.  [c.261]


Смотреть страницы где упоминается термин Методы испытаний на усталость и обработка результатов : [c.131]    [c.180]    [c.329]    [c.458]    [c.300]    [c.178]   
Смотреть главы в:

Конструкционная прочность материалов и деталей газотурбинных двигателей  -> Методы испытаний на усталость и обработка результатов



ПОИСК



Испытание обработка результатов

Испытание усталость

Метод испытаний

Методы испытаний на усталость

Обработка Методы

Обработка результатов

Результаты испытаний

Усталость

Усталость Результаты испытаний

Усталость — Испытания усталости



© 2025 Mash-xxl.info Реклама на сайте