Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Запуск режима

Запуск режима сравнения и объединения конфигураций.........................98  [c.6]

Запуск режима сравнения и объединения конфигураций  [c.98]

При запуске двигателя на режиме авторотации определяется как P =f M, Н), где М — скорость полета Я — высота полета на режиме авторотации.  [c.337]

По принципам организации взаимодействия исследователя и ЭВМ различают директивный и диалоговый режимы. В директивном режиме исследователь после запуска программы не имеет возможности вмешиваться в ход ее выполнения, а диалоговый режим дает возможность такого вмешательства с внесением необходимых изменений в этот ход на основе анализа промежуточных результатов.  [c.344]


Выполнение работы в автоматическом режиме. При выполнении работы в автоматическом режиме функции ожидания выхода на стационарный режим, накопления экспериментальных данных и их последующей обработки берет на себя полностью подготовленная программа, реализованная на ЭВМ в операционной системе реального времени (ОС-РВ). Многопользовательская система ОС-РВ позволяет запускать программу независимо с любого терминала. Для этого необходимо  [c.102]

Нестационарная теплопроводность. В химической технологии нестационарная теплопроводность связана с прогревом или охлаждением материала и оборудования при запуске, остановке или изменении технологического режима процесса. Особый интерес представляет анализ нестационарной теплопроводности в тех случаях, когда химический процесс сопровождается экзотермическим или эндотермическим эффектом. В этом случае расчет теплопроводности с учетом внутренних источников теплоты позволяет получить важные кинетические и термодинамические характеристики химического процесса.  [c.191]

Блокированная схема 1 конструктивно наиболее проста. Ее характерной особенностью является зависимость частоты вращения компрессора от характеристики движителя. Схема отличается снижением КПД двигателя на частичных нагрузках при любом способе регулирования. При запусках и работе на частичных режимах блокированная схема требует уменьшения нагрузки, что вызывает необходимость применения электропередачи, гидропередачи или винта регулируемого шага (ВРШ). Подобные двигатели применяют в установках, работающих в основном на номинальных нагрузках.  [c.192]

Генератор синхронизирующих импульсов обеспечивает синхронизацию работы узлов дефектоскопа, реализуя импульсный режим излучения — приема УЗ-колебаний. При ручном контроле этот генератор работает в режиме самовозбуждения при использовании дефектоскопа в многоканальной аппаратуре механизированного и автоматизированного контроля его переключают в режим внешнего запуска. Независимо от режима генератор вырабатывает импульсы, используемые для пуска генератора радиоимпульсов, генератора напряжения развертки, блока цифровой обработки,  [c.180]

Термическая усталость часто проявляется в деталях поршневых дизельных двигателей, в колесах железнодорожных локомотивов, в теплообменниках, штампах, валках прокатных станов, на тормозных барабанах, в паровых котлах, в электроосветительной аппаратуре и прочих деталях и узлах, работающих в условиях нестационарных температурных режимов, главным образом при запусках и остановках. В качестве типичных деталей, испытывающих в работе переменные напряжения вследствие теплосмен, можно привести также жаровые трубы камер сгорания, сопловые лопатки и охлаждаемые рабочие лопатки реактивных авиадвигателей сплошным неохлаждаемым рабочим лопаткам это явление менее свойственно. Трещины на сопловых лопатках возникают преимущественно на входных и выходных кромках, которые нагреваются и охлаждаются с наибольшей скоростью на выходных кромках обычно возникает 70% трещин, на входных — около 20%, на корыте и спинке — 10% [12].  [c.163]


Рис, 3. Зависимость суммарных напряжений а (а), температуры t (б) в характерных точках среднего сечения охлаждаемой лопатки и частоты вращения турбины п (в) от продолжительности X работы газотурбинного двигателя транспортного типа в режиме запуска (/), малого газа (//), приемистости (Ш), максимальной мощности (/V), промежуточного уменьшения частоты вращения (V), длительном (VI), остановки (V//)  [c.10]

Воздушный компрессор осевого типа включает в себя 15 ступеней сжатия и образован путем надстройки тремя ступенями широко проверенного в эксплуатации компрессора агрегата типа ГТН-6. Рабочие лопатки новых ступеней, соединенные с барабаном центральной стяжкой, крепятся своими хвостовиками на приставных дисках. Выходной направляющий аппарат и направляющие лопатки выполнены поворотными для обеспечения запуска, частичных режимов агрегата и управляются одним сервомотором системы регулирования. При запуске из третьей и шестой ступеней воздух выпускают через противопомпажные клапаны. Статор компрессора состоит из входного патрубка выходного диффузора обойм компрессора с направляющими лопатками. Ротор компрессора сборный, комбинированный, включает концевую часть, приставные диски новых ступеней и барабанную часть от компрессора ГТ-6-750.  [c.33]

Режим термического нагружения образцов моделировал условия работы материала кромки лопаток при запуске и остановке. Все испытания велись по режимам, представленным в табл. 1. Как следует из таблицы, варьирование параметров нагружения (тер-  [c.339]

ВИЯХ по уровню термических и механических напряжений и уровню температур некоторых из участков Однако характер и абсолютны." уровень этих экстремальных состояний весьма различны н несопоставимы для различных режимов. Так, например, в режимах запуска и останова возникают очень высокие напряжения в кромках лопаток, но они имеют различный знак. Им соответствуют различные абсолютные уровни температуры.  [c.205]

Моделировались условия трех характерных режимов запуска — опробования — останова (рис. 71, а) запуска — останова (рис. 71,6) и запуска — взлета (рис. 71, в). Экспериментальная установка позволяла проводить исследования при автоматическом поддержании программы. В этих исследованиях не моделировали действие центробежных сил, имеющих место при эксплуатации рабочих лопаток в турбине. В качестве критерия разрушения принимали появление трещины длиной 0,5 мм.  [c.208]

В городском цикле движения автомобиля до 50% времени двигатель работает на токсичных нетяговых режимах, холостом ходу и в режиме торможения. Возможно полное отключение двигателя на данных режимах, как это сделано в так называемой системе старт—стоп , разработанной фирмой Фольксваген [30]. Между двигателем и коробкой передач последовательно расположено стартовое сцепление /, маховик 2 и обычное сцепление 3 (рис. 34). При переходе двигателя с тяговых режимов на нетяговые автоматически отключаются обе муфты сцепления, выключается зажигание двигателя, маховик вращается с первоначальной скоростью, имеется определенный запас кинетической энергии. При необходимости дальнейшего разгона авто-.мобиля включается стартовое сцепление, и двигатель запускается от вращающегося маховика. Экономия топлива в городском цикле достигает 25%, а выбросы СО и СпНт уменьшаются пропорционально доле выбросов нетяговых режимов в балансе ездового цикла.  [c.63]

Алгоритм, а впоследствии и его ПИ, расчленяется на отдельные части (модули) с одинаковыми параметрами ТКС. Эти модули могут вызываться на запуск автоматически (головной ПП) или в интерактивном режиме (командой пользователя) в любой последовательности. Таким образом, основная интеллектуальная нагрузка при разработке ПП АВЧ рабочей КД приходится на стадию проектирования. При проектировании ПП требуются профессиональные знания инженера-конструктора для правильной компоновки чертежа, описания линий изображений, размеров и других надписей для множества детатей, проектируемых по одной граф-схеме ПП АВЧ. Граф-схема алгоритма ПП может оказаться громоздкой, трудоемкой и плохо читаемой. Одноако разработан ряд приемов и методов сокращения рутинных процессов выполнения граф-схемы без потери ее информативности, о которых будет сказанно ниже. Это позволяет по граф-схеме на формате А4 написать до 300 строк текста ПП на ЯП, т.е. 5—6 страниц текста на формате А4.  [c.358]


Для этих целей может быть использован вихревой карбюратор (см. рис. 6.13), за основу конструкции которого был принят вихревой энергоразделитель с одним выходом потока через отверстие диафрагмы, установленной в сечении, примыкающем к сопловому вводу. Несмотря на заметно возросшее гидравлическое сопротивление тракта вихревой трубы этой конструкции она имеет преимущество, ифаюшее существенную роль на режиме запуска холодного двигателя. Режим работы, когда весь поступающий массовый расход компонентов отводится через отверстие диафрагмы в виде охлажденного , позволяет внутри камеры энергоразделения создать зоны с существенно повышенной температурой. При этом при отрицательной температуре на вхо-  [c.301]

Успешный запуск вихревых горелок и воспламенителей, работающих на жидком топливе в основном определяется условиями в перфокамере и гарантируется рабочим диапазоном соотношения плошадей проходных сечений отверстия диафрагмы и соплового ввода. На рис. 7.10 показаны экспериментально полученные соотношения, позволяющие в процессе проектирования выбирать сочетание размеров и F , обеспечивающих стабильность запуска. Область устойчивого запуска офаничена линиями 7 и 2 Режимы, лежащие выше кривой 1 характеризуются пониженным давлением в перфорированной камере и, как следствие ухудшением процесса запуска. Нижняя фаница (кривая 2) зависимости рассчитанная в работе [И], определяет достижение критического режима истечения из отверстия диафрагмы. В полете фаница устойчивого запуска зависит от отношения давления на входе в воспламенитель к давлению в камере сгорания tiJ = Для  [c.320]

Ограниченность на борту запаса сжатого воздуха при использовании автономного источника (баллонная система) вызывает необходимость учета его расхода на всех режимах вихревого го-релочного устройства. Расход сжатого воздуха существенно меняется при переходе с режима запуска на режим устойчивого горения (рис. 7.12).  [c.322]

В камере энергетического разделения вихревого горелочного устройства при работе на режиме без горения создаются зоны, температура в которых на 40—60% превышает исходную. Этот факт может быгь использован для организации теплового возгорания без привлечений внешнего источника энергии — свечи зажигания. В вихревых нагревателях тепловое возгорание должно наступать при температуре на входе Г, в 0 раз меньше, чем температура самовоспламенения. Тогда условия безыскрового запуска вихревой горелки должно определиться неравенством  [c.323]

Исследования, проведенные в термобарокамере, позволяли имитировать климатические условия до высоты Н= 16,0 км. С учетом того, что при высотных условиях температура сжатого воздуха за компрессором при адиабатном сжатии и степенях повышения давления л > 10 выше 300 К, в опытах температура сжатого воздуха на входе в воспламенитель поддерживалась постоянной и равной 300 К. Температура топлива изменялась от исходной Т= 298 К до атмосферной на соответствующей высоте. Пределы изменения температуры составляли 218 < < 298 К. В опытах температура понижалась на 5 К и запуск повторялся. Запуск регистрировали визуально по факелу прюдуктов сгорания и приборами по скачку давления и температуры. После запуска воспламенителя фиксировалась стабильность его работы без срывов в течении 30 с. Время запуска не превышало заданных норм и практически составляло 1 с. Во всем диапазоне изменения параметров окружающей среды и температуры топлива на входе воспламенитель работал без срывов и низкочастотных пульсаций. С уменьшением температуры отмечалось повышение давления топлива, при котором происходил надежный запуск с Р = 0,35 МПа при Т= 298 К до Р = 0,5 МПа при Т= 218 К, что очевидно обусловлено повышением мелкости распыла, вызванной увеличением перепада давления на форсунке. Проведенные испытания позволяют сделать следующие выводы доказана возможность организации рабочего процесса вихревого воспламенителя на вязком топливе при значительном снижении его температуры на входе воспламенитель КС вихревого типа подтвердил работоспособность при продувке в барокамере на режимах, соответствующих высоте полета до 16 км опыты показали высокую устойчивость горения, надежный запуск при достаточно низких отрицательных температурах, что позволяет рекомендовать вихревые горелки к внедрению как устройства запуска КС ГТД, работающих на газообразном топливе и используемых в качестве силовых установок нефтегазоперекачиваюших станций в условиях Крайнего Севера.  [c.330]

Поперечный вдув струй в сносящий поток представляет практический интерес в связи с разнообразными приложениями, начиная от разбавления продуктов сгорания воздухом в камерах сгорания (КС) газовых турбин и заканчивая аэродинамикой реактивной струи при переходе самолета вертикального или укороченного взлета и посадки с режима подъема на крейсерский режим. При вдуве струи в сносящий поток наблюдается сложная картина течения [1, 87]. Поперечное сечение струи принимает почкообразную форму и состоит из двух вихрей, закрученных в противоположные стороны. Основной поток, обтекая струю, формирует зону обратных токов. Возникающие зоны возвратных течений могут быть использованы для стабилизации фронта пламени в прямоточных КС авиационных двигателей. Генератором стабилизирующей струи служит вихревой воспламенитель [141] (см. п.7.1). Преимущества этих систем — высокая надежность запуска и устойчивая работа в щироком диапазоне изменения физических и климатических условий. В этом случае стабилизация осуществляется на высокотемпературном факеле — закрученном потоке продуктов сгорания, истекающих из сопла-диафрагмы с трансзвуковой скоростью, что может быть использовано для воспламенения сносящего потока топливо-воздушной смеси. При  [c.359]

Пакетный режим необходим при проектировании сложных технических систем, одновариантный анализ которых может требовать десятков минут машинного времени. Для реализации такого режима функциопи-ровапия пакетов-интерпретаторов необходим их запуск автономно от монитора САПР средствами ОС в качестве одной из фоновых задач ЭВМ. Любая ошибка, донуш,ен-пая пользователем во входном описании, приводит к необходимости перезапуска пакета проектирования. В этом отношении пакет-транслятор предоставляет пользовате- лю больше возможностей.  [c.139]


В зависимости от характера требуемых от монитора действий команды диалогового режима разбиты на две группы. Первая группа команд используется для общения пользователя с рабочей программой на этапе ее выполнения (команды прерывания и запуска рабочей программы, индикации и модификации различных переменных математической модели объекта, управления выдачей результатов, изменения последовательности выполнения псевдокоманд и т. п.). Вторую группу составляют команды корректировки структуры проектируемого объекта. Для выполнения таких команд диалоговый монитор должен выполнить всю цепочку динамических вызовов входной транслятор — компилятор комплекса ПЛ-6 — редактор связей — рабочая программа , на что требуется определенное машинное время, обусловливающее задержку реакции комплекса ПА-6 на команду пользователя.  [c.145]

Исходные данные перечислены в начале 4.6. Так как станок запускается в режиме холостого хода, т. е. когда нет процесса резания, то вся энергия электродвигателя расходуется на увеличение кинетической энергии агрегата и на преодоление потерь трения. Наиболее сил1)Но трение проявляет себя между ползуном 5 и неподвижной направляюигей. Силу трения / , в этой поступательной паре в первом приближении можно принять постоянной (рис. 4.16, б). Трение в других кинематических парах учитывать не будем, поскольку оно относительно слабо выражено. Точно так же опустим влияние сил тяжести. Механическая характеристика асинхронного электродвигателя /Vl(iOp i) изображена на рис. 4.16, в. Пусть начальные условия движения таковы при t = имеем ((, = =  [c.161]

Операционная система ОС-РВ является мультипрограммной системой реального времени для машин СМ ЭВМ с объемом оперативной памяти не менее 64 Кбайт. Она предназначена для разработки и отладки программ многих пользователей. Параллельное выполнение многих задач в режиме разделения времени обеспечивается за счет организации памяти и ее динамического распределения, разделения ресурсов системы на основе приоритетов, временной выгрузки задач на магнитный диск, управления процессом прохождения задач с терминалов пользователей. Управляющая программа распределяет время процессора и оперативную память на основе приоритетов. При этом пользователь может со своего терминала вводить команды запуска, приостано-ва, отмены задачи, команды установки некоторых системных параметров. Система ОС-РВ рассчитана на работу с разнообразными внешними устройствами.  [c.49]

Для расширения рабочего диапазона дроссельных режимов и улучшения характеристик диффузора на нерасчетных скоростях полета прибегают к различным методам регулирования диффузоров (изменение проходного сечения горла и взаимного положения центрального тела и обечайки, выпуск воздуха через отверстия в стенке диффузора, слив или отсос пограничного слоя на центральном теле или на обечайке и др.), описанным в специальной литературе ). Регулировоание расхода воздуха через горло сверхзвукового диффузора необходимо также для вывода последнего на рабочий режим ( запуска ). Дело в том, что расчетная скорость потока устанавливается не внезапно, а путем перехода от положения покоя к движению с постепенно нарастающей  [c.488]

Рис. 8.60. Различные режимы течения газа в аэродинамической трубе а) скачок помещается в сонле Лаваля (недостаточное разрежение перед эксгаустером), б) течение в ра-6o4eii части трубы сверхзвуконое (режим после запуска ) в) рабо-чиН режим (при суженном горле диффузора) Рис. 8.60. Различные режимы <a href="/info/41552">течения газа</a> в <a href="/info/27285">аэродинамической трубе</a> а) скачок помещается в сонле Лаваля (недостаточное разрежение перед эксгаустером), б) течение в ра-6o4eii части трубы сверхзвуконое (режим после запуска ) в) рабо-чиН режим (при суженном горле диффузора)
Двигатель весом Р=0,5 Т, установленный на двух балках (рис. к задаче 10.44), создает при работе возмущающую периодическую силу PiSin Ogi. Исследовать характер колебаний после запуска двигателя, предполагая, что двигатель мгновенно приобретает скорость вращения /г=600 об/мин. Найти максимальное напряжение в балке в период неустановившегося режима, когда еще не затухли собственные колебания. Сравнить с максимальным напряжением после полного затухания собственных колебаний. Длина пролета 1=6 м. Е=2-Ю кГ1см , Pi=160 кГ, Jx=25Q0 см  [c.238]

Изменения в режимах колебания дефлекторов в процессе роста трещин отразились в формировании регулярных, более четких, и нерегулярных, менее выраженных, усталостных микролипий. Рельефные линии образованы зонами вытягивания и характеризуют границу перехода от меньшего к существенно более высокому уровню нагрузки. Наиболее глобальные изменения в напряженности дефлектора связаны с его нагружением при запуске двигателя, что подтверждается всеми случаями разрушения дефлекторов в момент выхода на взлетный режим и пробега ВС по взлетной полосе. Поэтому наиболее рельефные, регулярные усталостные линии (см. рис. 10.2) относят к ситуации регулярно повторяющегося цикла запуска двигателя, а расстояния между двумя соседними, регулярными линиями — к одному полету ВС.  [c.538]

Высокой чувствительностью (10 ) к изменению скорости упругих волн обладает метод автоциркуляции импульса [68]. Генератор (рис. 9.3) возбуждает передающий пьезопреобразователь. При этом образуется импульс, заполненный высокочастотными колебаниями (10 МГц). В образце 4 возникает серия отраженных импульсов. Пьезопреобразователь превращает их в электрические сигналы, приемник усиливает, а селектор 10 периода выделяет я-й импульс и направляет его через усилитель запуска импульсов 1 на генератор для возбуждения новой серии импульсов. Система работает в автоколебательном режиме. Измеритель времени п заданных периодов определяет время следования импульсов. Для точного определения времени прохождения импульса через образец надо знать не только период следования импульсов, но и число периодов заполнения на временном интервале импульса. Для этого с помощью длительной задержки 12 времени, детектора 7 и селектора отраженных импульсов 10 выделяется один  [c.414]

Следует отметить, что переходные и стационарные этапы теплового режима нагружения изделия по-разному влияют на ресурс работы конструктивных элементов. В исчерпании несущей способности конструктивных элементов транспортных газотурбинных и паросиловых установок основная роль принадлежит нестационарным режимам, при которых в элементах создаются экстремальные напряженные и тепловые состояния, оказывающие определяющее влияние на процесс разрушения. Например, анализ работоспособности лопаток первой ступени турбины из сплава ЖС6К одного из авиационных двигателей по трем характерным режимам (запуск—опробование—остановка, запуск—остановка и запуск—взлет) термоциклического нагружения показал, что доминирующая роль в разрушении этих элементов принадлежит неустановившимся режимам теплового цикла [49]. Этот факт подтверждают также результаты анализа отбраковки лопаток при варьировании нестационарной части цикла в пропессе эксплуатации 175 двигателей [49] при сравнительно небольшом увеличении длительности нестационарной части (5%) характерна более ранняя отбраковка деталей. Для двигателей гражданской авиации с уменьшением дальности полета существенно возрастает досрочный съем двигателя с эксплуатации, что также вызвано увеличением длительности нестационарных режимов за суммарное время эксплуатации.  [c.7]


Анализ основных параметров стохастической модели процесса накопления термоусталостных повреждений 7107 сопловых лопаток ТРД на заводах гражданской авиации, поступающих в первый ремонт, показал, что запуски больше повреждают материал лопатки, чем работа на установившемся режиме [5]. В работе [53] отмечено, что по интенсивности накопленных повреждений один запуск двигателя равен 3, 4 ч работы на режиме номинал , а 1 ч наработки на режиме взлет увеличивает интенсивность отказов в 4 раза больше, в сравнении с наработкой на режиме номинал . В связи с этим следует подчеркнуть, что с увеличением ресурса элезментов теплонапряженных конструкций и с повышением рабочих параметров режима эксплуатации и удельных мощностей доля повреждений от термических напряжений в общем объеме дефектов возрастает.  [c.17]

Пусковой привод служит для запуска ГТУ с разгоном ротора газогенератора до режима самоходности агрегата и предусматривает прокрут-  [c.37]

Различно влияют на pe vp такие неустановившиеся режимы, как режим запуска, запуска — останова — опробования и др.  [c.208]


Смотреть страницы где упоминается термин Запуск режима : [c.699]    [c.200]    [c.201]    [c.39]    [c.84]    [c.280]    [c.316]    [c.490]    [c.354]    [c.547]    [c.594]    [c.594]    [c.348]    [c.110]   
Смотреть главы в:

AutoCAD 2002 Библия пользователя  -> Запуск режима



ПОИСК



Бортовые электрические устройства запуска и управления режимами работы силовых установок

Запуск ГТД

Запуск и управление режимами работы силовых установок. Особенности эксплуатации систем запуска

Запускаем

Ножницы поперечной резки летучие - Автоматизация работы ножниц: запуск 781 непрерывный режим

Особенности аварийных режимов запуска

Проблема продолжительности переходного режима при запуске в холодное время

Процессы режимов запуска, прогрева, опробования, охлаждения и останов авиационного двигателя

Шерстянников В. А., Калнин В. М. Гидродинамическое моделирование рабочего процесса ЖРД на режимах запуска. М. Машиностроение



© 2025 Mash-xxl.info Реклама на сайте