ПОИСК Статьи Чертежи Таблицы Конечно-разностные методы решения задач теплопроводности из "Применение ЭВМ для решения задач теплообмена " Применение вычислительной техники и численных методов значительно расширяет классы исследуемых полевых задач теплообмена позволяя получать приближенные решения многомерных, нелинейных, нестационарных задач, для которых использование точных и приближенных аналитических методов не представляется возможным. При выборе математических моделей, описывающих процессы теплообмена в реальных объектах, границы их допустимой сложности в настоящее время часто определяются не столько возможностями численных методов п ресурсами ЭВМ, сколько недостатком достоверной входной информации для этих моделей. [c.69] При определении различных пространственно-временных полей необходимо находить решения краевых. задач для дифференциальных уравнений в частных производных в заданных областях изменения пространственных переменных и временных интервалах. Отличительной особенностью применения численных методов является дискретизация нросгранственной и временной областей на первом же этапе решения задачи. При дискретизации выбираются узловые точки в пространственной и временной областях. На втором этапе составляется система алгебраических уравнений относительно значений искомых функций в этих узловых точках. На третьем — проводится решение системы и находятся значения исследуемых величин в узловых точках. Отметим, что дискретизация области часто делается и при расчете на основе аналитических решений, однако в этих случаях она проводится на заключительных этапах, реализуемых уже после получения аналитического решения. [c.69] Существуют два основных численных. метода решения уравнений в частных производных метод конечных разностей и метод конечных элементов. Они отличаются сп н обами получения системы уравнений для значений искомых функций в узловых точках. Метод конечных разностей базируется непосредственно на дифференциальном уравнении и граничных условиях, а метод конечных элементов — на эквивалентной вариационной постановке задачи. [c.69] В данном разделе сначала коротко рассмотрим основные понятия теории численных методов, а затем более подробно остановимся на применении конечно-разностных схем для решения уравнений теплопроводности. Метод конечных элементов будет изложен в следующей главе. [c.69] Вернуться к основной статье