Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Превращения мартенсита при нагреве

Превращения мартенсита при нагреве  [c.46]

Превращение мартенсита при нагреве (отпуск стали). Мартенсит, получаемый при закалке стали, является неустойчивой структурой и, следовательно, стремится к превращению в более равновесное состояние, т. е. такое, какое было до закалки. Нагрев ускоряет этот переход, так как подвижность атомов сильно возрастает.  [c.23]

Корреляция между распределениями значений микротвердости, остаточных микронапряжений и потенциала указывает в основном на механохимическую природу формирования электрохимической гетерогенности вследствие остаточных напряжении, вызванных термопластическими деформациями (в данном случае структурные превращения, по-видимо-му, не оказали заметного влияния, так как распад мартенсита при нагреве должен был бы вызвать противоположное изменение микротвердости).  [c.222]


При переохлаждении р-твердого раствора до низких температур протекает мартенситное, превращение. В результате мартенситного превращения, особенно в сталях, сильно повышается твердость. В связи с этим нагрев стали до температур, соответствующих области стабильного р-твердого раствора, и последующее быстрое охлаждение для получения структуры мартенсит также называют закалкой. Распад мартенсита при нагреве называют отпуском.  [c.65]

Можно отметить следующие принципиальные особенности указанных методов. Внутри высокотемпературной исходной фазы, которая должна быть первоначально гомогенной (это обеспечивается восстановлением формы в результате обратного превращения при нагреве), каким-либо способом вызывают возникновение поля внутренних напряжений и управляют мартенситным превращением, происходящим при охлаждении. При применении способов 1, 2, 3 поле внутренних напряжений вызывается необратимыми дефектами, такими как дислокации, связанные с деформацией. При применении способов 4 и 5 поле внутренних напряжений обусловливается выделениями второй фазы и стабильным мартенситом деформации, который не подвергается обратному превращению даже при нагреве.  [c.88]

Продукт распада мартенсита при нагреве ниже температуры феррито-аустенитного превращения. На начальной стадии отпуска в оптическом микроскопе наблюдается потемнение мартенситных игл. При дальнейшем отпуске при высоких температурах в матрице феррита образуются карбиды сферической формы. При более высоком разрешении электронного микроскопа на начальной стадии отпуска можно наблюдать содержащиеся в структуре выделения мелкодисперсных карбидов железа. При температуре около 260°С (500°F) в структуре происходит увеличение количества цементита в матрице феррита. При дальнейшем отпуске при еще более высоких температурах цементит становится сфероидальным, количество отдельных частиц уменьшается и увеличивается их размер.  [c.1060]

Значительную роль в образовании напряжений в металле играют структурные превращения, происходящие при нагреве и затем при остывании металла шва и околошовной зоны. Эти превращения у низкоуглеродистой стали происходят при температуре выше 600 °С, т. е. выше температуры предела упругости. Вследствие этого они не сопровождаются образованием напряжений, так как металл находится в пластическом состоянии и при изменении объема пластически деформируется. Возникновение напряжений при охлаждении наблюдается у легированных закаливающихся сталей, ввиду того что распад аустенита с образованием закалочных структур (мартенсита) у них происходит при более низких температурах (200— 350 С), когда металл находится в упругом состоянии. Превращение в мартенсит сопровождается увеличением объема прилегающий к нему металл будет испытывать растягивающие напряжения, а участки со структурой мартенсита — сжимающие. Если сталь недостаточно пластична, в приграничных между этими участками районах могут образовываться трещины, и для предупреждения их появления потребуются дополнительные технологические меры.  [c.192]


С (рис. 49) и вызывает выделение карбидов цементитного типа, подобно тому как это происходит при аналогичном отпуске углеродистой и легированной стали. Эти процессы понижают твердость до 59— 60 НКС. Легирующие элементы быстрорежущей стали сильно смещают вторую стадию распада мартенсита к более высоким температурам. Вследствие этого в мартенсите при нагреве до 550—600° сохраняется 0,2 /о С превращения, протекающие при нагреве в интервале 350—600°, заключаются главным образом в перераспределении  [c.1214]

И). Превращение мартенсита и остаточного аустенита при нагреве (отпуск стали)  [c.184]

Изменения свойств стали при закалке являются результатом образования неравновесных структур мартенсита, тростита, сорбита. Закалка основана на фазовых превращениях при нагреве и охлаждении. Быстрое охлаждение стали при закалке предотвращает превращение аустенита в перлит, вследствие чего и образуется одна из промежуточных структур распада аустенита мартенсит, тростит или сорбит. Применяя различные охладители при закалке, можно подобрать определенную скорость охлаждения, необходимую для получения требуемых структуры и свойств.  [c.118]

Структура и свойства сталей мартенситного класса зависят от содержания С и Сг. Так, стали с низким содержанием С (-<0,10%) и д повышенным содержанием Сг (>15%) являются ферритными и не закаляются, поскольку не протекает превращение Стали с содержанием С-<10% и Сг<15% при нагреве приобретают структуру аустенита, а при охлаждении происходит превращение о образованием мартенсита. Химический состав и назначение мартенситных сталей приведены в табл. 15.1.  [c.264]

При закалке полиморфное превращение осуществляется по мартенситному типу, сопровождающемся образованием метастабильных фаз (а, а", со), или после закалки образуется Р-фаза (в системе титановых сплавов), или 7-фаза (в системе сплавов на основе железа), которые, будучи неустойчивыми, претерпевают превращения при нагреве (старение, отпуск). У сплавов на основе титана а -фаза по свойствам значительно отличается от мартенсита стали она имеет пониженную прочность и повышенную пластичность.  [c.121]

Высокий отпуск (для уменьшения твердости) После горячей механической обработки ста.чь чаще имеет. мелкое зерно и удовлетворительную микроструктуру, поэтому не требуется фазовой перекристаллизации (отжига). Но вследствие ускоренного охлаждения после прокатки или другой горячей обработки легированные стали имеют неравновесную структуру — сорбит, троостит, бей-нкт или мартенсит — и, как следствие этого, высокую твердость. Для снижения твердости на металлургических заводах сортовой прокат подвергают высокому отпуску при 650—700 С (несколько ниже точки Л,) в течение 3—15 ч и последующему охлаждению. При нагреве до указанных температур происходят процессы распада мартенсита н (или) бейнита, коагуляция и сфероидизация карбидов к в итоге снижается твердость. Углеродистые стали подвергают высокому отпуску в тех случаях, когда они предназначаются для обработки резанием, холодной высадки или волочения. Высокий отпуск снижает твердость до требуемых значений и обеспечивает опти.мальную для обработки резанием микроструктуру — феррит н смесь зернистого и пластинчатого перлита. После высокотемпературного отпуска доэвтектоидная сталь лучше обрабатывается резанием, чем после полного отжига (см. с. 194), когда структура — обособленные участки феррита и перлита. Структурно свободный феррит налипает на кромку инстру.мента, ухудшает качество поверхности изделия, снижает теплоотдачу, и поэтому снижает скорость резания и стойкость инструмента. Для высоколегированных сталей, у которых практически не отмечается перлитного превращения, высокий отпуск является единственной термической обработкой, позволяющей снизить их твердость.  [c.193]

Чем меньше / (частота тока), тем больше глубина нагреваемого слоя. Если применять ток малой частоты (промышленный), то индуцированный ток будет течь по всему сечению детали и вызывать сквозной нагрев. Индукционный нагрев обеспечивает высокие скорости нагрева. Скорость нагрева TR4 в зависимости от/ р, ц. составляет 50—500 °С/с, а при обычном печном напеве она не превышает 1—3 °С/с. Нагрев до температуры закалки осуществляется за 2—10 с. Глубина слоя 2—5 мм. Большие скорости нагрева приводят к тому, что превращение перлита в аустенит смещается в область более высоких температур, поэтому температура закалки при индукционном нагреве выше, чем при нагреве в печах, где скорость нагрева не превышает 1,5—3 °С/с. Чем больше скорость нагрева в районе фазовых превращений, тем выше температура аустенизации и получения при охлаждении нормальной структуры (мелкокристаллического мартенсита) и максимальной твердости. Так, например, при печном нагреве стали 40 температура закалки 840—860 °С, при индукционном нагреве со скоростью 250 °С/с —880—920 °С, а со скоростью 500 °С — 980—1020°С.  [c.129]


В результате закалки доэвтектоидной стали получают мар-тенситную структуру. Она обеспечивает наибольшую прочность и твердость. Нагрев ниже Асз, но выше A i приводит к частичной закалке. Зерна, которые в процессе нагрева и выдержки превратились в аустенит, после резкого охлаждения превратятся в мартенсит. Твердость мартенсита в стали, содержащей 0,5% углерода, составляет около 650 кГ/мм по Бринелю. Но наряду с мартенситом сохранятся не претерпевшие превращения при нагреве зерна мягкого феррита (твердость всего около 80 по Бринелю). Такая структура является браком за-  [c.143]

Мартенсит, имеющий после закалки кристаллическую решетку с тетрагональной элементарной ячейкой, при нагреве выше 80° С начинает превращаться в кубический. Как всякий пересыщенный раствор, мартенсит неустойчив. Он распадается при комнатной температуре, но скорость распада чрезвычайно мала ввиду малой тепловой подвижности атомов. При температуре выше 80° С подвижность атомов оказывается достаточной для того, чтобы углерод частично перешел из пересыщенного раствора в пластинки карбида толщиной всего в несколько атомных слоев за относительно небольшой промежуток времени. Это превращение происходит в интервале от 80 до 170° С и сопровождается уменьшением искажения кристаллической решетки мартенсита. Внутренние напряжения снижаются, уменьшается удельный объем мартенсита, размеры детали немного сокращаются. Твердость и прочность остаются неизменными, а пластические свойства несколько повышаются.  [c.148]

Мартенситное превращение является обратимым в том смысле, что обратимо можно получить первоначальную конфигурацию атомов. Например, если при охлаждении в одном зерне аустенита образуется несколько пластин мартенсита, то при нагреве можно получить исходное аустенитное зерно того же самого размера, той же формы и ориентировки.  [c.259]

Искусственное старение происходит при нагреве закаленной стали до 100—170° С и представляет собой начало превращения при первой стадии отпуска, группировку атомов углерода в решетке мартенсита и выделение е-карбида с одновременным обеднением углеродом мартенсита, который становится неоднородным и уменьшает степень своей тетрагональности.  [c.248]

Как было отмечено выше, структурные превращения сопровождаются изменением удельного объема стали. В частности, при распаде мартенсита происходит уменьшение объема, а при распаде аустени-та — увеличение. Поэтому для изучения структурных превращений при нагреве закаленной стали пользуются дилатометрическим анализом, суть которого заключается в точной фиксации изменений длины закаленных образцов. В соответствии с характером изменения длины закаленных образцов в углеродистой стали различают четыре стадии превращения при нагреве.  [c.46]

Известно, что термоциклирование легированных сталей в интервале температур, в котором происходит сдвиговое полиморфное превращение, приводит к накоплению дефектов атомно-кристаллического строения. Так, многократные мартенситные превращения используют для упрочнения мартенситно-стареющих сталей [187]. Основной вклад в упрочнение вносит прямое мартенситное превращение. Образующаяся при нагреве фаза у лишь наследует большую часть дефектов мартенсита. О наследовании дефектов при трансформации упаковок сообщалось в работах [124, 387], и на нем основаны некоторые виды термомеханической обработки [40]. Сохранение дефектов кристаллического строения становится возможным благодаря необратимости прямого и обратного мартенситных превращений. После нескольких термоцнклов в никелевой стали накапливаются дислокации, дефекты упаковки, двойники, субзеренные границы, вследствие чего она упрочняется так же, как и после холодной деформации с обжатием на 30—50% [50]. Аналогичные данные имеются и для марганцовистой стали [165].  [c.55]

Прямое и обратное превращение обнаружено в сплавах с содержанием марганца между 5 и 10% исходная обработка — охлаждение нз -у-области в а. При охлаждении до комнатной температуры образуется 100 % мартенсита, при нагреве — 100 % аустенита. Сплавы, содержащие от 10 до 15 % Мп, дают при охлаждении е-и а-мартенсит. Из аустенита бездиффузион-ным путем при охлаждении образуется вначале гексагональный е-мартенсит в виде пластин, который формируется путем сдвига по октаэдрическим плоскостям ау-стеннта и имеет вид видманштеттовой структуры (рис. 1.84).  [c.40]

Лежащее в основе ЭПФ и сверхупругости обратимое термоупругое мартенситное превращение было открыто в 1949 г. Г. В. Курдюмо-вым и Л. Г. Хандросом на сплавах u-Al-Ni и u-Sn. Они обнаружили, что кристаллы образующегося мартенсита при остановке охлаждения могут прекращать рост, а при последующем нагреве уменьшаются в размерах. При этом последовательность исчезновения кристаллов мартенсита при нагреве и обратном превращении мартенсита в высокотемпературную фазу (аустенит) повторяет последовательность их возникновения в обратном порядке.  [c.372]

Влияние легирующих элементов на процессы, протекающие при отпуске углеродистой стали, неоднозначно. На первую стадию распада мартенсита (при нагреве до 200 °С) лепфующие элементы не оказывают какого-либо существенного влияния. На вторую стадию распада мартенсита (третье превращение при отпуске) многие легируюпще элементы влияют очень сильно, замедляя процесс образования и рост карбидных частиц (е-карбида и РезС) и соответственно тормозя процесс распада мартенсита. В легированных сталях состояние отпущенного мартенсита, обладающего высокой твердостью, сохраняется вплоть до температур 450-500 °С. Наиболее сильно тормозят распад мартенсита Сг, W, Мо, V, Со и Si.  [c.442]

Температуру нагрева при закалке углеродистых сталей выбирают по левой нижней части диаграммы железо—цементит (рис. 55). При закалке доэвтектоидные стали нагревают до температуры на 30—50° С выше температуры в верхней критической точке Лсд, т. е. выше линии С5 диаграммы железо—це.ментит. При таком нагреве исходная феррито-перлитная структура превращается в аустенит, а после охлаждения со скоростью больше критической образуется структура мартенсита. При нагреве доэвтектоидной стали до более низкой температуры, например выше критической точки Ас , т. е. выше линии РЗ диаграммы железо— цементит, но ниже точки Лсд структура и свойства стали будут изменяться следующим образом. Исходная феррито-перлитная структура при таком нагреве не будет полностью превращаться в аустенит, а часть феррита останется не превращенным и структура будет аустенит и феррит. Феррита в стали останется тем больше, чем температура нагрева ближе к температуре в точке Ас . Структура после охлаждения будет мартенсит и феррит. Феррит, имеющий низкую твердость, понижает общую твердость закаленной стали такая закалка называется неполной.  [c.59]


Большое значение для свойств рассматриваемых сталей имеют превращения, протекающие при нагреве и, соответственно, получаемое фазовое состояние после охлаждения. Хром сильно увеличивает устойчивость а-состояния стали, настолько сильно, что даже при содержании в стали значительных количеств никеля область существования у-фазы оказывается замкнутой и окруженной а-фазой. В этих условиях (см. рис. 10.2) в сталях со значительным содержанием хрома при нагреве возможны две схемы фазовых превращений. Для сплавов, находящихся в концентрационной области замкнутой петли у-фазы, нагрев в интервале температур существования одной у-фазы должен привести к полной перекристаллизации а у, с получением после охлаждения аустенитного состояния, стабильного или нестабильного, с мартенситом или без него, или же полностью мартенситного состояния в зависимости от условий охлаждения и состава стали. Однако при нагреве этих же сталей до более высоких температур можно получить а + у-область (см. рис. 10.2). По существу, а-фаза будет высокотемпературным б-ферритом. При охлаждении таких сплавов должно произойти обратное а у-превращение. Увеличение содержания хрома или других стабилизирующих феррит элементов приводит к тому, что сталь становится ферритно-аустенитной, соответствующей двухфазной а + у-области на рис. 10.2. Количество феррита в такой стали зависит от соотношения суммарного содержания аустенитообразующих (N1, С, Мп, М) и ферритообразующих (Сг, Мо, , V и др.) элементов и может быть приближенно оценено по структурной диаграмме Шеффлера. Нагрев таких сталей приводит к образованию а- и у-фазы, а охлаждение сохраняет в структуре наряду с аустенитом или продуктами его превращения и определенное количество феррита.  [c.257]

Образование аустеннта из мартенсита, если последний не претерпевает превращений при нагреве, может происходить двумя способами. Первый осуществляется обычной диффузионной кинетикой подобно переходу одного  [c.268]

При больших скоростях наг рева превращение перлита в аустепит сдвигается в область высоких температур (см. рис. 95), и начальное зерно аустеиита уменьшается. Поэтому температура закалки при индукционном нагреве выше, чем при нагреве в печах, где скорость нагрева не превьилает 1,5—3°С/с. Чем больше скорость нагрева в районе фазовых превращений, тем выше должна быть температура для достаточно полной аустенитизации и получения при охлаждении оптимальной структуры (мелкокристаллического мартенсита) и максимальной твердости.  [c.222]

Доэвтектоидные стали надо нагревать до температуры на 30—50° С выше Лсз (фиг. 2). В этом случае получается аустенитная структура, которая при последующем охлаждении со скоростью выше крнтическо превратится в мартенсит. В доэвтектоидной стали, нагретой в интервале температур Лс,—АСз после закалки наряду с мартенситом сохранятся участки феррита, не претерпевшие превращения в аустеннт при нагреве.  [c.118]

В. Н. Задпое, С. Л. Филлипычев. ПАМЯТЬ ФОРМЫ — свойство нек-рых твёрдых тел восстанавливать исходную форму после пластич. деформации при нагреве или в процессе разгружения. Восстановление формы, как правило, связано с мартенситным превращением или с обратимым двойникова-нием. В зависимости от величины деформации и вида материала восстановление формы может быть полным или частичным. Полное восстановление формы может происходить в сплавах с термоупругим мартенситом, таких, как Си — А1 — (Го, N1, Со, Мп), N1 — А1,Аи — Сй, Ag — Сс1, Т1 — N1, 1п — Т1, Си — гп А1, Си — 2п — 8п), и в ряде др. двойных, тройных и многокомпонентных систем. П. ф. в этих сплавах имеет место и в тех случаях, когда восстановлению формы противодействует внеш. нагрузка. Макс, величина обратимой пластич. деформации зависит от кристаллич. структуры исходной и мартенситной фаз и ограничена величиной деформации решётки при фазовом переходе или сдвигом при двойниковании. Так, при мартенситном превращении в сплавах Т( — N1 она составляет 9%. Когда возможности деформации по мартенситному механизму или за счёт обратимого передвойникования исчерпаны, дальнейшее формоизменение необратимо, т. к. оно происходит путём скольжения полных дислокаций.  [c.526]

ПРЕВРАЩЕНИЕ МАРТЕНСИТА И ОСТАТОЧНОГО АУГ1ЕНИТА ПРИ НАГРЕВЕ (ОТПУСК СТАЛИ)  [c.183]

Распад мартенсита (первое превращение при отпуске). На первой стадии превращения, протекающего при те,мпературе ниже 200 "С, в кристаллах мартенсита обра.зуются карбиды. На образование частиц этих карбидов углерод расходуется только из участков мартенсита, непосредственно окружающих кристаллы выде,)швшпхся карбидов. Концентрация углерода в этих участках резко уменьшается, тогда как более удаленные участки сохраняют исходную концентрацию углерода, полученную после закалки. Таким образом, после нагрева до низких температур (ниже Ь50 ""С) в стали наряду с частицами выделившихся карбидов одновременно присутствуют два а-твердых раствора (мартенсита) с более высокой (исходной) и низкой концентрацией углерода.  [c.184]

Механизмом, определяющим свойства памяти формы , является кристаллографическое обратимое термоупругое мартенситное превращение — эффект Курдюгиова. Термоупругое мартенситное превращение сопровождается изменением объема, которое носит обратный характер, обеспечивая память . В сплавах с эффектом памяти формы при охлаждении происходит рост термоупругих кристаллов мартенсита, а при нагреве — их уменьшение или исчезновение. Эффект памяти формы наиболее хорошо проявляется, когда мартенситное превращение происходит при низких температурй х и в узком интервале температур, иногда порядка нескольких градусов.  [c.375]

Таким образом, независимо от того, происходит ли превращение по атермическому или изотермическому типу, отдельные кристаллы мартенсита образуются и растут с очень большой скоростью. Даже при понижении температуры или с течением времени скорость роста кристаллов мартенсита не увеличивается. Механизм превращения, характеризующийся такими особенностями, называют нс рмоупругим. При термоупругом превращении первоначально образовавшиеся отдельные кристаллы мартенсита растут при понижении температуры со скоростью, соответствующей скорости охлаждения. При этом скорость роста может оказаться столь малой, что превращение можно наблюдать даже невооруженным глазом. При нагреве происходит обратный процесс уменьшение кристаллов. Указанное термоупругое мартенситное превращение играет основную роль в проявлении эффекта памяти формы.  [c.14]

Образец в целом деформируется до образования монодомена мартенсита. Если затем приложить еще более высокое напряжение, то в образце происходит скольжение или, как описано в следующем разделе, происходит превращение в мартенсит, имеющий особую кристаллическую структуру. Однако возврата деформации, обусловленной скольжением, не происходит даже при нагреве, а деформация, обусловленная превращением мартенсита в мартенсит с особой кристаллической структурой, устраняется при снятии нагрузки. Следовательно, эти виды деформации не играют роли в эффекте памяти формы, поэтому максимальная величина возврата деформации при нагреве определяется величиной деформации решетки в двойниковом монодомене, сохраняющем-  [c.38]

Типичным примером, характеризующим деформационное поведение монокристаллов, являются результаты исследования сплава Си — А1 — N1. На рис. 2.50 показаны [44] кривые напряжение — деформация, полученные при растяжении монокристаллических образцов сплава [% (по массе)] Си — 14,5 А1 - 4,4 N1 в широком интервале температур, включающем Г превращения. При Т < перед деформацией существует термически равновесная мартенситная 7-фаза. Миграция поверхности раздела мартенситной и исходной фаз или двойниковой границы внутри мартенситных кристаллов обусловливает механизм деформации при низких напряжениях. Позтому на кривых не наблюдается области упругой деформации и легко происходит пластическая деформация. В интервале наблюдается область упругой деформации исходной фазы до того, как под действием напряжений образуется мартенситная 71 -фаза. В тот момент, когда напряжения вызывают образование мартенсита, происходит значительное падение пряжений. Это явление связано с механизмом образования мартенситной у -фазы. Она образуется мгновенно в большом объеме, при зтом высвобождается большая знергия деформации и происходит значительная релаксация напряжений. При Т <. при снятии нагрузки деформация сохраняется частично или полностью, однако затем при нагреве происходит полный возврат деформации. В связи с зтим восстанавливается форма, то есть сплавы проявляют аффект памяти формы. При Т> А мартенситная 0 1-фаза образуется под действием напряжений, поэтому при зтих температурах (рис. 2.50) большого падения напряжений не происходит, однако вблизи точки  [c.107]


Выбор наиболее подходящей температуры высокочастотной закалки при соответствующей скорости нагрева для данной плавки и структуры стали обычно производится опытным путем на основании )ассмотрения микроструктур и твердостей закалочного ряда . Например, при нагреве в области фазовых превращений со скоростью 40 град/сек сталь 45 с обычной перлито-ферритной структурой (фиг. 163, а) после высокочастотной закалки при 750° С не меняет структуру и твердость ее HR 31 (фиг. 163, б) после высокочастотной закалки при 800° С часть ферритных выделений не успевает раствориться, твердость стали HR 61 (фиг. 163, в) после высокочастотной закалки при 850° С наблюдается явная неоднородность структуры (фиг. 163, г) после высокочастотной закалки при 900° С получается структура мелкоигольчатого мартенсита (фиг. 163, д) с наивысшей твердостью HR 65, высокочастотная закалка при 1100° С создает структуру мартенсита твердостью С 64 (фиг. 163, е), крупноигольчатость которого указывает на перегрев.  [c.264]

Отпускная хрупкость второго рода вызывается не превращением мартенсита и аустени-та, а диффузионными процессами перемещениями атомов легирующих элементов, углерода и азота в кристаллической решетке твердого раствора к дислокациям и другим дефектам решетки, большая часть которых сосредоточена по границам зерна и блоков. Это понижает свободную энергию решетки, так как, занимая места в растянутых или сжатых участках решетки в зависимости от своего диаметра, атомы примесей занимают термодинамически более выгодное положение. Такое расположение атомов примесей тормозит перемещение дислокаций, препятствует пластической деформации на границах зерен и блоков и создает отпускную хрупкость второго рода при разрушении по границам зерен. Обратимость этой хрупкости объясняется тем, что при повторных нагревах примеси благодаря диффузии могут снова пepepa пpeдeJ ять я в кристаллической решетке. При  [c.318]

При нагреве в участках околошовной зоны и кристаллизую-щехюся шва возникают упругопластические деформации и напряжения сжатия. В дальнейшем при охлаждении их знак меняется и происходит монотонное возрастание деформации и напряжений растяжения. Как показано Н. Н. Прохоровым, в условиях наплавки на кромку пластины стали Х18Н10Т к моменту полного охлаждения величина остаточной продольной деформации достигает 1,6%. Если наплавка производится на малоуглеродистую сталь Ст.З или закаливающуюся при сварке сталь марки 25ХН4, то на величину конечных деформаций оказывают заметное влияние также объемные изменения при у —> -превращении и образовании мартенсита.  [c.37]


Смотреть страницы где упоминается термин Превращения мартенсита при нагреве : [c.40]    [c.94]    [c.313]    [c.179]    [c.121]    [c.240]    [c.122]    [c.273]    [c.12]   
Смотреть главы в:

Технология конструкционных материалов  -> Превращения мартенсита при нагреве



ПОИСК



Мартенс

Мартенсит

Мартенсит превращение

Превращение

Превращение мартенсита и остаточного аустенита при нагреве (отпуск стали)



© 2025 Mash-xxl.info Реклама на сайте