Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Коррозионное растрескивание и водородное охрупчивание

Стали с пределом текучести выше 800—1000 МПа в коррозионноактивных средах, включая влажную атмосферу, растворы хлоридов при повышенной температуре, морскую воду, могут обнаруживать склонность к коррозионному растрескиванию и водородному охрупчиванию. Стали такой высокой прочности могут резко умень-  [c.68]

КОРРОЗИОННОЕ РАСТРЕСКИВАНИЕ И ВОДОРОДНОЕ ОХРУПЧИВАНИЕ  [c.276]


Как видно из данных табл. 3, лучшие среди базовых масел результаты по снижению коррозионного растрескивания и водородного охрупчивания получены для масла АСВ-5, обеспечивающего торможение обоих процессов. Масло ИПМ-А10 не тормозит, а стимулирует коррозионное растрескивание, а М-6 - водородное охрупчивание по сравнению с неингибированной кислотой. Усталостная долговечность стали при защите масляной пленкой в среде электролита в несколько раз ниже, чем в объеме масла. Так, объемная усталостная долговечность стали в масле АСВ-5 составляет 22 Ю циклов /см. табл. 2/, а при защите металла пленкой этого же масла в нейтральном электролите долговечность снижается втрое и составляет 6,2-10 циклов.  [c.54]

Однако объяснение коррозии под напряжением аустенитных сталей преимущественно явлением водородной хрупкости, по-видимому, не всегда оправдано. Установлено, например [51, с. 256], что внешняя катодная поляризация снижает склонность к коррозионному растрескиванию, только при более сильной катодной поляризации происходит коррозионное растрескивание сталей. Водородное охрупчивание, несомненно, играет важную, но не исключительную роль при коррозионном растрескивании нержавеющих сталей и титановых сплавов, так как в условиях активного растворения (при депассивации в острие трещины) идет интенсивное наводороживание этих сплавов.  [c.111]

Конструкционные материалы должны обладать необходимым сочетанием прочностных и пластических свойств, сохраняющихся в широком интервале температур и давлений, высокой коррозионной стойкостью, в том числе стойкостью к водородному охрупчиванию, коррозионному растрескиванию и другим специфическим видам коррозионного разрушения, проявляющимся в условиях воздействия нефтегазовых сред.  [c.2]

Сопоставление всех приведенных выше обобщенных данных позволяет считать, что в процессе коррозионного растрескивания невозможно говорить о превалирующей роли только одного процесса. Анодное растворение и водородное охрупчивание являются неотъемлемыми частями механизма коррозионного растрескивания. Можно лишь говорить о последовательности этих процессов как следующих стадий коррозионного растрескивания  [c.69]

Изложены вопросы коррозионно-механической прочности металлов, влияние коррозионных сред на характеристики ползучести. Описаны новые представления о механизме коррозионного растрескивания и связи его с водородным охрупчиванием. Рассмотрены кинетика и механизм влияния водородного охрупчивания в процессе коррозионного растрескивания различных сталей и сплавов. Показана зависимость этих видов разрушения от различных структурных факторов. Приведены сведения о коррозионном растрескивании высокопрочных алюминиевых и титановых сплавов, механизме этих процессов и способах защиты.  [c.4]


Данная глава посвящена двум формам разрушения материалов, связанным с воздействием среды, а именно — коррозионному растрескиванию под напряжением (KP) и водородному охрупчиванию. Будет рассмотрена связь этих видов коррозии с различными металлургическими факторами. В число последних входят химический состав компоненты микроструктуры (такие как тип и структура выделений, размеры и форма зерен) кристаллографическая текстура термообработка и ее влияние на уже перечисленные факторы и, наконец, некоторые технологические процессы, в частности термомеханическая обработка (ТМО), которая привлекает возрастающее внимание как метод оптимизации свойств материалов. Все названные переменные, несомненно, очень важны с точки зрения разработки новых материалов, отвечающих постоянно усложняющимся условиям эксплуатации.  [c.47]

Обычно KP под напряжением определяют как совместное воздействие агрессивной коррозионной среды и растягивающего напряжения (остаточного или приложенного), приводящее к растрескиванию, имеющему макроскопически вид хрупкого разрушения. В этом определении подразумевается, что KP представляет собой явление, а не механизм,-— именно так KP и трактуется в этой главе. К таким же явлениям относится и водородное охрупчивание, которое может (но не обязательно) сопровождать KP. Водород как газ или в виде частиц, возникающих в результате химических или электрохимических реакций, может рассматриваться как агрессивный агент, способный вызывать KP. Но в процессе классических исследований водородного охрупчивания имели дело с водородом, растворенным в металле, что не характерно для коррозионных агентов. В прошлом это приводилось в качестве аргумента против связи KP с водородным охрупчиванием. Данный обзор показывает, что такой вывод не может считаться общим. Известен ряд случаев, когда водород участвует в KP, причем существовавшее мнение о соотношении между водородным растрескиванием и, например, анодным растворением как компонентами KP нуждается в поправке или даже в пересмотре. К целям данной главы относится также анализ роли и соотношения различных механизмов в KP-  [c.47]

Когда трещина коррозионного растрескивания развивается, в некоторых материалах возникают высокочастотные волны напряжений. Особенно это характерно для высокопрочных сталей, которые чувствительны к растрескиванию под воздействием водорода. Определение акустических сигналов, которые отфильтровываются от фонового шума с низкой амплитудой, является средством изучения распространения [15] трещин. Этот метод требует сложного и относительно дорогого оборудования, однако если его правильно использовать, то с его помощью можно устанавливать различия между механизмами растрескивания, связанными с растворением активных участков и водородным охрупчиванием [16].  [c.320]

Скоростью, с которой атомы Наде рекомбинируют друг с другом или с Н , образуя Hj, обусловлена каталитическими свойствами поверхности электрода. Если электрод является хорошим катализатором (например, платина или железо), водородное перенапряжение невелико, тогда как для слабых катализаторов (ртуть, свинец) характерны высокие значения перенапряжения. При добавлении в электролит какого-либо каталитического яда, например сероводорода или соединений мышьяка или фосфора, уменьшается скорость образования молекулярного Hj и возрастает адсорбция атомов водорода на поверхности электрода . Повышенная концентрация водорода на поверхности металла облегчает проникновение атомов водорода в металлическую решетку, что вызывает водородное охрупчивание (потерю пластичности) и может привести к внезапному растрескиванию (водородное растрескивание) некоторых напряженных высокопрочных сплавов на основе железа (см. разд. 7..4). Каталитические яды увеличивают абсорбцию водорода, выделяющегося на поверхности металла в результате поляризации внешним током или коррозионной реакции. Это осложняет эксплуатацию трубопроводов из низколегированных сталей в некоторых рассолах в буровых скважинах, содержащих сероводород. Небольшая общая коррозия приводит к выделению водорода, который внедряется в напряженную сталь и вызывает водородное растрескивание. В отсутствие сероводорода общая коррозия не сопровождается водородным растрескиванием. Высокопрочные стали из-за своей ограниченной пластичности более подвержены водородному ра-  [c.58]


Коррозионно-механическое разрушение металлов происходит при одновременном воздействии коррозионной среды и механических напряжений. Основные виды коррозионно-механического разрушения металлов коррозионное растрескивание, коррозионная усталость, фреттинг-коррозия, коррозионная эрозия, кавитация, сульфидное растрескивание, водородное охрупчивание.  [c.14]

Агрессивность буровых растворов увеличивается в присутствии сероводорода, особенно содержащегося вместе с кислородом и минеральными солями. Сероводород, попадающий в буровой раствор при разбуривании сероводородсодержащих месторождений, вызывает процессы коррозионного растрескивания под напряжением, водородного охрупчивания и общей коррозии, В присутствии  [c.109]

Для специфических условий нагружения это явление принято обозначать другими терминами, например, коррозионное растрескивание стали в щелочных средах называют каустической или щелочной хрупкостью, разрушение латуней во влажной атмосфере— сезонным растрескиванием аналогичны коррозионному растрескиванию хрупкие разрушения металлов, происходящие вследствие проникновения по границам зерен легкоплавких примесей. Диффузия легкоплавкого металла вдоль границ зерен сплава, находящегося под действием напряжения и температуры, близкой к температуре плавления диффундирующего металла, приводит также к снижению прочности и пластичности основного металла. Этот вид порчи материала иногда называют легированием под напряжением. Развивающееся во времени в металлах разрушение при наводороживании, называемое водородным растрескиванием, в некоторой степени можно отнести к категории коррозионных разрушений, хотя чаще его классифицируют как замедленное разрушение. Во всяком случае, когда в процессе коррозионного воздействия освобождаются атомы водорода и материал чувствителен к водородному охрупчиванию, разрушение значительно ускоряется.  [c.70]

Ионы водорода в хоДе катодного процесса восстанавливаются на поверхности стали, часть из них поступает в металл и способствует его коррозионно-механическому разрушению. Установлено что при сероводородном растрескивании сталей основная роль принадлежит водородному охрупчиванию [8].  [c.43]

Следует также подчеркнуть, что авторы не разделяют точку зрения о существовании единственного процесса, вызывающего KP. В действительности есть случаи как чистых процессов растворения, так и чистого водородного охрупчивания, которые вместе с другими примерами образуют то, что в целом называют коррозионным растрескиванием под напряжением. Во многих случаях имеется вклад обоих упомянутых процессов. В данной главе сделан акцент на процессы, связанные с присутствием водорода, чтобы в наибольшей мере использовать то новое, что появилось в понимании водородного охрупчивания, однако это не следует истолковывать как механическое выделение одной части из целого.  [c.47]

В предшествующем разделе параметры, влияющие на КР титана, были разделены на три большие категории те же категории будут использованы в качестве основы для последующей дискуссии. Коррозионное растрескивание в водном и метанольном растворах было детально проанализировано. Относительно опасных компонентов этих сред были выдвинуты два постулата. Во-первых, взаимодействие водорода с титаном, которое принимает форму либо внедрения в решетку с образованием водородного охрупчивания, либо адсорбции в вершине трещины. Во-вторых, взаимодействие галоидов с титаном в форме адсорбции или растворения металла.  [c.389]

Как утверждается в настоящее время, гипотеза водородного охрупчивания является полуколичественной и, таким образом, не может быть использована для объяснения отдельных моментов процесса коррозионного растрескивания. Некоторые из факторов среды, влияющих на КР, перечислены ранее. Фактическое влияние водорода при объяснении этих факторов рассматривается ниже  [c.399]

В ряде отраслей промышленности нефтегазодобывающей, нефтехимической, химической наряду с защитой стали и сплавов от коррозии актуальной является проблема защиты от коррозионной усталости, растрескивания, водородного охрупчивания. В этом случае необходим комплексный подход к выбору ингибиторов с применением соответствующих критериев. Применительно к конкретным условиям эксплуатации в качестве таких критериев используют наряду с приведенными выше следующие [1]  [c.9]

В случаях, когда растрескивание связано с водородным охрупчиванием, эффективно использование ингибиторов наводороживания. Однако однозначной зависимости между способностью ингибитора тормозить наводороживание и коррозионное растрескивание не существует.  [c.76]

На водородное охрупчивание аморфных сплавов существенно влияют их коррозионная стойкость и содержание металлоидов. На рис. 9.27 показано, как изменяется время до разрушения аморфных сплавов Fe—Сг—Мо в зависимости от величины деформации и времени выдержки в 1 н. водном растворе H I [36]. Видно, чТо время до разрушения значительно увеличивается и коррозионная стойкость сплава повышается при увеличении содержания хрома. Растрескивания при этом нет. В таком растворе, как I н. H I при коррозии происходит реакция (9.5) восстановления ионов водорода Н+, причем восстанавливается только то количество водорода, которое определено по реакции. Соответственно по реакции (9.10) определяется и количество абсорбированного водорода. Если коррозия прекращается, то водород не абсорбируется, и, естественно, водородное охрупчивание отсутствует.  [c.279]

Одна из наиболее популярных тем в подавляющей части современной литературы - глубокое воздействие среды на свойства суперсплавов. К числу последствий такого воздействия относятся коррозионное растрескивание под напряжением, водородное охрупчивание в водных и высокосернистых средах, рост усталостных трещин и трещин ползучести при взаимодействии с газовыми средами, содержащими кислород, серу или другие активные химические агенты при повышенных температурах. Мы будем тщательно анализировать ухудшение свойств под влиянием среды, поскольку придаем большое значение этому явлению при проектировании и эксплуатации суперсплавов и при изучении природы их разрушения.  [c.309]


Публикация переводов известной зарубежной серии издательства Пленум Пресс (США) под редакцией М. Фонтана и Р. Стэйла Достижения науки о коррозии и технологии защиты от нее началась в нашей стране с 6-го тома В этом томе наряду с другими актуальными проблемами была детально рассмотрена проблема коррозионного растрескивания и водородного охрупчивания конструкционных урановых сплавов. В следующем 7-м томе вопросам влияния внешней среды на процесс разрушения механически нагруженных систем уделено заметно большее внимание.  [c.6]

В табл. 3 сведены полученные авторами результаты оценки влияния базовых масел и присадок на коррозионномеханические разрушения в кислых средах и водородный износ стали. Испытания в условиях коррозионного растрескивания и водородного охрупчивания проводили в растворе 2М серной кислоты, в который вводили 5 г/л исследуемого продукта и перемешивали в течение 80 ч при комнатной температуре. Эффективность продукта в условиях коррозионного растрескивания определяли с помощью скобы Ажогина, создавая на пластинах из стали ЗОХГСА статический изгиб с уровнем напряжений 1500 МПа. Оценочным показателем служил коэффициент торможения процесса растрескивания  [c.50]

Не всегда просто отличить коррозионное растрескивание от водородного охрупчивания, в особенности в ферритных и аусте-нитных материалах. Как уже объяснялось, катодная поляризация должна бы обеспечить явное отличие, однако и при этом результаты ае всегда убедительны. Как фрактографические исследования, так и зависимость скорости развития трЩин от потенциала показывают, что даже при анодной поляризации высокопрочные стали разрушаются вследствие водородного охрупчивания. Так, например, в мартенситных сталях, погруженных в воду, нагретую до высоких температур, могут развиваться в соответствии с электрохи-  [c.192]

Многочисленные причины, вызывающие появление и развитие трещин при коррозионном растрескивании, сводятся к двум основным механизмам локальное анодное растворение в вершине трещины и водородное охрупчивание. Роль каждого зависит от состава сллава и его термической обработки, среды, условий нагружения и потенциала. Рассмотрим основнью положения этих механизмов.  [c.56]

В работах [61, 62] рассматривается возможность реализации при коррозионном растрескивании титановых сплавов обоих механизмов. При этом с увеличением коэффициента интенсивности напряжений доля анодного растворения (повышенное растравливание на полосах скольжения) уменьшается, а количество выделяющегося водорода и соответственно водородное охрупчивание увеличиваются. Близкие представления подробно развит1 1 В.А. Маричевым [63, 64]. Он считает, что критическая скорость роста трещин —и соответствующая ей критическая величина интенсивности напряжений, при которой происходит водородное охрупчивание (Kg, являются количественными показателями роли локального анодного растворения и водородного охрупчивания при росте трещин. При и ,< а.ох основным механизмом корро-  [c.59]

Вторая часть справочника содержит данные о влиянии химически активных сред на некоторые физические, главным образом механические свойства материалов. По сравнению с имеющимся рбъемом информации о скорости коррозии количество публикаций по коррозионно-механическим свойствам материалов невелико. Предлагаемая сводка, суммирующая в какой-то мере опыт химической промышленности, является первой в справочной литературе попыткой объединения сведений о склонности сталей и сплавов к коррозионному растрескиванию и о влиянии различных сред на прочность и пластичность металлов, пластмасс и резин. Число сред, представленных в разделе, далеко не исчерпывает номенклатуры важнейших соединений, но все же позволяет получить сведения о таких промышленно важных явлениях, как сульфидное и хлоридное растрескивание сталей, щелочная хрупкость, водородная коррозия и охрупчивание, аммиачное растрескивание медных сплавов, изменение механических свойств неметаллических материалов под действием галогенпроизводных, аммиака, киС лот и т. д.  [c.4]

Использование ПИНС-РК для предотвращения или снижения коррозионного растрескивания, локального анодного растворения и водородного охрупчивания весьма эффективно, если эти продукты образуют на металле хемо-сорбционные пленки, которые не могут быть вытеснены в широком диапазоне потенциалов водой, атомарным кислородом и водородом. В этой связи необходимо учитывать адсорбционно-хемосорбционные свойства ингибиторов коррозии и пленок пине, а также проницаемость этих пленок, в кислых и сверх-кислых средах, т. е. в условиях кислотной коррозии. Целесообразно испытывать плс ки пине при защите ими сталей и сплавов от коррозионного рас трескивания (ГОСТ 9.019—74 и др., а также электрохимическими методами) не только в нейтральных, но и в кислых средах. Большинство ПИНС являются весьма эффективными ингибиторами кислотной коррозии металлов.  [c.228]

По современным представлениям два основных механизма коррозионного растрескивания под напряжением в электролитах - это анодное растворение и водородное охрупчивание [150, 197], которые часто трудно резделить. Эти механизмы взаимосвязаны, однако качественно различны. Рассмотрим вначале влияние отпускной хрупкости на коррозионное растрескивание в условиях контроля скорости разрушения анодным растворением а затем в системах, где разрушение связано с водородом, попадающим в металл из электролита или газовой фазы.  [c.165]

До сих пор мы рассматривали влияние отпускной хрупкости на коррозионное растрескивание в сёнзи с воздействием адсорбции примесей на границах зерен на процессы растворения и пассивации. Отметим еще один возможный путь воздействия отпускной хрупкости на разрушение при коррозионном растрескивании, связанный с изменением механической проЦности границ зерен. Известно, что долговечность Тр в условиях коррозионного растрескивания (в результате как анодного (эастворения, так и водородного охрупчивания) для гладких образцов при постоянном напряжении а определяется инкубационным периодом Гу зарождения поверхностной трещины длиной / о, способной к росту, скоростью V ( К), ее до критического подрастания до критической длины / к /°> после чего следует практически мгновенная стадия быстрого закритического разрушения, при-  [c.174]

Растрескивание металла трубопроводов вследствие водородного охрупчивания зарождается на участках стали с твердой мартенситной структурой, обычно в местах концентрации остаточных напряжений, возникающих при изготовлении труб. Как правило, коррозионное растрескивание кольцевых швов трубопроводов, транспортирующих сероводородсодержащие среды, связано с непроваром в корне шва или внутренним подрезом. Любая прерывистость в корне шва может явиться причиной коррозионного растрескивания, при этом скорость распространения трещин в процессе эксплуатации газопроводов сернистого газа определяется глубиной и радиусом поверхностного дефекта в вершине сварного соединения [19]. Исследования коррозионных повреждений трубопроводов, изготовленных из стали марки 17Г2С и транспортирующих газ с примесью сероводорода (до 2%), показали, что общим для всех случаев разрушения сварных соединений является зарождение трещин  [c.17]


Нефтегазопромысловое оборудование эксплуатируется в весьма сложных условиях. Воздействие возникающих в металле растягивающих, щжлических, знакопеременных напряжений, сил трения, кавитации, абразивного износа и др. в контакте с коррозионно-агрессивной средой приводит к специфическим видам коррозионного разрушения оборудования, таким, как коррозионное растрескивание, водородное охрупчивание, питтинг и др., которые в значительной мере снижают долговечность и надежность оборудования.  [c.4]

Один из основных видов коррозионного разрушения газонефтепромыслового оборудовармя — статическая водородная усталость (СВУ), т.е. снижение длительной прочности стали в результате водородного охрупчивания в условиях статического нагружения металла. Предел статической водородной усталости, соответствующий максимальному напряжению, при котором не наблюдается коррозионного растрескивания, зависит от многих взаимосвязанных факторов химического состава, термической обработки и механических свойств стали, уровня приложенных напряжений, количества поглощенного водорода, состояния поверхности и др. Влияние этих факторов не только взаимосвязано, но в некоторых случаях и противоположно. Поэтому нельзя рассматривать предельные напряжения, при которых не происходит сероводородного растрескивания, как абсолютные значения дог скаемыч напряжений. которые могут быть использованы при проектировании оборудования их следует рассматривать как сравнительные величины при сопоставлении стойкости различных металлов.  [c.35]

Оборудование нефтяной и газовой промышленности эксплуатируется в чрезвычайно тяжелых условиях. Долговечность и надежность работы оборудования во многом зависят от технико-экономической характеристики применяемых конструкционных материалов. К ним предъявляются очень высокие требования они должны обладать определенным комплексом прочностных и пластических свойств, сохраняющихся в широком интервале температур хорошими технологическими свойствами, не должны быть дефицитными и дорогими. Во многих случаях предъявляются высокие требования к коррозионной стойкости материала, особенно к специфическим видам разрушения — водородному охрупчиванию, коррозионному растрескиванию, межкрнсталлитной коррозии и др. Важное значение при выборе конструкционных материалов имеют металлоемкость и масса оборудования. Многие нефтяные и газовые месторождения расположены в отдаленных и труднодоступных районах, во многих районах намечается тенденция увеличения глубины скважин. В связи с этим весьма перспективно использование конструкционных материалов с высокими удельной прочностью, плотностью, коррозионной стойкостью и отвечающих также другим требованиям. К таким материалам относятся прежде всего алюминиевые сплавы, получающие все более широкое применение в нефтяной и газовой промышленности, неметаллические материалы, титан и его сплавы. Эти материалы могут быть использованы также в виде покрытий, что позволяет значительно расширить диапазон свойств конструкционных материалов и увеличить долговечность оборудования. Конструкционный материал должен обладать высокими показателями прочности — времен-  [c.23]

Исследования водородного охрупчивания и коррозионного растрескивания, можно проводить на малогабаритной установке (рис. 40). Установка позволяет изменять значения напряжения в образце, температуры и скорости перемешивания электролита. Она проста в эксплуатации, невелика по размерам и позволяет проводить одновременно испытания четырех образцов с автоматической регистрацией их разрушения. Комплект из четырех установок монтируют на одной плите размером 700X400 мм.  [c.88]

В настоящее время нет единой точки зрения о приоритете того или другого механизма в процессе коррозионного растрескивания. Выводы о ведущей роли одного из процессов в вершине трещины в большинстве работ носят, как правило, альтернативный характер. Обосновывая ведущую роль одного из механизмов, авторы не обсуждают или отвергают возможность разрушения при коррозионном растрескивании по любому другому механизму. Так, Дж. Скалли [60] даже вводит новое понятие— водородное растрескивание, относящееся к сплавам, которые разрушаются под напряжецием в коррозионной среде вследствие внедрения атомов водорода в кристаллическую решетку. До недавнего времени для выяснения механизма коррозионного растрескивания считалось достаточным изучить влияние поляризации при одних и тех же условиях нагружения на скорость разрушения. Если анодная поляризация, активирующая растворение у вершины трещины, приводит к уменьшению времени до разрушения, а катодная поляризация, наоборот, снижает скорость роста коррозионной трещинь), значит, коррозионное растрескивание протекает в основном по механизму локального анодного растворения. Если же катодная поляризация ускоряет разрушение, а анодная, наоборот, его задерживает или замедляет, ведущим процессом при коррозионном растрескивании является проникновение водорода в кристаллическую решетку и связанное с этим охрупчивание металла в вершине трещины.  [c.58]

В настоящее время разработаны новые высокопрочные сорта сталей, однако их широкому промышленному применеш1ю препятствует повышенная склонность этих материалов к коррозионно-механическому (усталость и растрескивание) разрушению [41]. Сложилось мнение, что этап собственно развития трещин в подобных материалах состоит из двух подэтапов чисто коррозионного медленного углубления трещины в материал вследствие растворения напряженного металла в ее вершине и более быстрого скачкообразного (дискретного) подрастания трещины. Считается, что на последнем подэтапе определяющую роль играет водородное охрупчивание материала. Наличие этих подэтапов подтверждается экспериментально [41].  [c.61]

Однако даже априорный анализ скачкообразного механизма развития трещин приводит к мысли, что и на данном этапе первопричиной разупрочняющего воздействия среды является корро-зионнь1Й процесс Действительно, водородное охрупчивание и коррозионное подрастание трещины взаимосвязаны, тйк как анодный процесс (локальная коррозия) и катодный процесс (восстановление водорода) — это сопряженные реакции. Без анодного процесса окисления металла восст1аиовление водорода на металле невозможно, так как при этом поставляются электроны, необходимые для восстановления водорода. Кроме того, гидролиз в трещине продуктов коррозии обусловливает под-кисление среды, т. е. появление ионов водорода, которые, пройдя стадию восстановления на поверхности металла, абсорбируются металлом. Если трещины коррозионного растрескивания определенную часть своего пути развиваются скачкообразно, то для коррозионной усталости превалирует скачкообразный механизм развития треищн.  [c.71]

В общем случае большинство механических свойств стали можно улучшить, удаляя остаточные примеси или регулирзш их содержание. Это, по-видимому, справедливо и в отношении охрупчивания при воздействии окружающей среды. Например, вакуумный переплав повышал стойкость мартенситной стали 410 к водородному растрескиванию [7] и увеличивал долговечность 30%-ной хромистой стали при коррозионной усталости в условиях статического нагружения. Особенно вредными примесями являются сера и фосфор [9, 10], что может иметь отношение к тесной связи между водородным охрупчиванием и хрупкостью, вызванной отпуском [11, 12].  [c.53]

Предполагается, что и в этом случае галоидные ионы и водород в качестве опасных компонентов ответственны за высокотемпературное растрескивание. Предположение о роли водорода бы ло впервые сделано в работе [139], авторы которой остались его наиболее активными сторонниками. В основе предложенной гипотезы лежит образование водорода в результате пирогидролиза хлорида. Этот водород абсорбируется либо в металле, либо в области концентрации напряжений в вершине трещины, снижая энергию разрушения. Доказательства, приводимые в пользу механизма водородного охрупчивания, следующие 1) водород образуется в процессе высокотемпературной солевой коррозии 2) данные ASTM [144] и результаты [148] показывают, что водород может абсорбироваться в условиях высокотемпературного солевого коррозионного растрескивания 3) при комнатной температуре  [c.402]

Согласно данным Стальной корпорации США сварные образцы из сталей HY-80 и HY-130 с предварительно нанесенной трещиной в 3%-ном растворе Na l склонны как к коррозионному растрескиванию, так и к водородному охрупчиванию [144]. В отсутствие усталостной трещины разрушение не происходило.  [c.179]

Подобные примеры можно было бы продоллсить. Однако следует отметить один из важнейших моментов, связанных с применением ингибиторов, а именно лри использовании того или иного ингибитора следует обращать внимание на -весь комплекс проблем, связанных с защитой металла от коррозии. Ингибиторы должны не только защищать от коррозии, но и сохранять практически важные чгвойства металла, не влиять на дальнейшие технологические операции, которым молсет подвергаться изделие. Так, напри.мер, при технологических операциях подготовки изделий из высокопрочных углеродистых сталей под гальванические по-4фытия (травление) ингибитор должен не только способствовать получению хорошей поверхности, но и эффективно препятствовать локальным процессам, приводящим к катастрофическим разрушениям (растрескиванию). При травлении пружинных изделий необходимо, чтобы ингибитор предотвращал водородное охрупчивание. Таким образом, лишь на основе комплексной оценки можно делать вы- вод о целесообразности применения того или иного ингибитора для конкретных коррозионных сред.  [c.96]



Смотреть страницы где упоминается термин Коррозионное растрескивание и водородное охрупчивание : [c.54]    [c.70]    [c.49]    [c.49]    [c.194]    [c.57]    [c.293]   
Смотреть главы в:

Аморфные металлы  -> Коррозионное растрескивание и водородное охрупчивание



ПОИСК



Водородная

Водородное охрупчивание

Водородное растрескивание

Коррозионное растрескивани

Коррозионное растрескивание

Охрупчивание

Растрескивание



© 2025 Mash-xxl.info Реклама на сайте