Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Способы питания дуги сварочным током

Способы питания дуги сварочным током  [c.344]

Сварочные выпрямители — это основной вид источников питания дуги постоянного тока при различных способах сварки. Наиболее важными элементами силовой части выпрямителя являются понижающий трансформатор и блок выпрямления, реализованный на базе полупроводниковых элементов. По конструктивным особенностям выпрямители можно разделить на две группы в соответствии со схемой управления параметрами  [c.124]


Источником нагрева при дуговых способах сварки служит сварочная дуга, представляющая собой устойчивый электрический разряд, происходящий в газовой среде между двумя электродами или электродом и деталью. Для поддержания разряда необходимой продолжительности разработаны специальные источники. При питании дуги переменным током применяют сварочные трансформаторы, при сварке на постоянном токе — сварочные  [c.9]

При автоматических и механизированных способах сварки помимо источников питания дуги необходимо иметь специальное оборудование, позволяющее механизировать выполнение двух основных технологических движений подачу электрода в зону сварки и перемещение дуги вдоль свариваемых кромок. Если при сварочном процессе оба эти движения осуществляются механизированным путем, то такой процесс рассматривают как автоматическую сварку. Если одно из движений — подача электрода в зону сварки — осуществляется механизированным способом, а другое движение — перемещение дуги вдоль свариваемых кромок — вручную, то такой процесс рассматривают как механизированную (полуавтоматическую) сварку. Сварочные аппараты, обеспечивающие автоматическое выполнение основных технологических перемещений электрода и дуги с поддержанием постоянства заданных параметров сварочного режима (напряжения дуги, сварочного тока, скорости сварки), называют сварочными автоматами.  [c.156]

Автоматическую сварку под слоем флюса различают по роду тока, способу питания сварочной дуги, режиму подачи электродной проволоки в зону дуги и интенсивности нагрева основного металла.  [c.325]

По способу питания сварочной дуги переменным током различают сварку высоким, средним и низким напряжением холостого хода сварочного трансформатора. Последняя применима только в узком диапазоне режимов.  [c.325]

При автоматической сварке под слоем флюса применяют три способа питания сварочной дуги переменным током .  [c.344]

Внешней статической характеристикой является зависимость между установившимися значениями напряжения U на зажимах источника питания и силой тока / в сварочной цепи. Вид статических внешних характеристик источника питания связан с формой статических вольт-амперных характеристик дуги в области рабочих режимов, а при механизированной сварке — и со способом автоматического регулирования подачи электродной проволоки.  [c.55]


Источниками питания сварочной дуги для механизированных способов сварки служат сварочные трансформаторы серии ТСД и преобразователи постоянного тока ПСГ-500, ПОМ-1000 и ВС-300.  [c.259]

Таким образом, устойчивое горение дуги и стабильность режима сварки зависят от условий существования дугового разряда, свойств и параметров источников питания. Основным параметром источника питания является его внешняя характеристика, которая выражает зависимость между напряжением на зажимах источника и током, протекающим через сварочную цепь при нагрузке. Различают падающую, пологопадающую, жесткую и возрастающую внешние характеристики (рис. 12). Источник питания выбирают по типу внешней характеристики в зависимости от способа сварки. Для ручной электродуговой сварки применяют источники питания с падающей внешней характеристикой (при коротком замыкании напряжение снижается до нуля, что не дает расти силе тока короткого замыкания, а при возбуждении дуги, когда ток очень мал, на дуге обеспечивается повышенное напряжение). Источники питания с падающими внешними, характеристиками позволяют удлинять дугу (в разумных пределах), не боясь ее быстрого обрыва, или уменьшать ее без чрезмерного увеличения тока.  [c.50]

Устойчивое горение дуги и стабильность режима сварки зависят от условий существования дугового разряда, свойств и параметров источника питания. Основным параметром источника питания является его внешняя статическая вольтамперная характеристика, которая выражает зависимость между напряжением на зажимах источника и сварочным током. Источники питания могут иметь крутопадающую, пологопадающую, жесткую характеристику (рис. И). В зависимости от способа сварки источник тока выбирают по типу внеш-  [c.35]

Источники тока для питания сварочной дуги могут иметь различные внешние характеристики (рис. 194, а) падающую 1, пологую 2, жесткую 3 и возрастающую 4. Внешней характеристикой источника называется зависимость напряжения на его выходных клеммах от тока в цепи при нагрузке. Источник сварочного тока выбирают в зависимости от вольтамперной характеристики дуги, соответствующей применяемому способу сварки. Для питания дуги с жесткой характеристикой требуются источники сварочного тока с падающей внешней характеристикой. Режим горения сварочной дуги определяется точкой пересечения характеристик дуги 1 и источника тока 2 (рис. 194, б). Точка С на рис. 194, б является точкой устойчивого горения дуги. Последнее определяется тем, что после случайного отклонения режим горения дуги восстанавливается. Случайное увеличение тока, соответствующего точке С, приведет к уменьшению напряжения источника питания, что после окончания действия случайной отклоняющей причины повлечет за собой уменьшение тока, т. е. восстановление режима устойчивого горения дуги. При случайном уменьшении тока все параметры изменяются в обратном порядке и в конечном итоге также происходит восстановление устойчивого режима горения дуги. Точка В на том же рисунке соответствует неустойчивому горению дуги. При изменении соответствующего ей тока дуга либо гаснет, либо ток дуги начинает возрастать до тех пор пока дуга достигнет режима устойчивого горения. Характерными точками внешней характеристики источника являются точки А п О. Точка А соответствует режиму холостого хода в работе источника питания в период, когда дуга не горит и сварочная цепь разомкнута. Режим холостого хода характеризуется повышенным напряжением (60—80 в). Точка О соответствует режиму короткого замыкания, который имеет место при зажигании дуги и замыкании дуги каплями жидкого электродного металла. Короткое замыкание характеризуется малым значением напряжения, стремящегося к нулю, и повышенной величиной тока, однако,  [c.302]


Аргоно-дуговая сварка может выполняться постоянным и переменным током. При сварке неплавящимся электродом на постоянном токе используют прямую полярность. При сварке неплавящимся электродом переменным током необходимо, чтобы источник питания имел высокое напряжение холостого хода — до 120 В. Возбуждают дугу при ручной дуговой сварке неплавящимся электродом на угольной или графитовой пластине. Аргоно-дуговой сваркой можно выполнять стыковые, угловые и тавровые соединения. Аргон должен подаваться в таких количествах, чтобы обеспечивалась защита электрода и металла сварочной ванны от влияния воздуха. Листы малой толщины сваривают левым способом, большой толщины — правым способом. Длина дуги при аргоно-дуговой сварке небольшая—1,5—3 мм. Подачу аргона в зону дуги прекращают спустя 10—15 с после гашения дуги. Свариваемые кромки перед сваркой очищают от грязи, масла и ржавчины.  [c.194]

Сварочная дуга переменного тока предъявляет дополнительные требования к источникам питания в части надежного повторного возбуждения дуги. Для этого напряжение холостого хода источника питания должно быть выше напряжения зажигания. Наиболее простым способом получения непрерывного устойчивого дугового разряда является включение в сварочную цепь реактивного сопротивления. Благодаря ему в момент повторного возбуждения дуги напряжение на дуге может резко увеличиться (рис. 8-7) до значения напряжения зажигания и . Кривая 1/ , характеризует напряжение источника питания при холостом ходе. При нагрузке в связи с наличием реактивного сопротивления сварочный ток отстает от напряжения на угол ф.  [c.381]

Чем болыпе сила тока, тем больше скорость разделительной воздушно-дуговой резки. Поэтому к такому способу резки следует прибегать при питании дуги от мощных сварочных преобразователей ПС-500 или ПСМ-1000.  [c.249]

Сущность способа автоматической дуговой сварки под флюсом состоит в следующем. Сварочная головка 5 (рис. 157) подает в зону дуги электродную проволоку 3 из кассеты 6. Для питания дуги, образующейся между основным металлом 2 и электродной проволокой, обычно пользуются переменным током. По мере образования шва 9 головка 5, а с ней и дуга автоматически перемещаются вдоль разделки 1. Вместе с головкой перемещается и бункер 4, из которого в разделку шва перед дугой засыпают гранулированный флюс. Таким образом, сварка протекает под слоем флюса, защищающего наплавляемый металл от воздуха. Часть флюса расплавляется от соприкосновения с дугой и при остывании образует корку 8, покрывающую шов. Сыпучий флюс, оставшийся поверх корки, отсасывается в бункер через сопло и шланг 7. Автоматическая сварка под слоем флюса в 5-10 раз производительнее ручной сварки.  [c.264]

Сварка с подогревом электродной проволоки, находящейся под сварочным током (или без него) позволяет при прочих равных условиях в полтора — два раза увеличить количество наплавленного металла. Легко достигается стабилизация дугового разряда при сварке на малых токах, так как подогрев проволоки значительно облегчает процесс капле-образования. Этот способ позволяет применять проволоку большого диаметра без существенного увеличения тока и мощности дуги. Особенно перспективной является возможность применения многоэлектродной сварки, при которой осуществляется дополнительный подогрев проволок, как находящихся под сварочным током, так и подогреваемых от отдельных источников питания (см. рис. У.5). Такая схема позволяет значительно повысить производительность сварочных работ и объем расплавляемого металла без увеличения силы сварочного тока. Последнее особенно ценно при сварке толстолистового металла из высокопрочных, низко- и среднелегированных, коррозионностойких, жаро-  [c.330]

Воздушно-дуговая резка используется как для разделительной, так и для поверхностной резки. При этом способе между неплавящимся электродом и разрезаемым металлом возбуждают дугу. Теплом дуги расплавляют металл участка резания, а струей сжатого воздуха непрерывно удаляют его из полости реза. Для воздушно-дуговой резки низкоуглеродистой и нержавеющей стали толщиной до 20 мм применяют универсальный резак типа РВД-4А-66. Резак имеет сменные угольные электроды диаметром 6—12 мм. Сварочный ток достигает 400 А, а при кратковременном форсированном режиме — до 500 А. Давление воздуха составляет 0,4—0,6 МПа. Расход воздуха при давлении 0,5 МПа не превышает 20 м ч. Масса резака — 1 кг. Процесс резки протекает устойчиво при питании резака постоянным током обратной полярности. При постоянном токе прямой полярности и при переменном токе процесс идет неустойчиво, производительность низкая при плохом качестве поверхности резания.  [c.328]

Использование сварочных трансформаторов для питания электрической дуги является достаточно простым и доступным способом. По сравнению с питанием от сети при напряжении 380 в отбираемый от сети ток в данном случае снижается  [c.358]

Высокая производительность достигается применением двух, трех и более дуг. Двухдуговая сварка стали толщиной 8—10 мм производится одним проходом со скоростью до 120 м/ч. Этот способ автоматической сварки заключается в использовании двух мощных сварочных дуг, расположенных в общем плавильном пространстве первая дуга расположена вертикально, вторая наклонена углом вперед. Значительная производительность достигается также при автоматической сварке с использованием трехфазного тока для питания сварочной дуги.  [c.362]


Использование сварочных трансформаторов для питания электрической дуги — достаточно простой и доступный способ. По сравнению с питанием от сети при напряжении 380 в отбираемый от сети ток снижается примерно вдвое. Кроме того, есть возможность широкой бесступенчатой регулировки.  [c.224]

Ввиду очень спокойного и устойчивого горения дуги для ее питания пригодны любые сварочные источники постоянного тока без всяких переделок в них. Применения аргонодуговой сварки вольфрамовым электродом на постоянном токе прямой полярности обширны. Этот способ пригоден для всех металлов и сплавов, за исключением легких алюминиевых и магниевых сплавов и некоторых других, особенно легкоокисляющихся, требующих применения специальных флюсов при сварке на прямой полярности.  [c.444]

Образование дуги начинается с ее зажигания, которое может осуществляться одним из двух способов 1) электрод приближают к заготовке на расстояние 3...6 мм и в сварочную цепь на короткое время подключают источник высокочастотного переменного тока высокого напряжения (осциллятор) после зажигания дуги цепи переключают на основной источник питания 2) зажи-  [c.37]

Сварка наклонным электродом (рис. IX,9, а). При этом способе используется приспособление, состоящее из штанги, электрически Изолированной от свариваемого металла, и обоймы, к которой подводится ток от источника питания сварочной дуги. Обойма может свободно скользить по штанге.  [c.284]

Различают следующие внешние характеристики источников питания (рис. 8-6) падающую 1, пологопадающую 2, жесткую 3 и возрастающую 4. Выбор источника питания по типу внешней характеристики производится в зависимости от способа сварки. Условия устойчивого горения дуги будут выполнены, если в течение длительного времени дуговой разряд существует непрерывно при заданных значениях напряжения и тока. Установившийся режим работы системы сварочная дуга—источник питания определяется точкой пересечения внешней характеристики источника питания и вольт-амперной характеристики  [c.379]

Сварка наклонным электродом (рис. 10.3, а) также позволяет повысить производительность труда. При этом способе используют приспособление, состоящее из штанги, электрически изолированной от свариваемого металла, и обоймы, к которой подводят ток от источника питания сварочной дуги. Обойма может свободно скользить по штанге. Плавящийся покрытый электрод устанавливают наклонно вдоль свариваемых кромок и закрепляют в обойме, которая во время плавления электрода скользит под действием силы тяжести по штанге, при этом дуга перемещается в направлении к штанге, образуя шов.  [c.190]

Величина коэффициента наплавки зависит от способа сварки рода тока, полярности подключения и сварочных материалов. Так, при ручной дуговой сварке электродами УОНИ-13 на постоянном токе обратной полярности эта величина составляет 7—8 г/(А-ч), в случае использования электродов ЦМ-7 при питании дуги переменным током — около 10 г/(А-ч). При сварке под флюсом на переменном токе на оптимальных режимах — около 15, на постоянном токе обратной полярности — около 13 г/(А-ч). При сварке в углекислом газе проволокой Св-0872С 14- -15 г/(А-ч) и т. д.  [c.384]

Осцилляторы — это специальные аппараты для повышения частоты и напряжения тока. Их включают в сварочную цепь для наложения токов высокого напряжения и большой частоты на сварочный ток. При повышении напряжения и частоты переменного тока облегчается возбуждение дуги и повышается ее устойчивость, что необходимо при сварке неповоротных стыков труб, ручной аргоно-дуговой сварке тонкостенных изделий на небольших токах и т. п. При применении осциллятора дуга зажигается настолько легко, что прикосновение электрода к свариваемому изделию не требуется. С применением осциллятора можно сваривать металл небольшой толщины при величине тока 10 а и выше. При обычном способе питания дуги током сварка затруднена, так как при столь малом токе дуга горит неустойчиво. Монтажные организации применяют осцилляторы типа ОС-1, ОСПЗ-2, ОСПЗ-2М, ОСЦВ-1 и осцилляторы собственного изготовления.  [c.52]

Резка металлов непосредственно в воде. Основным способом подводной резки является электрокислородная резка металлическим трубчатым электродом. В состав поста для электрокислородной резки входят электродо-держатель ЭВД-86-1 или ОБ 2667, конструкции ИЭС им. Е. О. Патона кислородный шланг комплект сварочных кабелей кислородный баллон с редуктором однополюсный рубильник, рассчитанный на силу тока 400 А источник питания дуги с падающей внешней вольт-амперной характеристикой, обеспечивающей силу тока 400 А.  [c.391]

Возможность резки данного металла определяется величиной рабочего напряжения и мощностью дугового разряда, которые обеспечиваются применяемым источником питания дуги. Для питания дуги током применяют или однопостовые сварочные преобразователи ПСО-500 на 500 а, включаемые последовательно 2—3 шт. на одну дугу, или сварочные выпрямители ВКС-500-1 по 500 а, также последовательно включенные по 2—3 шт. Используются специальные источники питания плазменной дуги ИПГ-500-1 на 600 а выпрямители ВДГ-501 на 500 а и др. При напряжении холостого хода источники питания до 90 а используют для резки нержавеющей стали и алюминиевых сплавов толщиной до 20—25 мм. Соединяя последовательно два источника питания по 90 в напряжения, каждый получает напряжение до 180 в, что позволяет разрезать металл толщиной до 70—90 мм. Способом плазменно-дуговой резки возможно разрезать алюминий толщиной до 200 мм, нержавеющие стали — до 150 мм, медь — до 100 мм. Практически плазменно-дуговым способом наиболее часто режут металлы толщиной алюминий и его сплавы — до 100 мм-, стали — до 75 мм-, медь — до 50 мм] латунь и бронзу — до 75 мм. Стали толщиной свыше 40—50 мм экономичнее разрезать кислородом (углеродистые) или кислородно-флюсовой резкой (нержавеющие). Плазменной дугой с успехом можно резать пакеты листов. Так, например, пакет из 31 листа хромоникелевой стали толщиной по 0,85 мм режется при мощности дуги 17 тт со скоростью 38 м1мин. Возможна резка пакетов листов из разных металлов. Для резки более толстых пакетов 3(до 20мм) применяют плазмотроны мощностью до 100 тт.  [c.218]

Ручная дуговая сварка плавящимися толстопокрытымн электродами имеет наибольший объем применения из всех дуговых способов сварки. Схема процесса сварки приведена на рис. 182, а. Питание дуги осуществляется от сварочного генератора или выпрямителя постоянным током или от сварочного трансформатора — переменным током. Наиболее широкое применение находит постоянный ток. В настоящее время применяются только толстопокрытые электроды, т. е. такие, у которых на металлический пруток определенных размеров ( стержень ) наносится обмазка (электродное покрытие). Состав покрытия при расплавлении вместе со стержнем обеспечивает защиту от окисления и азотирования металла шва и определенное легирование наплавленного металла для придания ему необходимых механических свойств, а также придает устойчивость горению дуги.  [c.359]


Дуговая резка является одним из видов разделительной резки. Она основана на выплавлении металла из зоны резания теплотой электрической дуги, возбуждаемой между электродом и разрезаемым металлом. Этот способ широко применяется при строительно-монтажных работах для грубой разделки металла. Резку производят стальными электродами с качественным покрытием, но более тугоплавким, чем для сварки. Такое покрытие обеспечивает при резке образование небольшого козырька, закрываюш,его зону дуги. Козырек предохраняет электрод от короткого замыкания на разрезаемый металл, а также способствует более сосредоточенному нагреву металла и позволяет производительнее вести резку. В качестве покрытия применяют смесь, содержащую 70% марганцевой руды и 30% жидкого стекла. Толщина покрытия составляет 1...1,5 мм. Успешно используются также электроды с покрытием ЦМ-7 и ЦМ-7с. Электроды диаметром 4...6 мм являются наиболее рекомендуемыми. Ток при резке выбирают в пределах 50...60 А на 1 мм диаметра электрода. Источником питания дуги могут служить сварочные генераторы или сварочные трансформаторы. Дуговую резку применяют для разрезания металлов толщиной не более 30 мм производительность низкая — при толщине разрезаемого металла 15 мм скорость резки не превышает 120...150 мм/мин. Расход электрода составляет 1,0...1,5 кг на 1 м разрезаемого металла.  [c.89]

Источники серии ВСВУ предназначены для автоматической сварки неплавящимся электродом как в непрерывном, так и в импульсном режиме изделий из обычных, коррозионно-стойких и жаропрочных сталей, а также титановых сплавов. Структурная схема источников питания серии ВСВУ (рис. 86) по сравнению со структурной схемой источников серии ВСВ имеет два дополнительных блока — осциллятор О и триггерный блок ТБ с сохранением обратных связей, что расширяет технологические возможности источников серии ВСВУ. Осциллятор С предназначен для возбуждения сварочной дуги бесконтактным способом. Триггерный блок ТБ формирует импульсы заданной амплитуды. и скважности, частота следования которых кратна частоте напряжения сети. Сформированные импульсы поступают в блоки БРТ и БФИ, обеспечивающие управление импульсным режимом работы выпрямителя В и регулирование тока дежурной дуги. Источники серии ВСВУ обеспечивают стабилизацию сварочного тока в пределах 2,5 % /свном при изменениях напряжения сети 10 %, длины дуги в диапазоне 0,5—6 мм и температуры окружающей среды в диапазоне 5—35 °С плавное регулирование тока дежурной дуги в импульсном режиме в диапазоне 2—30 % номинального значения сварочного тока модуляцию формы импульсов от прямоугольной до треугольной. Изменение формы импульса влияет на скорость нарастания сварочного тока. Техническая характеристика источников серии ВСВУ приведена в табл. 13.  [c.102]

Плазменно-дуговая резка применяется для резки цветных металлов, чугуна, специальных сталей и других материалов, не поддающихся огневой резке обычными способами. При этой резке металл глубоко проплавляется сжатой дугой на участке реза и удаля- ется газовым потоком. Под действием дуги газ разогревается до 10 000°С, образуя плазму. Пяазмообразующими газами служат чистый аргон высшего сорта, технический азот 1-го сорта, смесь аргона с техническим водородом, воздух. Электроды изготовляют из лантанированного вольфрама ВЛ-15 или торированного вольфрама ВТ-15. Источником питания дуги служат однопостовые сварочные преобразователи ПСО-500 и выпрямители ВКС-500. Применяют также специальные источники плазменной дуги ИПГ-500-1 и выпрямители ВДГ-502. Для ручной плазменной резки используют плазморез РДМ-2-66-А, работающий на смеси аргона, водорода и азота и позволяющий резать металл толщиной до 80 мм. Ток — постоянный прямой полярности. Для ручной плазменной резки с применением воздуха давлением 0,5—0,8 МПа (5—8 кгс/см ) может служить установка УПР-201. Толщина разрезаемого металла до 40 мм.  [c.479]

Источники тока для питания сварочной дуги должны иметь специальную внешнюю характеристику. Внешней характеристикой источника называется зависимость напряжения на его выходных клеммах от тока в электрической цепи. Внешние характеристики могут быть следуюш,их основных видов падаю1цая /, полого-падаюш,ая 2, жесткая 3 и возрастающая 4 (рис. 5.4, а). Источник тока выбирают в зависимости от вольт-амиериой характеристики дуги, соответствующей принятому способу сварки.  [c.187]

Сварку ванным способом, в зависимости от сечения свариваемых стыков, производят одним или несколькими электродами, располагаемыми так называемой гребенкой. При сварке больших сечений в целях повышения производительности может применяться трехфазная двухэлектродная сварка. Сущность этого способа состоит в том, что к специальному двухстержневому электроду с общим покрытием и к свариваемому изделию подводится переменный ток от трех фаз источника питания. При таком подключении (возникают одновреагенно три дуги две дуги между каждым стержнем электрода и изделием и третья дуга между самими стержнями электрода. При трехфазной сварке дуга горит устойчиво, плавление электродов происходит с большей скоростью. Благодаря лучшему использованию тепла сварочных дуг расход электроэнергии при этом способе сокращается на 25—35%, а производительность труда повышается в два-три раза.  [c.148]

Полуавтоматы А-547 и А-607 (ИЭС им. Е. О. Патона) предназначены для дуговой сварки сталей плавящимся электродом в среде углекислого газа. Сварка производится постоянным током до 200 а. Диаметр электродной проволоки от 0,8 до 1,2 мм. Скорость подачи электродной проволоки 100—250. ч/час. Полуавтомат при.АШняется для сварки материалов толщиной до 3 мм. В качестве источников питания сварочной дуги рекомендуется применять преобразователи и выпрямители с жесткой или возрастающей впешней характеристикой. Подача электродной проволоки осуществляется по гибкому шлангу способом толкания.  [c.392]

Для подводных работ пока удалось использовать только дуговую сварку. плавящимся электродом. Возможна сварка и неплавящимся электродом. Дуговую сварку под водой впервые разработал К. К. Хренов в 1932 г. Способ основан на открытии, что дуга, несмотря на интенсивное охлаждающее действие окружающей воды, нагревает и плавит металл практически столь же легко, как и на воздухе. При соблюдении несложных дополнительных условий дуга горит в воде вполне устойчиво при питании от обычных источников постоянного или переменного тока, применяемых для работ на воздухе. Как правило, используют постоянный ток. Дуга горит в газовом пузыре, образуемом и непрерывно возобновляемом в результате испарения и разложения воды. Устойчивое горение дуги под водой можно объяснить принципом минимума энергии Штеенбека или саморегулированием дуги. Если усилить охлаждение какого-либо участка дуги, то выделение энергии на нем увеличится и компенсирует усиленное охлаждение. У сварочной дуги под водой напряжение на 6—7 В больше, чем на воздухе, этот избыток напряжения компенсирует охлаждающее действие воды.  [c.684]

В 1888 г. Н. Г. Славянов предложил способ сварки металлическим электродом, обеспечивающий еще большую производительность труда при лучшем качестве проведения работы. В настоящее время это самый распространенный способ электрической дуговой сварки. Для питания электрической дуги Н. Г. Славянов первый в мире спроектировал и изготовил два сварочных генератора разной мощности, послуживших впоследствии прообразом современных сварочных генераторов постоянного тока. Генераторы Н. Г. Славянова приводились во вращение паровыми машинами. Один из них проработал в г. Перми на Мотовилихинском пушечном заводе свыше 30 лет. Н. Г. Славянов также создал и применил первый сварочный автомат, явившийся родоначальником современных автоматических установок. Из-за отсталости царской России гениальные изобретения Н. Н. Бе-нардоса и Н. Г. Славянова широкого применения в ее промышленности не находили.  [c.4]


Смотреть страницы где упоминается термин Способы питания дуги сварочным током : [c.326]    [c.18]    [c.87]    [c.13]    [c.188]    [c.17]    [c.81]   
Смотреть главы в:

Машиностроение Энциклопедический справочник Раздел 3 Том 5  -> Способы питания дуги сварочным током



ПОИСК



Вес дуги

Р питания

Сварочная дуга



© 2025 Mash-xxl.info Реклама на сайте