Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ Характеристические функции

Термодинамические функции (характеристические функции) -  [c.369]

Термодинамическая нестабильность системы проявляется, как говорилось, в образовании в ней новых либо исчезновении существующих фаз. Поэтому необходимым условием устойчивости гетерогенной системы является устойчивость ее отдельных фаз, и если межфазные эффекты не вносят вклада в характеристические функции системы, как, например в разобранном ранее случае с поверхностной энергией испаряющейся капли, то для анализа устойчивости гетерогенной системы целесообразно прежде всего выяснить достаточные условия устойчивости однородных фаз.  [c.120]


Термодинамический потенциал — характеристическая функция, убыль которой в равновесном процессе, протекающем при постоянстве значений соответствующих независимых параметров, равна полезной внешней работе.  [c.97]

Это выражение для Е не является, однако, термодинамическим потенциалом пользуясь им, нельзя определить ни термическое уравнение состояния идеального газа, ни другие его термические свойства. Внутренняя энергия будет термодинамическим потенциалом (характеристической функцией), если она выражена как функция переменных S и V. Для идеального газа это легко сделать, поскольку известно, что 5 = v In In V+5o, откуда  [c.91]

Термодинамической или характеристической функцией называется функция состояния термодинамической системы, позволяющая при соответствующем выборе независимых переменных выражать через свои производные наиболее просто и в явном виде термодинамические свойства системы.  [c.42]

Соотношение (22.1) неявно задает [х как функцию V, Т и ЛГ. В свою очередь формула (22.2) определяет энергию системы как функцию от V, Т и (Л. Переход к другим термодинамическим потенциалам затруднен тем обстоятельством, что интегралы (22.1) и (22.2) не берутся в конечных аналитических выражениях. Эта особенность была бы менее существенна, если бы имелась термодинамическая функция, характеристическая в переменных V, Т w. Но такой функцией как раз является большой термодинамический потенциал Гиббса (13.14). Рассмотрим, как вычисляется эта величина.  [c.154]

Термодинамические потенциалы характеристические функции  [c.53]

В этой же главе, как уже отмечалось, рассматривается ряд других вопросов. Очень подробно в ней говорится об изменении энтропии при необратимых процессах. Здесь рассматриваются процесс адиабатного расширения тела в пустоту, теплообмен при конечной разности температур, процессы с трением и адиабатное смешение газов. Там же рассматриваются термодинамические потенциалы, характеристические функции и их свойства, а также дифференциальные уравнения термодинамики. Две последние темы имеют настолько большое значение в построении теории термодинамики, что пх можно было бы выделить в отдельные главы.  [c.350]

ХАРАКТЕРИСТИЧЕСКИЕ (ТЕРМОДИНАМИЧЕСКИЕ) ФУНКЦИИ И ТЕРМОДИНАМИЧЕСКИЕ ПОТЕНЦИАЛЫ  [c.140]

Если независимыми параметрами системы будут температура и давление, то характеристической функцией будет термодинамический или изобарно-изотермический потенциал Z.  [c.143]

Так, величины, являющиеся термодинамическими силами имеют одинаковое значение во всех частях равновесной системы и могут, следовательно, измеряться при наличии соответствующего контакта измерительного прибора с системой и фиксироваться с помощью аналогичных свойств внешней среды. Поэтому цель преобразования характеристических функций S, и состоит в замене некоторых переменных на Zi. Основное условие, которое необходимо выполнить при такой замене, это сохранение характеристичности функции. Иначе говоря, надо ввести в качестве переменных в функцию некоторые из ее производных (9.3), так чтобы из получающейся при этом новой функции A Z q ) можно было бы однозначно восстановить исходную функцию t/(q). Только в этом случае Л(2, q ) сохранит в себе всю физическую информацию, заложенную в t/(q), и будет также характеристической. Этим требованиям удовлетворяют преобразования Лежандра.  [c.80]


Характеристические функции, получающиеся при преобразованиях Лежандра внутренней энергии, и саму функцию (7(5, V, п) называют в целом термодинамическими потенциалами, поскольку они выполняют в термодинамике роль, аналогичную роли потенциальной энергии в классической механике. Особенно ясно эта аналогия проЯ Вляется при формулировке условий равновесия (см. гл. 4). Преобразованием естественных переменных энтропии получаются другие характеристические функции, не применяющиеся, однако, столь широко, как термодинамические потенциалы.  [c.82]

Рассмотренные выше примеры касались однородных закрытых систем, и поскольку переменные химического состава в них не использовались, то полученные выводы справедливы либо при равновесных химических превращениях веществ в системе, либо при полном отсутствии таковых. Усложнения, появляющиеся при анализе открытых систем или систем с неравновесным химическим составом, вызваны прежде всего увеличением числа аргументов характеристических функций. Можно и в этом случае попытаться применить рассмотренную последовательность получения термодинамических характеристик, т. е. по-прежнему изучать зависимости Ср(Т), V T, Р) и т. п., но при определенных, фиксированных химических составах. Такой путь был бы, однако, неоправданно трудоемким, если в начале его не ориентироваться на использование уравнений Гиббса—Дюгема. Для применения последних надо знать прежде всего зависимость свойств от состава фазы, и определение этих зависимостей при параметрах 7, Р составляет основную задачу экспериментальной термодинамики растворов.  [c.95]

Сравнение (11.10) и (11.13) показывает, что используемый в механике принцип неотрицательности работы виртуальных изменений состояния системы применим и к термодинамическим системам, если использовать соответствующие дополнительные условия. Выяснить эти условия несложно, они отвечают, очевидно, постоянству переменных естественного набора аргументов любой характеристической функции, так как возможность изменения какого-либо из аргументов означала бы возможность изменения и самой характеристической функции, что противоречит постулату о равновесии. Поэтому каждой характеристической функции должен соответствовать свой критерий равновесия. Но было бы неправильно основывать выводы критериев равновесия на соответствующих фундаментальных уравнениях, хотя бы потому, что фундаментальные уравнения записывались для фазы, в то время как критерии равновесия применяют для любых, в том числе и для гетерогенных, систем. В дополнение к сказанному ранее покажем это на примере критерия равновесия, выраженного через изменение энергии Гельмгольца. Фундаментальное уравнение для этой функции имеет вид (9.31)  [c.108]

Формулировка условий равновесия с помощью (11.1), (11.13) является более общей, чем с другими характеристическими функциями, так как для выполнения (11.1), (11.13) не требуется однородности каких-либо термодинамических сил в системе. Другие критерии предполагают постоянство температуры, как (11.26), давления — (11.34), температуры и давления —  [c.110]

Критерии (11.1) и (11.37), (11.13) и (11.33) и т. д. гарантируют необходимый экстремум характеристической функции в некоторой ограниченной области изменения внутренних переменных системы только вблизи равновесия и, очевидно, не позволяют выяснить, является ли равновесие абсолютно устойчивым или метастабильным. В связи с этим целесообразно остановиться на том, какие термодинамические состояния надо  [c.115]

Это выражение симметрично относительно вариаций термодинамических сил и координат, поэтому выбор независимых переменных при его использовании необязательно ограничивать координатами q, как в (12.32). Можно, например, считать независимыми Т, Р, п, выражая через них вариации других переменных. Характеристическая функция при таком наборе аргументов — энергия Гиббса, т. е.  [c.122]

Из них получаются также другие неравенства, позволяющие определять знаки термодинамических величин и сопоставлять их значения. Известные соотношения дают возможность распространить такие ограничения на все свойства системы, которые выражаются непосредственно через частные производные характеристических функций. Например, из (13.17) и (13.1) получается, что  [c.127]


Формальный смысл введения электрохимических и других полных потенциалов — исключение из фундаментальных уравнений зависимых переменных. В сложных системах целесообразнее, однако, пользоваться более общим методом решения, сводя расчет равновесия, как и ранее (см. 16), к задаче на условный экстремум какой-либо характеристической функции, а любые соотношения (уравнения и неравенства), существующие между термодинамическими величинами, рассматривать как дополнительные условия и ограничения, которым должны удовлетворять условно независимые переменные. Покажем еще раз возможности этого подхода на примере расчета электрохимических равновесий, хотя в данном случае он не является кратчайшим путем к решению задачи.  [c.148]

В формулировке задачи расчета равновесия должны также указываться условия, при которых в равновесной системе реализуется экстремум ее характеристической функции. Согласно рассмотренным ранее критериям равновесия эти условия — постоянство всех естественных аргументов характеристической функции системы. Поскольку в итоге расчета через эти аргументы выражаются искомые дополнительные внутренние переменные, они должны быть величинами не только постоянными, но и известными. При численных решениях можно избежать строгого соответствия параметров системы (процесса) и использованной характеристической функции, т. е. появляется возможность формулировать термодинамические условия -на основании особенностей моделируемой системы и имеющихся данных, а не по набору естественных аргументов функции.  [c.172]

Сложнее гарантировать единственность решения, хотя это так же важно, как и доказательство его существования. Наиболее надежные выводы получаются при известной форме поверхности минимизируемой функции в многомерном пространстве. Проблема эта тесно связана с анализом устойчивости равновесия и частично уже обсуждалась в 12, 13. Выше встречались различные формулировки условий устойчивости говорилось о существовании взаимно однозначного соответствия между термодинамическими силами и координатами, о постоянстве знака якобиана их преобразования (9.23), о положительной определенности квадратичных форм (12.32), (12.47), о знаке определителей матриц вторых производных характеристических функций (9.24), (12.20). Еще одно эквивалентное выражение условий устойчивости связано непосредственно с характеристикой формы поверхности рассматриваемой функции — это ее выпуклость.  [c.185]

Характеристическая функция — функция состояния термодинамической системы соответствующих параметров, характеризующаяся тем, что посредством этой функции и производных ее по этим параметрам могут быть выражены в явном виде все термодинамические свойства системы.  [c.97]

Энергия Гиббса является характеристической функцией, если давление и термодинамическая температура являются независимыми параметрами.  [c.98]

Термодинамическое исследование физических явлений основывается на использовании начал термодинамики. Само применение начал термодинамики для решения физических задач осуществляется двумя способами. В соответствии с этим различают два метода термодинамики метод циклов (круговых процессов) и метод термодинамических потенциалов (или метод характеристических функций).  [c.99]

Метод термодинамических потенциалов, или метод характеристических функций, был развит Гиббсом. Исходным в этом методе является основное уравнение термодинамики  [c.101]

Таким образом, внутренняя энергия U в переменных 5 и F является характеристической функцией, поскольку в этом случае другие переменные (Г и р) определяются дифференцированием J7 по 5 и К Иначе говоря, производные от U(S, V) по характеристическим переменным выражают все термодинамические свойства системы первые производные определяют термические свойства, а вторые — калорические.  [c.103]

Второй закон термодинамики, как видно из изложенного выше, может быть применен к решению разнообразных конкретных задач. Однако он оказывается также плодотворным и при аналитическом методе исследований, основываюш,емся на рассмотрегши особых функций состояния, называемых термодинамическими, или характеристическими функциями.  [c.140]

Второй способ расчета термодинамических свойств пара и жидкости возможен, если известна какая-нибудь характеристическая функция. На практике применяется удельная энергия Гельмголь-ца/= /(и, Т) (2.52) или удельная энергия Гиббса g = " sip, (2 54). Если известна функция /(и, Т), то уравнения (2.56) позволяют найти любую функцию состояния. Если дана функция g p, 7), то для расчета функций состояния необходимо использовать (2.57).  [c.122]

Функция Ф иазывается термодинамическим потенциалом или свободной энтальпией. Как видно ив предыдущих формул, термодинамический потенциал — характеристическая функция системы лри независимых перемешшх р и Т.  [c.97]

Так как частные производные каждой из рассмотренных характеристических функций U V, S), / р, S), F T, V) и Z(/j, Т) полностью определяют все термодинамические свойства системы, то эти функции по аналогии с механикой, где работа в поле постоянных сил числе1Шо равна разности потенциалов в начальной и конечной точках пути, называют термодинамическими потенциалами. Разность значений в двух состояниях любой из этих функций при обратимом процессе представляет собой полезную работу, совершенную системой.  [c.149]

Характеристическими или термодинамическими функциями называют такие функции состояния системы, при помощи которых можно наиболее просто определить термодинамические свойства системы, а также находить условия равновесия в ней. К этим функциям принадлежат внутренняя энергия и, энтальпия /, энтропия 5, изо-хорный потенциал Р и изобарный потенциал I. Наиболее удобными для характеристики химических процессов являются последние две функции. Убыль этих функций в обратимых изохорно-изотермических и изобарно-изотермических реакциях позволяет определить максимальную работу этих реакций, являющуюся мерой химического сродства.  [c.300]


Независимые переменные в уравнении Гиббса—Дюгвма только интенсивные величины — термодинамические силы, поэтому его можно рассматривать как результат последовательной замены всех q на Z в функции U (q) либо а других термодинамических потенциалах. При полном d-кратном преобразовании Лежандра функции L (q) получается характеристическая функция  [c.84]

Таким образом, выражение полного дифференциала любой характеристической функции является фундаментальным уравнением, содержащим в себе все сведения о термодинамических свойствах фазы или гомогенной системы. Эти уравнения различаются между собой наборами независимых переменных,, но могут быть преобразованы одно в другое по стандартным правилам. Набор независимых переменных в фундаментальном уравнении имеет обязательно по одной переменной интенсивной или экстенсивной, соответствующей каждому из контактов системы с окружением, так как этому условию удовле  [c.88]

Таким образом, общие критерии равновесия термодинамических систем математически формулируются в виде задачи на условный экстремум той или иной характеристической функции. Экстремум ищется при этом в обобщенном пространстве дополнительных внутренних переменных (см. с. 37), а дополнительными условиями является постоянство естественных независимых переменных характеристической функции. Выбор характеристической функции и критерия равновесия связан только с набором термодинамических величин, равновесные значения которых известны и которые могут, следовательно, использоваться в качестве параметров при расчете равновесия, т. е. при нахождении других, неизвестных свойств. С этой точки зрения вариационная запись критерия равновесия также имеет определенные преимущества перед дифференциальной записью, так как не создает ощибочных представлений, что для применения того или иного общего условия типа (11.1) необходимо  [c.110]

В сформулированных в предшествующем разделе критериях равновесия термодинамических систем также не в полной мере использованы следствия второго закона о максимальности энтропии изолированной системы или о минимальности термодинамических потенциалов при тех или иных условиях равновесия. Действительно, знаки неравенств для вариаций первого порядка в (11.1), (11.13) и других критериях соответствуют виду экстремума энтропии, внутренней энергии и т. д., но эти знаки, как отмечалось, относятся к особому случаю граничного экстремума характеристической функции. Если же последняя имеет в равновесии стационарное значение, то вопрос о виде экстремума (минимума, максимума или точки пЬрегиба) при использовании (11.1), (11.13), (11.31) и других остается открытым и для ответа на него надо дополнить указанные критерии соответствующими условиями устойчивости равновесия  [c.115]

При расчетах конкретных равновесий этот рассмотренный выше академический этап общего термодинамического исследования с выводом аналитических зависимостей для свбйств систем является промежуточным между формулировкой задачи н получением конечных численных результатов. Он необходим для понимания смысла всей проводимой работы, для дальнейшего использования, корректировки ее результатов, сопоставления их с другими данными, однако он не яаляется обязательным для выполнения самого расчета равновесия. Такие расчеты могут основываться не на равенствах химических потенциалов или иных формулах, получающихся при детализации исходных принципов термодинамики, а на самих этих принципах непосредственно. Возможность исключить излишнюю с точки зрения получения конечного результата аналитическую разработку проблемы появляется благодаря использованию числеиш.ьч методов решеиия термодинамических задач. Последние могут при этом формулироваться в самом общем виде, как задачи на поиск условного экстремума определенной (характеристической) функции при заданных ограничениях на переменные. С одной стороны, такая формулировка следует непосредственно из критериев термодинамического равновесия, с другой — она соответствует формулировкам задач математического программирования.  [c.166]

Сложность записи в явном виде (20.10) или лодобных выражений для других характеристических функций заключается в необходимости учесть все возможные в этой системе в принципе фазы и составляющие вещества, причем их свойства yJ должны быть заданы во всем интересующем интервале изменения переменных, поскольку заранее, до решения задачи, не ясно, какие части системы из всего виртуального набора их будут при данных условиях устойчивыми, а какие неустойчивыми. При последующем расчете эта исходная максимально сложная модель внутреннего строения системы может только упрощаться. Если же какая-либо из возможных фаз или составляющее не учтены в начале расчетов, то они не будут лредставленньши и в конечном результате, что может явиться причиной плохого соответствия между реальной равновесной системой и ее термодинамическим образом. Значения термодинамических функций составляющих (обычно требуются энтальпии ь энтропии их образования) находят в справочной литературе, в периодических изданиях, оценивают приближенными методами или получают в результате специально поставленных экспериментов.  [c.172]

Основное требование при записи условий для экстремума характеристической функции — среди них не должно быть избыточных линейно зависимых уравнений, так как иначе система условий становится несовместной и необходимо вводить дополнительные критерии, с помощью которых эту несовместность можно исключить, Минимальйое необходимое и достаточное для решения число условий (и число известных значений различных термодинамических свойств системы) равняется общей вариантности рассматриваемого равновесия, т. е. с + 1.  [c.175]

Таким образом, функция F в переменных V а Т является характеристической функцией или термодинамическим потенциалом. Эта функция F=U—TS называется энергией Гельмгольца (свободной энергией). Как следует из (5.16), при изотермических процессах работа совершается системой не за счет убыли внутренней энергии U (как при адиабатных процессах), а за счет убыли функции F. В самом деле, из формулы (5.13) при 7 = onst находим  [c.104]


Смотреть страницы где упоминается термин ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ Характеристические функции : [c.292]    [c.429]    [c.17]    [c.53]    [c.90]    [c.111]    [c.166]    [c.186]    [c.98]   
Смотреть главы в:

Курс термодинамики  -> ТЕРМОДИНАМИЧЕСКИЕ ФУНКЦИИ Характеристические функции



ПОИСК



Г характеристическое

Термодинамические потенциалы — или характеристические функции

Термодинамические функции

Функция характеристическая

Характеристические (термодинамические) функции и термодинамические потенциалы

Характеристические функци



© 2025 Mash-xxl.info Реклама на сайте