Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Влияние на износ структуры материалов

Структура поверхности значительно усложняется при применении наполненных полимеров, когда в тончайших слоях происходит существенное изменение надмолекулярных структур, что приводит обычно к повышению износостойкости. Для полимерных материалов характерно также нахождение на поверхности адсорбционных слоев различных веществ, которые оказывают заметное, пока еще малоизученное влияние на процесс трения и износа.  [c.265]


Известно, что автомобильные детали, подлежащие наплавке, изготовляются из конструкционных углеродистых и легированных сталей и, как правило, термически обработаны на высокую твердость, работают преимущественно на износ при значительных нагрузках, во многих случаях знакопеременных. При восстановлении деталей сваркой и наплавкой детали подвергаются большим тепловым воздействиям. При этом важно обеспечить деталям требуемые жесткость, прочность и износостойкость. В этом отношении большую роль играют глубина проплавления основного металла, величина зоны термического влияния, структура наплавленного слоя и качество его поверхности и др. Все эти свойства и эксплуатационная долговечность восстановленных деталей определяются режимами наплавки и возникающими при этом тепловыми воздействиями на деталь, применяемыми материалами (электродная проволока, флюсы, электроды) и др. Рассмотрим кратко основные из этих вопросов, являющихся общими и одинаково важными при всех способах восстановления деталей сваркой и наплавкой. При сварке и наплавке деталей горение дуги сопровождается выделением большого количества теплоты. Деталь подвергается быстрому местному нагреву. Количество теплоты в калориях, введенное в единицу времени в металл детали (эффективная тепловая мощность дуги), может быть определено по уравнению  [c.215]

Зависимость износа от механических характеристик материалов. На скорость изнашивания существенное влияние оказывают механические характеристики материала, его химический состав и структура. Поскольку отделение продуктов изнашивания возможно лишь при разрушении микрообъемов, все прочностные  [c.244]

Испытывали следующие асбофрикционные материалы НСФ-1, НСФ-2А, НСФ-8, НСФ-6 (ГОСТ 1786—74 ), 6КФ-10 (ГОСТ 15960—79). Эти материалы существенно различаются по составу, структуре и свойствам. В качестве критерия оценки влияния структуры чугунов на фрикционно-износные свойства асбофрикционных материалов принимали уровни коэффициента трения и износа и их коэффициенты вариации.  [c.157]

В процессе трения и износа поверхностные слои трущихся деталей машин находятся в условиях неравномерного объемно-напряженного состояния сжатия, при этом даже очень хрупкие материалы (чугун, сталь с высокой степенью закалки) обладают повышенной пластичностью. В зависимости от условий трения активные слои под влиянием пластической деформации и тепла изменяют свою структуру, это приводит к возникновению остаточных напряжений между активным слоем и основной массой металлов детали. Износоустойчивость деталей машин можно повысить приданием рабочим поверхностям определенных свойств, различных для последовательных стадий работы. На первой стадии (период проработки) необходима высокая прирабатываемость металла, а после приработки металл должен приобрести высокую износоустойчивость. Такие свойства поверхностных слоев могут быть получены, например, для поршневых колец тракторных двигателей, покрытых пористым хромом с последующим железнением (осталиванием) и оксидированием.  [c.394]


Влияние на износ структуры материалбв. Существенное влияние на износостойкость оказывают структура, химический-состав и вид Термообработки материалов. -  [c.245]

Влияние параметров технологического процесса на износо< стойкость поверхностей. Показатели качества изготовления изделий, как следствия принятого технологического процесса, оказывают непосредственное влияние на такое основное эксплуатационное свойство, как износостойкость поверхности. Во-первых, как это было показано выше, на износостойкость влияют химический состав, структура и механические характеристики материалов (см. гл. 5, п. 2 и п. 5), которые зависят от металлургических или других процессов получения материалов, от термических и термохимических видов обработки поверхностей. Во-вторых, износостойкость зависит от геометрических и физико-химических параметра поверхностного Слоя (см. гл. 2, п. 2). При этом отклонения формы деталей увеличивают период макроприработки (см. гл. 8, п. 3), а шероховатость поверхности влияет на период микропри-райотки, поскольку в процессе нормального изнашивания устана-вливаетря оптимальная шероховатость, соответствующая данным условиям работы сопряжения (см. рис. 74).  [c.437]

Г.тяделер [111] рассматривал влияние структуры материала образщ)в на износ при качён следующий результат при испытаниях на износ материалов одинаковой твердости больший износ имеет неулучшенная прокатная сталь с мелко- и среднезернистой структурой отожженная сталь обладает примерно такими же свойствами улучшенные материалы с крупнозернистой структурой несколько более износостойки самый малый износ — у нормализованных материалов величина износа зависит от количества мелких частиц феррита, находящихся на поверхности касания.  [c.109]

При трении пластиков о металл важно учитывать низкую теплопроводность пластиков и отсутствие различия в структуре поверхностных и глубинных слоев материала в сравнении с металлами. По-видимому, в условиях трения и износа пластиков их поверхностные слои под влиянием вынужденного взаимоперемеш,ения могут терять исходную ориентацию, изменять плотность упаковки и т. д. и тем самым резко увеличивать свободную энергию полимера [4]. Эта специфика свойств пластмасс должна сказываться и на поведении смазочных материалов, которое до сих пор изучено мало. Остается неизученной роль присадок к маслам при трении пластиков о металлы неизвестно, каким требованиям должны удовлетворять смазочные материалы, используемые при трении пластмасс о пластмассы.  [c.81]

Очевидно уменьшение шероховатости и упрочнение поверхности в процессе приработки повышает сопротивление усталости деталей. Если шероховатость поверхности во время приработки ухудшается, поверхностный слой разупрочняется, в нем появляются остаточные растягиваюш,ие напряжения или убывают по абсолютной величине исходные напряжения сжатия, то сопротивление усталости деталей уменьшается. Влияние износа на прочность при повторно-переменных нагрузках может, таким образом, быть как отрицательным, так и положительным. Это подтверждено исследованиями Д. А. Драйгора и В. Т. Шарая на ряде режимов трения скольжения. К сожалению, опытных данных недостаточно, чтобы применительно к конкретным машинам с характерными для их узлов скоростями скольжения и материалами пар трения указать давления, при которых их положительное влияние будет наибольшим, а также давления, начиная с которых пластическая деформация поверхностного слоя на приработке будет сопровождаться разрыхлением структуры. Однако некоторые режимы трения легко оценить по их влиянию на прочность.  [c.254]

Между коэффициентом трения и показателем степени при нагрузке существует обратная корреляционная связь 27], которая обусловлена тем, что характеристики процесса трения и усталостные свойства материалов (например, полимеров) связаны с их молекулярной структурой. Из уравнения (1) также следует, что для материалов с одинаковой прочностью Gq интенсивность износа увеличивается с повышением модуля Юнга (Е), а для материалов с одинаковым разрывным удлинением 8о интенсивность износа уменьшается с повышением модуля упругости. Падаюп1,ий характер кривой зависимости износа от модуля упругости свойствен хрупким материалам [38], возрастаюп1,ий характер кривой зависимости наблюдается для протекторных резин с различной степенью вулканизации [16]. Эта зависимость, как и связь износа с фрикционными свойствами материалов (например, коэффициентом трения), не строго однозначна, поскольку упругие свойства материалов оказывают определенное влияние на коэффициент трения и развитие процесса усталости. Поэтому принципиально неверно связывать износостойкость материалов только с их упругими характеристиками.  [c.8]


Медь, входящая в состав фрикционных материалов, повышает теплопроводность. Взаимное частичное растворение меди и железа оказывает большое влияние на уплотнение и упрочнение материала при спекании, если медь находится в жидкой фазе. Жидкая фаза меди обеспечивает более полное соединение частиц сплава, сфероидизацию зерен железа и увеличивает усадку за счет капиллярного воздействия жидкой фазы. С увеличением содержания меди в композиции железо — графит — асбест — окись кремния значительно повышаются механические свойства, коэффициент трения и величина износа, что объяснено наличием жидкой фазы меди при спекапии и ферритной структурой материала. Жидкая фаза увеличивает прочность сцепления частиц  [c.402]

Приведенный расчет является схематичным. Помимо оговоренных выше упрощающих предположений, в нем не учтена динамика изменения экеплуатационных факторов, например вероятного снижения стоимости энергии и материалов с течением времени, уменьшения производительности станка по мере износа. Тем не менее он дает отчетливое представление о влиянии эксплуатационных расходов на экономический эффект для машин-орудий. В других категориях машин и при другой структуре  [c.14]

Прямое наблюдение периодичности образования и разрушения вторичных структур при граничном трении по интенсивности износа, величинам силы трения и ЭДС, возникающей при трении, было выполнено в работе [79]. Исследования проводились на прецизионной машине на образцах с минимально возможной площадью касания при непрерывной регистрации износа, силы трения и трибо-ЭДС. При установившемся режиме изнашивания отчетливо наблюдается периодическое изменение коэффициента трения и ЭДС. Длительность цикла образования и разрушения вторичных структур изменяется в зависимости от скорости скольжения и нагрузки. Влияние внешних параметров на количественные характеристики периодических кривых отмечается и в работах [76 — 78]. Анализ этих результатов свидетельствует о том, что изучение периодического характера структурных изменений является реальным путем для создания новых методов оценки износостойкости фрикционных материалов. С позиций представлений об усталостном разрушении поверхностей трения периодический характер структурных изменений открывает новые возможности для определения основных характеристик усталостного процесса числа циклов до разрушения и действующих на поверхности напряжений и деформаций. Этот сложный вопрос является весьма актуальным для дальнейшего развития усталостной теории износа, поскольку существующие методы оценки указанных параметров имеют определенные недостатки. Так аналити-  [c.30]

Для того чтобы показать влияние среды на процесс трения других материалов, на фиг. 320, 6 приведены зависимости коэффициента трения от температуры при трении металлокерамики МК-8 по чугуну ЧНМХ [170] в тех же средах. Во всех случаях коэффициент трения вначале уменьшается, а затем при нагреве среды до температуры 600° С стабилизируется. Наиболее высокий коэффициент трения получен при трении металлокерамики в среде гелия, что объясняется отсутствием образования окисных пленок, а при трении в среде кислорода вследствие интенсивного образования окисной пленки значение коэффициента трения имеет минимальное значение. При трении в воздушной среде значение коэффициента трения имеет среднее значение. Наиболее высокий износ обоих элементов пары происходит при трении в нейтральной среде из-за наличия непосредственного контакта материалов двух тел, сопровождающегося схватыванием. Износ в окислительной среде несколько больше, чем в воздушной, из-за более интенсивного образования окисной пленки. Из сравнения результатов экспериментов при трении в различных средах видно, что влияние среды проявляется совершенно различно при трении различных по своему составу и структуре фрикционных материалов.  [c.539]

Изучение структурных и энергетических закономерностей пластической деформации в приповерхностных слоях материалов в сравнении с их внутренними объемными слоями имеет важное значение для развития теории и практики процессов трения, износа и схватывания. При этом следует отметить, что. поверхностные слои кристаллических материалов имеют, как правило, свои специфические закономерности пластической деформации. Так, например, в работе [11 при нагружении монокристаллов кремния через пластичную деформируемую среду силами контактного трения было найдено, что в тонких приповерхностных слоях на глубине от сотых и десятых долей микрона до нескольких микрон величины критического напряжения сдвига и энергии активации движения дислокаций значительно меньше, чем аналогичные характеристики в объеме кристалла. Было также показано [2], что при одинаковом уровне внешне приложенных напряжений по поперечному сечению кристалла в радиусе действия дислокационных сил изображения эффективное напряжение сдвига значительно выше, чем внутри кристалла. Поэтому поверхностные источники генерируют значительно большее количество дислокационных петель и на большее расстояние от источника по сравнению с объемными источниками аналогичной конфигурации и геометрии при одинаковом уровне внешних напряжений. Высказывалось также предположение, что облегченные условия пластического течения в приповерхностных слоях обусловлены не только большим количеством легкодействующих гомогенных и различного рода гетерогенных источников сдвига [3], но и различной скоростью движения дислокаций у поверхности и внутри кристалла [2]. Аномальное пластическое течение поверхностных слоев материала на начальной стадии деформации может быть обусловлено действием и ряда других факто-зов, например а) действием дислокационных сил изображения 4, 5] б) различием в проявлении механизмов диссипации энергии на дислокациях, движущихся в объеме кристалла и у его поверхности причем в общем случае это различи е, по-видимому, может проявляться на всех семи фононных ветвях диссипации энергии (эффект фононного ветра, термоупругая диссипация, фонон-ная вязкость, радиационное трение и т. д.) [6], а также на электронной [71 ветви рассеяния вводимой в кристалл энергии в) особенностями атомно-электронной структуры поверхностных слоев и их отличием от объема кристалла, которые могут проявляться во влиянии поверхностного пространственного заряда и дебаевского радиуса экранирования на вели-  [c.39]


Объединение высокопластичной алюминиевой матрицы и высокопрочных нитевидных кристаллов и частиц позволяет получать антифрикционные материалы с гетерофазной структурой [6]. В табл. 3.3 дана характеристика влияния армирования частицами на сопротивление износу алюмоматричных КМ.  [c.196]

На выбор материалов могут оказать влияние физико-химические явления иа поверхностях трения, зависящие от условий работы. Например, высокомарганцовистая - сталь Гатфильда аустенитного класса, из которой изготовляют крестовины рельсов, щеки камнедробилок, зубья ковшей экскаваторов, броневые плиты шаровых мельниц, рудные течки и желоба агломерата, воронки для приемки и распределителей шихты, дозировочные столы и другие детали,, в исходном литом состоянии имеет аустенитную структуру с некоторым количеством мартенсита и включения карбидов. После закалки,, фиксирующей аустенитную структуру, сталь приобретает высокую прочность при значительной вязкости вс, = 800. .. 1000 МПа, ударная вязкость = 200. .. 300 H м/ м , НВ 200. .. 220) и высокую-износостойкость. Ее используют для деталей, подвергающихся изнашиванию при больших давлениях и ударных нагрузках. Большая износостойкость стали обусловлена ее способностью к наклепу, которая тем больше, чем выше удельная нагрузка. Пластическая деформация повышает твердость стали до NB 500. Наклеп вызывается в меньшей степени превращением аустенита в мартенсит и в большей степени выделением карбидов, за которым следует измельчение кристаллитов, что повышает сопротивление сплава пластической деформации. Удары при трении приходятся, таким образом, по твердой корке на вязком основании при износе корка возобновляется.  [c.326]

Для расшире 1ия полосы пропускания необходимо пропорционально уменьшать амплитуды смещения на всех частотах. Но при неизменном материале носителя записи это приведет к ухудшению отношения сигнал-помеха (С/П) ввиду большего влияния неоднородностей материала носителя. Следовательно, уменьшится динамический диапазон записи. Для реализации предлагаемого пути нужно использовать носители записи с более тонкой структурой, не создающей заметной шумовой помехи. Для уменьшения износа пластинок требуются легкие звукосниматели, а для уменьшения неогибания — иглы с небольшим радиусом кривизны острия. Уменьшение отдачи компенсируют увеличением усиления тракта воспроизведения.  [c.225]

Так как зависимость (43) между предельным эффективным напряжением и твердостью не учитывает влияние структуры материала (которая может быть различной при одной и той же твердости) на его износ, то эта формула является некоторой средней зависимостью. Поэтому необходимо учитывать при определении допускаемых напряжений данные эксплуатации. Предельные контактные напряжения для числа оборотов N = 10 для некоторых материалов имеют следующие значения (в кПмм )  [c.145]

Одним из определяющих износ факторов является температура, влияющая на упругопрочностные и износостойкие свойства материалов. Учет влияния температуры обеспечивается путем совместного рещения задач изнащивания и теплового трения, применения в расчетах зависимостей интенсивности изнащивания материалов от температуры, метода экспериментальной оценки фрикционной теплостойкости материалов, а также задачи напря-женно-деформированного состояния контакта при неравномерном нагреве. Рещение целесообразно проводить численными методами на той же структуре конечных элементов, что и задачи формоизменения.  [c.179]

На уменьшение износа влияют твердость, структура и химический состав поверхностного слоя. Наличие в слое остаточных напряжений сжатия несколько уменьшает износ, а остаточных напряжений растяжения — увеличивает. Это влияние больше проявляется при упругом контакте и меньше при упругопластическом. Износ изменяет остаточные напряжения в поверхностном слое детали. Остаточные напряжения растяжения при износе снимаются, и возникают напряжения сжатия. Остаточные сжимающие напряжения в поверхностном слое повышают долговечность деталей, работающих по принципу качения. Это обусловлено тем, что позади катящегося ролика в материале сопряженной детали (шейке вала, кольце подшипника) возникают напряжения растяжения. Исследования проф. П. И. Ящерицына показывают, что направление волокон материала колец подшипников качения влияет на их долговечность. Лучше, когда направление волокон концентрично рабочей поверхности колец. С увеличением угла выхода волокон к поверхности беговой дорожки кольца долговечность подшипников снижается.  [c.122]


Смотреть страницы где упоминается термин Влияние на износ структуры материалов : [c.182]    [c.71]    [c.249]    [c.161]    [c.146]   
Смотреть главы в:

Надежность машин  -> Влияние на износ структуры материалов



ПОИСК



Влияние Влияние материа

Влияние материала

Износ материалов

Материал структура



© 2025 Mash-xxl.info Реклама на сайте