Энциклопедия по машиностроению XXL

Оборудование, материаловедение, механика и ...

Статьи Чертежи Таблицы О сайте Реклама

Циклы напряжений в деталях машин

Циклы напряжений в деталях машин  [c.10]

Общие сведения. Изложение этой темы, пожалуй, как ни одной другой, ставит перед преподавателем вопрос С чего начинать Действительно, есть по меньшей мере две примерно равноценные возможности. Скажем, можно в общих чертах познакомить учащихся с возникновением переменных напряжений в деталях машин, рассказать об усталостном разрушении, а затем о пределе выносливости при симметричном цикле и методике его экспериментального определения. После этого следу-  [c.170]


Циклические термические напряжения в деталях машин обычно действуют в каждом цикле в течение некоторого времени. Длительность температурных циклов различная от десятков секунд до сотен часов.  [c.68]

У ж и к Г. В., Определение запаса прочности при несимметричных циклах изменения напряжений в деталях машин, Вестник машиностроения № 5, 1944.  [c.761]

В деталях машин возникают следую-нще циклы изменения напряжений  [c.11]

Испытания на усталость позволяют определять сопротивление металлов повторно-переменным нагрузкам. Количество повторений (циклов), которое выдерживает металл в образцах или в деталях машин до разрушения, зависит от величины и характера напряжений. Эта зависимость для чёрных металлов имеет показанный на фиг. 159 (кривая Велера).  [c.70]

Стремление снизить вес конструкций приводит к повышению рабочих напряжений в деталях и узлах машин, а увеличение уровня напряженного состояния вызывает ускорение коррозионных разрушений. Применение сварных и паяных конструкций в современном машиностроении выдвигает свои специфические вопросы коррозии металла, прошедшего термомеханический цикл сварки или пайки, создающий остаточные напряжения как в металле шва, так и в зоне термического влияния. Этот новый комплекс вопросов определяет развитие теоретических и экспериментальных исследований химической стойкости материалов, обеспечивающей надежность и долговечность машин, эксплуатируемых в новых условиях.  [c.16]

Влияние частоты повторения циклов переменных напряжений на выносливость материала обычно учитывается уже при нахождении предела выносливости. Существующие испытательные машины, как правило, дают около 3000 циклов напряжений в минуту. Опыты показывают, что изменение этого числа в пределах от 500 до 10 ООО циклов минуту заметным образом на величине предела выносливости не сказывается. Поэтому при расчетах деталей, работающих при переменных напряжениях, специальный коэффициент динамичности напряжений Кц следует вводить только при скоростях повторения циклов, меньших 500 или больших 10 ООО в минуту, а также в тех случаях, когда, переменная нагрузка одновременно является ударной.  [c.558]

К вредным процессам можно отнести изнашивание рабочих поверхностей деталей, усталость металла, вибрации узлов и механизмов, внутренние напряжения в деталях, различные виды коррозии, старения и др. Вредные процессы могут происходить под влиянием погрешностей в самой машине, например от неуравновешенности вращающихся масс, нарушения взаимного расположения деталей в узлах и механизмах, несоблюдения продолжительности или вообще отсутствия старения литых заготовок корпусных деталей и др., и под действием внешних условий — нарушения нагрузочного режима, температурных влияний окружающей среды и т. п. По скорости протекания вредные процессы А. С. Проников [74] делит на три группы быстропротекающие, средней скорости и медленные. К быстропротекающим процессам относятся вибрация узлов, изменение сил трения в подвижных сопряжениях, колебания рабочих нагрузок и другие подобные процессы, оказывающие влияние на взаимное положение деталей и узлов и искажающие цикл работы машины. В противоположность быстродействующим процессам, периодичность изменения которых измеряется долями секунды, медленные процессы могут длиться дни и месяцы. К ним относятся изнашивание деталей, усталость металла, коррозия, и т. п.  [c.92]


Длительное действие термических напряжений. Температурные напряжения, возникающие в деталях машин при высоких температурах, обычно действуют в каждом цикле в течение некоторого времени. Длительность и форма температурного цикла являются одним из основных факторов, определяющих сопротивление материала термической усталости, поскольку с увеличением длительности действия температурных напряжений изменяется процесс накопления повреждений [15].  [c.74]

Влияние концентрации напряжений в расчетах деталей машин, подвергающихся действию переменных напряжений с асимметричным циклом, следует учитывать на основе экспериментальных данных, так как теоретически этот вопрос пока не решен.  [c.603]

Актуально ускорение усталостных испытаний. Оно возможно повышением частоты, повышением напряжений и исключением тех напряжений в спектре, которые практически не сказываются на процессе усталости. За последние 30 лет скорости машин для испытаний на усталость повысились с 300 до 50000 циклов в минуту, кроме того, имеются уникальные пульсаторы резонансного типа для малых образцов с частотой свыше 50000 Гц. Современные высокочастотные пульсаторы сокращают время испытаний отдельных деталей, например лопаток турбомашин, до десятков минут. Частота нагружений при отсутствии пластических деформаций и повышенного внутреннего трения обычно мало влияет на предел выносливости. Возможно внесение поправок на основе литературных данных или экспериментов. Проведение испытаний при повышенных напряжениях уместно для изделий, у которых зависимость наработки от напряжений (в частности, при контактных нагружениях) стабильна и достаточно хорошо изучена. Форсирование нагрузки применяют для узлов, в частности для выявления слабых  [c.479]

В курсе деталей машин при выборе допускаемых напряжений на изгиб и контактную прочность для зубчатых и червячных передач вводят так называемые коэффициенты режима, зависящие от соотношений между расчетным (рабочим) числом циклов для данной детали и базовым числом циклов для ее материала. Если число циклов, испытываемых деталью (скажем, зубом шестерни), меньше базового, то коэффициент режима получается больше единицы и соответственно повышается допускаемое напряжение. Таким образом, в расчетах на прочность находит отражение заданная долговечность детали.  [c.176]

Иногда из условий эксплуатации машины заранее известно, что деталь за время своей работы должна воспринять значительно меньшее число циклов, чем принятое при определении предела выносливости. В этом случае более экономично расчет детали вести на долговечность, а не исходить из предела выносливости. Долговечностью образца называют число циклов, необходимое для его поломки при данном цикле напряжений. Кривая выносливости (рис. 22.7, а) позволяет решить вопрос о долговечности образца, так как абсциссы точек этой кривой (Л, , /V.J,. ..) определяют долговечность образца при соответствующих значениях максимального напряжения цикла.  [c.584]

Для переменных нагрузок, которые имеют наибольшее распространение в современных машинах, наименьшая долговечность деталей наблюдается при симметричном цикле напряжений. Наоборот, с увеличением постоянного среднего напряжения (Тср и уменьшением амплитуды сТа влияние переменного напряжения на прочность деталей уменьшается.  [c.247]

По результатам испытаний коленчатых валов тракторных дизелей [19] установлено, что новые критерии усталости можно использовать для определения пределов выносливости деталей машин, если при этом критическое напряжение определять по критическому числу циклов, вызвавшему образование в детали видимой усталостной трещины.  [c.85]

Названные условия нагружения приняты как весьма общие и характерные для ряда ответственных узлов и деталей машин, когда осуществляется нерегулярное усталостное нагружение с кратковременными перегрузками. При этом уровень переменных напряжений, как правило, не достигает предела пропорциональности материала и соответствует величине предела усталости или несколько его превышает, в то время как перегрузки выводят материал за предел упругости. В этом случае разрушение может происходить и в многоцикловой области, и при малом числе циклов нагружения.  [c.57]


Влияние переменных напряжений па работу металлических конструкций по сравнению с деталями машин имеет ряд особенностей, которые объясняются, во-первых, высокими пластическими свойствами строительных сталей и, во-вторых, характером циклического нагружения металлических конструкций. По сравнению с деталями машин металлические конструкции испытывают значительно меньшее количество перемен напряжений и в результате влияния собственного веса конструкций в основном имеют место асимметричные циклы изменения напряжений, в то время как у деталей машин весьма распространенными являются наиболее опасные с точки зрения усталости симметричные циклы.  [c.147]

Так как большое число деталей машин и элементов конструкций (вращающиеся валы и оси, подкрановые балки, несущие узлы транспортных установок и т. д.) работает при переменных во времени напряжениях и за весь срок службы число циклов нагружения достигает 10 —10 и более, то наиболее вероятным эксплуатационным повреждением для них оказывается многоцикловое усталостное. Усталостное разрушение начинается обычно в зонах с максимальными амплитудами циклических напряжений или в местах технологических дефектов (поверхностных, сварочных). Трещины усталости при указанных выше базах по числу циклов, возникают и распространяются при номинальных напряжениях ниже предела текучести. Расчетными характеристиками при определении прочности и ресурса в этих случаях являются пределы выносливости и кривые многоцикловой усталости с отражением роли конструктивных, технологических и эксплуатационных факторов (абсолютные размеры сечений, асимметрия цикла, концентрация напряжений, среда, состояние поверхности и др.) [2, 3]. В связи с разбросом характеристик сопротивления усталости а  [c.11]

Для элементов конструкций и деталей машин, нагружаемых в соответствующем диапазоне температур при коэффициентах асимметрии г О, г < О (при действии преимущественно пульсирующего давления, осевых нагрузок и изгибающих моментов), определение прочности можно проводить по кривым допускаемых амплитуд и числе циклов, по построенным уравнениям пп. 4.1.1 и 5.2.2 при г = г = 0. Для циклически разупрочняю-щихся сталей такие кривые строят по уравнениям пп. 4.1.5 и 5.2.3 при г = —1 эти кривые используют без ограничения по коэффициентам асимметрии г для эксплуатационных напряжений.  [c.239]

На основании приведенных в гл. 2 и 11 уравнений и соответствующего раздела норм прочности [2] разработана программа расчета прочности и ресурса деталей машин и элементов конструкций при действии эксплуатационных механических и тепловых нагрузок в диапазоне числа циклов до 10 —10 . При этом в качестве исходных используются распределения напряжений и деформаций, соответствующие режимам эксплуатации. Определение напряжений и деформаций, как указано выше, может быть выполнено аналитическими или численными с применением ЭВМ методами или экспериментально по данным измерений на моделях и натурных конструкциях для заданных эксплуатационных нагрузок.  [c.257]

Прочность деталей машин, обработанных резанием. Прочность деталей машин, работающих при большом цикле перемен нагрузок (усталостная прочность), в значительной степени зависит от состояния поверхностных Рис. Ю. Влияние метода окончатель-слоев. Усталостная трещина возникает обработки поверхности на пре-на поверхности детали, где действуют наибольшие напряжения при изгибе и кручении. Дефекты поверхности в виде рисок от прохождения режущей  [c.409]

В процессе разгрузки турбины и последующего еа останова происходит обратный процесс кромки остывают быстрее средней части. В пере лопатки возникают внутренние усилия — в средней части сжимающие, в кромках — растягивающие. Последние оцениваются по той же формуле (20.83). Таким образом, один цикл пуска-останова турбины вызывает в лопатке один цикл растяжения-сжатия. Подчеркнем, что возникающие в системе усилия (и напряжения) полностью определяются температурными деформациями. Другими словами, система функционирует в режиме заданных циклических деформаций в отличие от обычного для деталей машин режима заданных циклических усилий (напряжений).  [c.372]

Повторное действие нагревов и охлаждений деталей машин, вызывающих в каждом цикле термические напряжения, совпадает, как правило, с пусками и остановами агрегатов и оборудования и ограничивается в большинстве случаев малым числом циклов.  [c.34]

Оценка сопротивления разрушению элементов конструкций и деталей машин, как отмечалось выше, предполагает в первую очередь, анализ условий их нагружения и разрушения при эксплуатации - уровни общей и местной напряженности, температуры стенок, числа и форма циклов нагружения, наличие ударных перегрузок, характер распределения и величины остаточных напряжений, накопление коррозионных и др повреждений, источники и характер разрушения. Получаемые из этого анализа данные являются основой для выбора конструкционных материалов, методов определения их механических свойств, а также методов и критериев анализа прочности, ресурса и надежности.  [c.70]

Проблемы прочности, долговечности и надежности в области классической многоцикловой усталости (10 < N < Q ) в течение многих десятилетий решались наиболее обстоятельно и эффективно в силу их исключительной важности для большинства объектов современного машиностроения автомобильного, сельскохозяйственного, авиационного, железнодорожного, технологического, энергетического, металлургического. Массовые повреждения от усталости большого числа деталей машин заставили осуществить обширные комплексные программы исследований механизмов возникновения и развития трещин с учетом основных факторов конструктивных (концентрация напряжений, эффект абсолютных размеров), технологических (исходные свойства конструкционных материалов, наличие сварки, упрочнение, снятие и создание остаточных напряжений) и эксплуатационных (базы по числу циклов, асимметрия, среда, температура). Для этих случаев (особенно в авиации) анализ прочности и ресурса в наи-  [c.71]


Когда две поверхности находятся в условиях контакта качения, процесс износа совершенно отличается от только что описанного процесса износа при скольжении, хотя недавние исследования износа при скольжении и привели к созданию теории износа при скольжении, называемой теорией расслоения [13, в соответствии с которой механизм износа очень схож с описываемым здесь механизмом износа при качении. В результате контакта при качении возникают напряжения, причем максимальное касательное напряжение возникает в материале на небольшой глубине, немного ниже поверхности контакта (см., например, [14, стр 3891). По мере движения зоны контакта качения относительно некоторой точки касательное напряжение вблизи поверхности меняется от нуля до максимального значения, а затем опять до нуля. Таким образом, возникает поле циклических напряжений. Представленный в гл. 7—9 материал указывает, что в полезных условиях может произойти усталостное разрушение путем зарождения трещины вблизи поверхности, которая при повторном циклическом нагружении растет и в конечном счете может выйти на поверхность, в результате чего от поверхности может отколоться макрочастица и образуется язвочка износа. Такое явление, называемое усталостным разрушением поверхности, представляет собой характерный вид разрушения подшипников качения, зубчатых передач, кулачков и других деталей машин, в которых имеются контактирующие в условиях качения поверхности. Испытания, проведенные производителями подшипников, показали, что долговечность N (в циклах) приближенно определяется выражением  [c.583]

Ств на рис. 2.5 и Og, О на рис. 2.6. Некоторая область на этих диаграммах, прилегающая к точке D, является нерабочей, так как в условиях эксплуатации деталей машин средние напряжения цикла, близкие к не допускаются [максимальные напряжения цикла a iax почти во всех случаях меньше (0,5—0,6) Ogl. Поэтому на рис. 2.5 и 2.6 диаграмма в области, прилегающей к точке D, -проведена штрихпунктиром.  [c.32]

Нестационарное изменение переменных напряжений в деталях машин, когда максимальные и минимальные напряжения переменны во времени, встречается часто. Закономерности изменений прочностных СВОЙСТВ материалов при нестационарных нагружениях изучены пока недостаточно. Известно, напри-мер, что можно предел усталости /О материала значительно повысить пу-тем тренирования, т. е. предварительным ступенчатым циклическим нагружением с постепенно возра-стающими напряжениями. В дей-ствительных условиях не встречается постепенного ступенчатого повышения напряжений в деталях во мно- 28 гих случаях напряжения ниже пре-дела усталости чередуются с напряжениями выше предела усталости, действующими ограниченное 22 время. Перегрузки, действующие непродолжительное время, но систематически повторяющиеся много раз за время работы детали могут повышать и понижать предел усталости. Пример кривой повреждаемости для стали 5 (по Н. П. Щапову), т. е. кривой, отделяющей область, в которой циклические перегрузки на участке ограниченных чисел циклов, не вызывают снижения предела усталости показан на фиг. 1 кривая эта лежит значительно ниже кривой выносливости.  [c.327]

Старение деталей машин, их несущая способность и прочность при переменной нагруженности зависят от концентрации напряжений, абсолютных размеров, свойств материалов и качества поверхностного слоя деталей, окружающей среды п других факторов. Металлографические, рентгеновские и исследования, выполненные с помощью электронных микроскопов, позволили открыть ряд новых явлений, сопровождающих повторную деформацию и последующее (часто внезонное) разрушение материалов под действием повторных нагрузок. Это явление называется пределом выносливости металлов. Субми-кроскопические трещины усталости образуются на ранней стадии деформирования, после числа циклов, составляющего 10—20% общей долговечности. Видимая трещина образуется незадолго до окончательного разрушения детали. С помощью методов дефектоскопии в ряде случаев можно контролировать величину и скорость распространения трещин в деталях машин и определять пределы безотказной работы при медленно развивающихся трещинах усталости.  [c.223]

Повышенные температуры наблюдаются не только в тепловых машинах, у которых нагрев является следствием рабочих процессов. В холодных машинах нагреваются механизмы, работающие при высоких скоростях и больших нагрузках (зубчатые передачи, подшипники, кулачковые механизмы и т. д.). Детали, подверженные циклическим нагрузкам, греются в результате упругого гистерезиса при многократно повторных циклах нагружения-разгруженпя. Повышение температуры сопровождается изменением линейных размеров деталей и может вызвать высокие Напряжения.  [c.360]

Учебное пособие написано в рамках чтения лекций в МГТУ им. Н.Э. Баумана по курсу Конструкционная прочность машиностроительных материалов на факультете Машиностроительные технологии (кафедра Материаловедение ) и предназначено для студентов, обучающихся на материаловедов и машиностроителей. Среди механических свойств конструкционных металлических материалов усталостные характеристики занимают очень важное место. Известно, что долговечность и надежность машин во многом определяется их сопротивлением усталости, так как в подавляющем большинстве случаев для деталей машин основным видом нагружения являются динамические, повторные и знакопеременные на1 рузки, а основной вид разрушения - усталостный. В последние годы на стыке материаловедения, физики и механики разрушения сделаны большие успехи в области изучения физической природы и микромеханизмов зарождения усталостных трещин, а также закономерностей их распространения. Сложность оценки циклической прочности конструкционных материалов связана с тем, что на усталостное разрушение оказывают влияние различные факторы (структура, состояние поверхностного слоя, температура и среда испытания, частота нагружения, концентрация напряжений, асимметрия цикла, масштабный фактор и ряд других). Все это сильно затрудняет создание общей теории усталостного разрушения металлических материалов. Однако в общем случае процесс устаттости связан с постепенным накоплением и взаимодействием дефектов кри-сталтгической решетки (вакансий, междоузельных атомов, дислокаций и дискли-наций, двойников, 1 раниц блоков и зерен и т.п.) и, как следствие этого, с развитием усталостных повреждений в виде образования и распространения микро - и макроскопических трещин. Поэтому явлению усталостного разрушения присуща периодичность и стадийность процесса, характеризующаяся вполне определенными структурными и фазовыми изменениями. Такой анализ накопления струк-туршз1х повреждений позволяет отвлечься от перечисленных выше факторов. В учебном пособии кратко на современном уровне рассмотрены основные аспекты и характеристики усталостного разрушения металлических материалов.  [c.4]

Закончить рассмотрение вопроса о пределе выносливости надо указанием, что его значение практически не зависит от закона изменения напряжений (хотя обычно п])инимаем синусоидальный или близкий к нему закон) и от частоты циклов. Может быть, полезно упомянуть о значительном влиянии частоты циклов на предел выносливости органических материалов, так как при изучении деталей машин эту особенность придется учитывать в связи с вопросом о долговечности ременных передач.  [c.176]


Условия эксплуатации деталей машин характеризуются не только режимом нагружения, но и в неменьшей степени рабочей средой и ее температурой. Причем, если влияние температуры в большинстве случаев достаточно определенно, то влияние среды очень многообразно и зависит от активности физических или химических реакций с материалом детали. Наибольший интерес с точки зрения условий тормон<ения роста усталостных трещин представляют те случаи, когда в результате диффузии среды на поверхности детали образуется защитный слой или когда коррозионное воздействие притупляет вершину трещины, а действующий цикл напряжений не может обеспе-  [c.100]

Сложившиеся к настоящему времени методы расчета деталей машин заключаются-в следующем. Вначале определяются статические и динамические усилия и соответствующие им максимальные напряжения в сечениях деталей. Затем эти напряжения сопоставляются с предельными напряжениями (пределом текучести или пределом прочности) для принятого -материала деталей в свою очередь, предельные напряжения находятся из справочных данных. С целью учета возможных ошибок при определении цагрузок и выбора величины предельных напряжений задается запас прочности, т. -е. превышение предельных напряжений над расчетными. Если в сечениях рассматриваемой детали имеют место переменные напряжения, то. выполняется расчет детали на усталость, который учитывает уменьшение ее прочности с увеличением числа циклов приложения переменных напряжений,  [c.3]

Проблема малоцикловой усталости несущих элементов конструкций и деталей машин в широком диапазоне температур и скоростей нагружения применительно к малоцикловой усталости (без учета температурно-временного фактора) и длительной циклической прочности (с учетод температурно-временного фактора) включает в себя два основных направления (рис. 1.1) исследование кинетики полей напряжений и деформаций в зонах Д1аксималь-ной напряженности, определяющих места ускоренного накопления повреждений и разрушения изучение свойств Д1Этериалов по числу циклов и по времени деформирования.  [c.7]

Прочность сталей при асимметричном цикле нагружения зависит как от механических свойств материала, так и от концентраторов напряжения. Поэтому при расчете на усталостную прочность деталей машин необходимо учитывать влияние асимметрии цикла на его предельную амплитуду в зависимости от механических свойств материала, концентраторов напряжения и среды, в которой они эксплуатируютс я.  [c.72]

В заключение добавим, что понятие физического предела выносливости распространяется, по-видимому, лишь на стандартные образцы и на относительгю небольшие детали машин с тщательно отшлифованной поверхностью и при отсутствии концентраторов напряжений как конструктивных, так и технологических в виде раковин, шлаковых включений и т. п. Однако, когда речь идет о крупногабаритных деталях, в особенности таких, которые включают сварные швы, а также имеют грубо обработанную поверхность, указанный вывод может ока.заться неправильным. Дело в том, что эти и другие подобные причины технологического происхождения могут создавать неучтенную концентрацию напряжений в малых зонах, где местные напряжения оказываются достаточными для развития усталостных повреждений на протяжении 10. .. 10 циклов. Поэтому к вопросу о физическом пределе выносливости крупногабаритных конструкций и деталей машин следует всегда подходить с большой осторожностью.  [c.341]

Высокотемпературная малоцикловая усталость Высокотемпературная малоцикловая усталость наблюдается при высоких напряжении и деформации, когда число циклов до повреждения Mf составляет <10. Она отличается от случая, когда нагружение проводится при низкой частоте приложения напряжения или деформации, и от случая нагружения с заданной деформацией. Часто проводят испытания на усталость с заданной деформацией при знакопеременном треугольном цикле нагружения. Это обусловлено тем, что термическая усталость, вызывающая серьезные проблемы в реальных деталях Машин и элементах конструкций, является усталостью с заданной деформацией. Кроме того, даже данные, полученные при высокой температуре, соответствуют уравнению Мэнсона — Коффина и получаемые  [c.14]


Смотреть страницы где упоминается термин Циклы напряжений в деталях машин : [c.177]    [c.537]    [c.12]    [c.191]    [c.53]    [c.13]    [c.256]    [c.138]    [c.52]    [c.510]   
Смотреть главы в:

Детали Машин издание 4  -> Циклы напряжений в деталях машин



ПОИСК



Детали машин напряжений

Цикл машины

Цикл напряжений



© 2025 Mash-xxl.info Реклама на сайте