Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

ЧУГУН С Влияние на структуру

Фосфор не оказывает существенного влияния на графитизацию чугуна. Его влияние на структуру чугуна выражается в том, что при содержании его выше предела растворимости (0,3%) в структуре появляются участки тройной фосфидной эвтектики с температурой плавления 950° С. Чугуны, содержащие значительное количество фосфора, отличаются жидкотекучестью и хорошо заполняют форму. Поэтому для тонкостенного литья в чугун вводят фосфора до 1 % и выше. Для ответственного литья допускается содержание его в пределах 0,1—0,3%.  [c.123]


Определяющее влияние на структуру и свойства ковкого чугуна оказывает отношение содержания марганца и серы в нем. Установлено, что при отношении Мп S меньшем 1,7 отливки из белого чугуна даже в весьма массивных сечениях свободны от выделений первичного графита. Скорость распада эвтектических карбидов на первой стадии отжига от отношения марганца к сере зависит незначительно. При отношении Мп S = 0,8—1,2 перлитная структура сохраняется независимо от длительности второй стадии графитизации, а форма углерода отжига получается шаровидной. С повышением отношения Мп S наблюдается переход к перлито-ферритной и ферритной структуре металлической основы и уменьшение компактности выделений углерода отжига. Изменение отношения Мп S от 1,0 до 3,0 позволяет получить всю гамму структур (от перлитной до ферритной) и механических свойств ковкого чугуна по ГОСТу 1215—59, без изменения содержания других химических элементов и технологии производства.  [c.117]

Фосфор оказывает весьма существенное влияние на структуру и свойства чугуна. Для получения чугуна с высокими пластическими свойствами содержание фосфора не должно превышать 0,08%, в противном случае в структуре чугуна образуется значительное количество тройной фосфидной эвтектики, обладающей высокой твердостью и хрупкостью, вследствие чего пластические свойства чугуна значительно  [c.154]

Условия охлаждения отливок также оказывают влияние на структуру ковкого чугуна при быстром охлаждении от 450° С происходит выделение цементита на поверхностях зерен феррита (белый излом), и сопротивляемость ковкого чугуна ударным нагрузкам резко снижается при сохранении всех прочих его свойств. Это явление полностью исключается, если отливки охлаждаются от 650° С со скоростью, большей 100° С в час, или весьма медленно.  [c.707]

Кремний оказывает большое влияние на структуру и свойства чугунов, так как величина температурного интервала, в котором в равновесии с жидким сплавом находятся аустенит и графит, зависит от его содержания. Чем больше содержание кремния, тем шире эвтектический интервал темпе-  [c.187]

Контактная сварка. Сварка разработана главным образом для соединения чугунных труб и вьшолняется с оплавлением и предварительным подогревом концов труб с целью предупреждения образования закалочных структур. Структура исходного чугуна оказывает влияние на качество сварки. Удовлетворительные результаты получаются при сварке изделий из чугуна с мелким графитом, например труб центробежной отливки. По качеству сварные соединения не уступают основному металлу. В зоне сварного соединения в ряде случаев не обнаруживается структурно свободный цементит, тогда как до сварки в металле труб он встречается в значительных количествах. Сварные соединения получаются достаточно плотными. Разработаны режимы сварки труб различного диаметра (табл. 9-25). Изготовлены и успешно внедрены на заводах специализированные установки для контактной сварки чугунных труб.  [c.508]


На свариваемость серого чугуна весьма существенное влияние оказывает его структура. Лучше всего свариваются чугуны, имеющие в изломе мелкозернистую структуру светло-серого цвета и сравнительно мелкие включения графита. Чугун темно-серого цвета в изломе с крупными зернами сваривается значительно хуже плохо поддаются сварке так называемые черные, графитные чугуны с большим количеством графита, образующего крупные включения. Излом такого чугуна оставляет следы на руках или бумаге при прикосновении к нему. Почти совершенно не поддаются сварке горелые чугуны, длительное время работавшие при высоких температурах в соприкосновении с газами. Для более точной оценки качества чугуна рекомендуется металлографическое исследование чугуна с рассмотрением его структуры под микроскопом.  [c.92]

Отличительной особенностью высокопрочного чугуна, оказывающей непосредственное влияние на структуру отлнвок, является повышенная чувствительность к скорости охлаждения [4], [5]. На диаграмме (фиг 1, а) представлены сравнительные кривые, описывающие соотношение структурных составляющих при изменении толщины отливки в высокопрочном чугуне (сплошные линии) и в обычном сером чугуне (пунктир). Диаграмма разработана применительно к чугуну с содержанием углерода 3% и марганца в обычно встречающихся пределах 0,4—0,6 %. Сплошные кривые, на диаграмме соответствуют случаю, когда в чугун из модифицирующих добавок переходит О 04—0.06% Mg и 0,4—0,5% Si. Диаграмма делится кривыми на четыре структурные области карбидо-перлитную (К П), перлитную (П) перлито-фер-ритную (П -f Ф) и ферритную (Ф).  [c.255]

Фосфор. Фосфор оказывает существенное влияние на структуру и свойства чугуна. Для получения чугуна с высокими пластическими свойствами содержание фосфора не должно превышать 0,08 %, в противном случае в структуре чугуна образуется значительное количество тройной фосфидной эвтектики, обладающей высокими твердостью и хрупкостью, вследствие чего пластические свойства чугуна значительно снижаются. Максимальное относительное удлинение (18-25 %) в высокопрочном ЧШГ обеспечивается при Р <  [c.528]

Особенностью этого вида разрушения по сравнению с обычной коррозионной усталостью является соизмеримость периодически напряженных участков с размерами отдельных кристаллов металла (напряжения второго рода). В связи с этим на кавитационную стойкость сплавов большое влияние оказывают механическая прочность, структура и состояние границ зерен сплава. Например, чугун с шаровидным графитом более устойчив к кавитации, чем обычный чугун, а еще более устойчивы стали.  [c.341]

Правильный выбор материала притира оказывает большое влияние на производительность притирки. Основным материалом служит перлитный чугун, не содержащий твердых включений и пор, не имеющий рыхлостей и раковин, внедрений зерен цементита, с содержанием основной структуры —перлита 90— 95%. Свободный графит должен быть распределен равномерно в виде отдельны х мелких гнезд и тонких пластинок без значительных завихрений и переплетений. Обычно применяется чугун следующего химического состава, % 2,8—3,1 С  [c.296]

Чем ближе их форма приближается к сфероидальной, тем меньше их влияние на Кон-, центрацию местных напряжений, и чем менее сфероидизированы графитовые включения, тем большие пластические деформации выявляются (по абсолютной и относительной величине) при более низких напряжениях. Характерное изменение пластических деформаций, с увеличением нагрузки (изгибающей), приведено в табл. 35 для чугуна сельскохозяйственного машиностроения (более грубый графит) и, ста-листого (более мелкий графит) [129]. В обоих сортах чугуна была обеспечена одинаковая структура основной металлической массы (перлитно-ферритная) предварительным отжигом при температуре 700 С в течение 6 час.  [c.21]

Перегрев. Чугун при его перегреве до некоторого предела получает измельчённую структуру, что ведёт к повышению предела прочности. При перегреве выше определённого предела происходит выделение графита с дендритной ориентацией, вследствие чего ухудшаются его статические механические свойства. Пример изменений механических свойств чугуна с повышением температуры перегрева приведён на фиг. 41 [9]. Критическая температура перегрева зависит от состава чугуна, как это видно из диаграммы на фиг. 42. Диаграммы фиг. 41 и 42 отражают только качественные результаты влияния температуры перегрева, полученные при переплавке чугуна в электрической печи. При переплавке в вагранке чугуна с меньшим содержанием кремния, чем указано на фиг. 42, критическая  [c.31]


Классификация структур фосфидной эвтектики по площади включений (Фв1 — F < 2000 мк , Фв2 — f = 2000+ 10 ООО мк ФвЗ — f = 10 000-f-16 ООО мк , Фв4 — f = 16 000- 25 ООО мк Фв5 — f > 25 ООО мк ) мало отражает ее влияние на свойства чугуна. Дифференциация фосфидной эвтектики на двойную Фс1 с равномерным зернистым строением и тройную ФсЗ с пластинами цементита принципиально неверна, как это было показано выше. Поэтому наиболее рациональной является оценка структуры фосфидной эвтектики по характеру ее распределения в чугуне (ГОСТ 3443-57).  [c.14]

Высокая износостойкость, прочность и ударная вязкость обеспечиваются изотермической закалкой чугуна с шаровидным графитом (рис. 41). Влияние температуры изотермического превращения на прочностные свойства чугуна с шаровидным графитом с различной исходной структурой пока- зано на рис. 42. На рис. 43 показаны структуры серого чугуна и чугуна с шаровидным графитом после изотермической закалки.  [c.47]

На рис. 47 показано влияние температуры и исходной структуры на твердость и глубину слоя при поверхностной закалке чугуна с шаровидным графитом. На рис. 48 показано изменение твердости при пламенной закалке серого чугуна различных марок.  [c.51]

Влияние химического свойства на структуру и физико-механические свойства серого чугуна. Влияние основных элементов на графитизацию чугуна может быть оценено с помощью данных табл. 25.  [c.83]

При подобранном соотношении бора и кремния в широком пределе толщин стенок и эвтектичности чугуна получается своеобразная половинчатая структура с равномерно распределенной цементитной сеткой на перлитной основе. В зависимости от количества введенного бора возможно получение твердости до 260 НВ. Серый чугун с тонкой цементитной сеткой хорошо обрабатывается. Аналогичное влияние на свойства чугуна оказывают комплексные добавки бора и алюминия. Путем легирования бором можно значительно повысить износостойкость чугуна без опасения понизить его обрабатываемость [И].  [c.86]

Марганец (табл. 18). Влияние марганца на структуру металлической основы и механические свойства чугуна заключается в том, что при повышении его содержания уменьшается количество феррита и увеличивается количество перлита, в связи с этим соответственно повышается предел прочности при растяжений и уменьшается удлинение.  [c.153]

Особенность выплавки чугуна для изложниц в вагранках заключается в необходимости получения высокого содержания углерода, что достигается увеличением высоты горна. Не допускается высокий перегрев расплава (не выше 1300°С на желобе), использование стального скрапа в завалке. Таким образом, приемы, применяемые для повышения свойств машиностроительных отливок, вызывающие увеличение количества связанного углерода, измельчение графита, в данном случае неприемлемы. Повышение температуры свыше 1200°С приводит не только к отрицательному влиянию на структуру, но и к ухудшению поверхности изложниц, увеличению литейных напряжений и появлению рыхлот. Заливку форм осуществляют из поворотных или стопорных ковшей через различные литниковые системы (сифонные, дождевые, на нескольких уровнях). Тип системы определяется прежде всего массой изложницы и ее конструкцией.  [c.342]

Значительное влияние на структуру и свойства чугуна оказывает термическая обработка. При помощи нормализации и отжига можно превращать перлитные чу-гуны в ферритные и наоборот. Путем закалки можно придавать металлической основе чугуна мартенситную, бейнитную, бейнито-ферритную структуру. То же может быть достигнуто без закалки легированием чугуна. За рубежом широко распространен чугун с игольчатой структурой (a i ular iron), легированный молибденом и другими элементами.  [c.10]

Большое влияние на структуру чугуна оказывают ыи-кропримеси, обычно не контролируемые химическим анализом, а также содержание растворенных газов, неые таллических включении и химических комплексов сложного состава Эти примеси в той или иной мере сохраня ются при переплаве и существенно влияют на кристалли зацию чугуна Результаты изучения микросгруктур ли того чугуна показывают, чго различные науглероживаю щие реагенты неодинаково воздействуют на количество связанного углерода в структуре чугуна, так как содер жат разное количество золы и примесей В связи с этим наблюдаются колебания прочностных свойств синтетичес ких чугунов, выплавленных с применением различных карбюризаторов  [c.107]

Модифицирование обычного чугуна без предварительного перегрева не оказывает заметного влияния на структуру чугуна и характеристики графитовых включений. С повышением температуры перегрева и с последующим модифицированием длина графитовых включений монотонно уменьшается, улучшается форма и распределение графита. Пластинчатый среднезавихренный графит розе-точного расположения переходит в изолированный и малоизолированный с прямолинейными и компактными образованиями. Пластинки перлита размельчаются и относительно однородно распределяются в сечении шлифа. Эксперименты проводились на сплавах с эвтектичностью  [c.136]

На характер формирования структуры чугуна оказывают влияние многие факторы, но прежде всего это содержание постоянных элементов (С, Si, Мп, S, Р), наличие легирующих элементов, скорость охлаждения отливки, а также состояние расплава перед его заливкой в форму, которое зависит от перегрева расплава, его рафинирования и модифицирования. Подлю и ыг<г(рованиел понимают введение в расплав небольших количеств добавок, которые, не меняя состав чугуна, оказывают влияние на зарождение и рост структурных составляющих, а следовательно, конечную структуру отливки.  [c.240]

Большое влияние на структуру чугуна оказывают условия затвердевания и охлаждения отливок. Быстрое охлаждение способствует получению белого чугуна, медленное — серого. Скорость охлаждения зависит от применяемой литейной формы (песчаная или металлическая), а также от толш ины стенки отливки. В машиностроении используют отливки из серого, высокопрочного, с вермикулярным графитом и ковкого чугунов. Эти чугуны, как и сталь, состоят из металлической основы (перлита, феррита) и неметаллических включений графита. Они различаются главным образом формой графитовых включений. Белый чугун имеет ограниченное применение. Некоторые отливки, от которых требуется повышенная твердость поверхностного слоя, изготовляют из отбеленного чугуна. Поверхностный слой его состоит из белого чугуна, а сердцевина — из серого. Толщину и твердость отбеленного слоя регулируют путем изменения химического состава чугуна и скорости затвердевания отливки.  [c.134]


Сопротивление коррозии зависит от структуры чугуна и от внешней среды (её состава, температуры, а также передвижения по отношению к металлу). По убывающему электродному потенциалу структурные составляющие чугуна могут быть расположены в такой последовательности графит (наиболее foй-кий) — цементит, фосфидная эвтектика — перлит — феррит. Разность потенциалов между ферритом и графитом составляет 0,56 в. Сопротивление коррозии уменьшается по мере увеличения степени дисперсности структурных составляющих. Чрезмерное уменьшение степени дисперсности графита также снижает сопротивление коррозии из-за уменьшения при этом плотности чугуна. Легирующие элементы влияют на сопротивление чугуна коррозии в соответствии с их влиянием на структуру. Повышенное сопротивление коррозии наблюдается у чугунных отливок с сохранившейся литейной коркой. Скорость коррозии по отношению к разным средам приведена в табл. 8, 9 и 10. Скорость коррозии уменьшается во времени.  [c.185]

Рис. 87. Структурные диаграммы для чугунов л—влияние С и 51 на структуру чугуна 6 — влияние скорости охлаждени и (толщины отлиэки) и суммы С + 51 на структуру чугуна Рис. 87. <a href="/info/336523">Структурные диаграммы</a> для чугунов л—влияние С и 51 на <a href="/info/67366">структуру чугуна</a> 6 — <a href="/info/468430">влияние скорости охлаждени</a> и (толщины отлиэки) и суммы С + 51 на структуру чугуна
Получение структуры серого чугуна с измельченными графитными включениями можно достигнуть путем введения в жидкий чугун модификаторов (силикокальция, ферросилиция или магния). Наибольшее влияние на структуру и свойства чугуна оказывает магний. Получаемый при этом высокопрочный чугун характеризуется наличием разобщенных друг от друга шаровидных, глобулярных включений графита, расположенных обычно на перлитной основе (рис. 60).  [c.95]

Наибольшее влияние на механические свойства ЧВГ в литом состоянии оказывают углерод и марганец, а кремний и фосфор в указанных в табл. 3.4.4 пределах практически не влияют на них. При этом влияние кремния и фосфора значительно на пластические свойства ЧВГ, и в меньшей степени на и НВ. Низкое и высокое содержание углерода и кремния нежелательно, так как в первом случае увеличивается склонность чугуна к отбелу и требуется усиленное вторичное модифицирование, а во втором - лолучается заэвтектический чугун с наличием в структуре большого количества колоний междендритного графита, резко снижающего его механические свойства.  [c.588]

На структуру п Boii TBa серого чугуна существенное влияние оказывают его химический состав и скорость охлаждения отливок в форме. Углерод, кремний и марганец улучшают механические и литейные свойства чугуна. Сера вызывает отбел в тонких частях отливок и снижает жидкотекучесть. Фосфор придает чугуну хрупкость. Поэтому содержание серы и фосфора в сером чугуне должно быть минимальным. Увеличение скорости охлаждения достигается путем уменьшения толщины отливки и увеличения теплопроводности литейной формы. В тонких частях отливки у ее поверхности скорость кристаллизации будет выше, чем в более массивных частях и в сердцевине. Поэтому в тонких частях отливки образуется более мелкая структура с повышенным содержанием перлита и мелкими включениями графита, что обеспечивает высокие механические свойства этих зон. Там, где чугун затвердевает медленнее, образуется крупио-  [c.158]

Основная масса материала валка должна обеспечивать общую высокую механическую прочность, что может быть достигнуто технологическими приемами. Важное значение наряду со структурой металлической матрицы чугуна имеют количество графита и его форма. Общая прочность валка будет определяться размерами отбеленного слоя и переходной зоны. При значительном отбеленном слое возрастает опасность поломки таким образом, для увеличения механической прочности желательно уменьшать слой отбела. Но для создания износостойкости поверхность должна быть достаточно твердой. Основное влияние на износостойкость оказывают свойства чугуна в зоне чистого отбела и величина пооеднего. Твердость рабочего слоя с чистым отбелом составляет 58 - 65 HSD.  [c.331]

Наряду с высокоуглеродистыми и легированными сталями в качестве износостойких материалов применяют чугун различных марок. Решающее влияние на триботехнические свойства чугуна оказывают включения графита и фосфоридная эвтектика чугуна, которые определяются структурой, зависящей от состава сплава, условий охлаждения литья и термической обработки. Износостойкость чугуна зависит также от содержания перлита увеличение перлита в структуре до 30% повышает износостойкость чугуна.  [c.18]

Изучено влияние давления на структуру сплавов Fe—С и Fe—С—Si, затвердевавших в песчано-бентонитовых формах, т. е. при меньших скоростях охлаждения, чем в металлических формах [52]. Показано, что давление I и 3 MH/м , развиваемое магнезитовым поршнем, воздействует на процесс затвердевания, структуру сплавов (табл. 2) и кинетику графитизации при последующем отжиге. Доэвтектические сплавы под давлением и без него затвердевают с образованием структуры белого чугуна, но эффект давления проявляется на первой стадии графитизации при отжиге. Отжиг в течение 8—12 ч при температуре 800—900°С сплавов, отлитых под давлением, приводит к полной графитизации, в то время как те же сплавы, полученные в атмосферных условиях, не гра-фитизируются полностью при отжиге в течение 72 ч при температуре 900°С.  [c.38]

В статье приведены результаты исследования влияния диффузионного насыщения титаном и никелем на структуру и свойства углеродистой стали и чугуна. Насыщение проводили в порошкообразной реакционной смеси, состоящей из ферротитана (титана), карбонила никеля и галогенидов никеля — N1 I,, N11,, N1F,, плавикового шпата и фтористого натрия, при 800—1100 С в течение 2—24 ч. Микроструктура диффузионного слоя состоит из нескольких зон, различающихся по травимости и твердости. Микротвердость поверхностного слоя 1100 кгс/мм. Установлено, что свойства диффузионных титаноникелевых слоев на образцах из стали и чугуна выше, чем при насыщении одним злемен-том. Лит. — 8 назв., ил. — 3.  [c.261]

Исследование влияния ванадия на структуру и износостойкость чугуна ИЧХ28Н2 показало следующее. С увеличением добавки ванадия структура хромистого чугуна размельчается. Так, при увеличении содержания ванадия от 0 до 0,45% величина аустенитного зерна уменьшилась с 240 до 157 мкм. При дальнейшем повышении степени легированности чугуна ванадием размельчение структуры уменьшилось, и при 0,92%V средняя величина зерна составила 121 мкм. Характеристики структуры, твердость и износостойкость чугуна приведены в табл. 6.2.  [c.241]

Для поршневых колец, работающих при повышенных температурах (примерно до 250°), в условиях полусухого трения, наиболее пригодной является перлитная или сорбитная (после термообработки) структура с минимальным количеством феррита. Эта структура сообщает кольцу необходимую прочность, вязкость и хорошие антифрикционные свойства. Составы колец зависят от способа изготовления, определяющего скорость остывания отливок. При отливке индивидуальных колец в сырые формы обычный перлитный состав (№ 31) имеет повышенное содержание и до 3,0% 51 (для колец толщиной в 3—4 мм). Это обеспечивает перлитную структуру в тонких отливках и отсутствие как местных отбе-лов, так и феррито-графитной псевдоэвтектики, снижающих упругие и антифрикционные свойства. Повышенное количество фосфора, помимо необходимой жидкотекучести, способствует распределению фосфидов в виде разорванной сетки. Сера назначается до 0,07% для обеспечения хорошей заполняемости формы, хотя содержание до 0,1% 5 не оказывает вредного влияния на работу колец. Плавка чугуна для колец обычно производится дуплекс-процессом (вагранкагэлектропечь), что обеспечивает однородность состава и высокий перегрев. Оптимальная твёрдость колец, обладающих нормальной упругостью и прочностью, лежит в пределах 97 — 103.  [c.50]


Способ Шютца [16]. Чугун с повышенным содержанием углерода (3,2—3,6% С) и кремния (3,0—3,5 Si) заливается в металлическую форму. Части отливки, которые получаются при этом отбелёнными, дают после отжига при температуре 800—850° С структуру, состоящую из феррита и микроскопических узелков углерода отжига. Отжиг не только не оказывает вредного влияния на механические свойства чугуна, но и приносит пользу, снимая внутренние напряжения. На фиг. 341 дана сравнительная характеристика обыкновенного, цилиндрового и перлитового чугуна Ланца.  [c.205]

Хром, марганец, молибден, никель, медь тормозят выпадение феррита в чугуне, увеличивают переохлаждение аустенита и сорбитизируют перлит. Ввиду того что феррит в большинстве случаев является нежелательной структурной составляющей в чугуне с пластинчатым графитом (так как он снижает прочность чугуна, не повышая его пластичности, которая остается низкой из-за надрезывающего действия графитных пластинок), это влияние перечисленных элементов широко используется на практике. Так, при совместном легировании серого чугуна хромом и никелем из расчета компенсации отбеливающего действия хрома графитизирующим влиянием никеля (при эвтектическом превращении) достигается возможность получения перлитной структуры даже в толстостенных частях отливок .  [c.18]


Смотреть страницы где упоминается термин ЧУГУН С Влияние на структуру : [c.91]    [c.145]    [c.137]    [c.137]    [c.135]    [c.135]    [c.206]    [c.67]    [c.326]    [c.85]    [c.77]   
Материалы в машиностроении Выбор и применение Том 4 (1989) -- [ c.151 , c.155 ]



ПОИСК



Азот — Влияние на свойства и структуру чугуна

Алюминий — Влияние па свойства структуру чугуна

Бор — Влияние на свойства и структуру чугуна

Ванадий — Влияние на свойства структуру чугуна

Висмут — Влияние на свойства и структуру чугуна

Влияние составляющих на литейные и механические свойства, а также на структуру чугуна

Влияние структуры металлической основы на эрозионную стойкость чугуна

Влияние химического состава и структуры на коэффициент термического расширения и рост чугуна

Влияние химического состава на структуру и литейные свойства чугуна

Влияние химического состава на структуру и свойства чугуна

Влияние элементов на структуру чугуна и определение требуемого состава чугуна

Классификация легирующих элементов по их влиянию на структуру чугуна

Кремний — Влияние на свойства структуру чугуна

Легирующие в чугунах - Характеристика и влияние на структуру

Магний — Влияние на свойства структуру чугуна с шаровидным

Марганец — Влияние на свойства структуру чугуна

Маркировка и влияние структуры на механические свойства чугуна

Медь — Влияние на свойства и структуру чугуна

Молибден — Влияние на свойства структуру чугуна

Никель — Влияние на свойства структуру чугуна

Нормализация чугуна 10, 37 — Влияние на механические свойства структуру 38 — Назначение 29 Режимы

Обшее влияние элементов на структуру чугуна (проф., д-р техн. наук Л. П. Берг)

Олово — Влияние на свойства и структуру чугуна

Сера — Влияние на свойства и структуру чугуна

Сурьма — Влияние на свойства и структуру чугуна

Сурьма — Влияние на свойства и структуру чугуна чугуна ковкого модифицированног

Титан — Влияние на свойства и структуру чугуна

Углерод — Влияние на свойства структуру чугуна

Углеродистые стали и чугуны Стали Влияние химического состава на структуру и свойства стали

Фосфор — Влияние на свойства структуру чугуна

Хром — Влияние на свойства и структуру чугуна

Хром — Влияние на свойства и структуру чугуна чугуна жаростойкого

Хром — Влияние на свойства и структуру чугуна чугуна ковкого

Хром — Влияние на свойства и структуру чугуна чугуна серого

Церий — Влияние на свойства и структуру чугуна

ЧУГУН Структура - Влияние элементов

Чугун Влияние структуры на механические



© 2025 Mash-xxl.info Реклама на сайте